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Modelling image formation for trans-illuminated phase objects in SLED or bright-field light 

To theoretically assess image formation in a microscope system under bright-field or dark field 

illumination, the partial coherence of the illumination needs to be taken into account. The 

theoretical framework for imaging with a partially coherent optical system was first discussed by 

Hopkins in 1953[1] and is treated comprehensively in textbooks by Born and Wolf[2] and 

Goodman[3]. Here, we outline how the theory of imaging with partially coherent light was applied 

to characterize the effect of the SLED surface as compared to standard bright-field illumination on 

image formation with a phase object in a 4-f system. In the following, we assume quasi-

monochromatic illumination. This is a justifiable approximation for the SLED surfaces given the 

narrow emission band of the quantum dots. It also holds for the bright-field illumination resulting 

from the light that is specularly reflected by the Bragg reflector. For an optical system with quasi-

monochromatic, spatially partially coherent illumination, the quantity that describes the system’s 

image formation characteristics is the mutual intensity or its normalized equivalent, the complex 
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degree of spatial coherence. The illumination configuration implemented with the SLED surfaces 

is spatially uniform in intensity and is akin to Köhler’s illumination, whether the SLED surface 

emission or the spectrally selective specular reflection from the SLED surface’s Bragg reflector 

(bright-field) are used for object plane illumination. Under these circumstances, the complex 

degree of spatial coherence for two points in the object plane 𝑥", 𝑦"  and 𝑥%, 𝑦%  depends only 

on the coordinate differences, i.e. 𝑗 𝑥", 𝑥%, 𝑦", 𝑦% = 	𝑗(𝑥% − 𝑥", 𝑦% − 𝑦") and it is proportional to 

the Fourier transform of the angular spectrum of the illumination[1,2]. Specifically, for bright-field 

illumination achieved through the spectrally selective specular reflection of incident light from the 

SLED surface’s Bragg reflector, the angular spectrum (Fig. S1a, b) as a function of spatial 

frequencies u, v  is 

𝒥/0 u θ, φ , v θ, φ = 	1, u θ, φ % + v θ, φ % ≤ 67
89

0,			otherwise																														
  

 

with u θ, φ = 	 C
89
∙ sin θ cos𝜑 and v θ, φ = 	 C

89
∙ sin θ sin𝜑, where 𝑛 is the refractive index of 

the surrounding medium, 𝜃 is the polar angle, 𝜑 the azimuthal angle and 𝜆K = 630nm the 

wavelength at the center of the surface’s emission / reflection peak.  

 

 
Figure S1: Angular illumination spectra and degree of spatial coherence. a, b) Magnitude map of the 

angular spectrum of the bright-field illumination as a function of spatial frequencies u and v and profile of 

the angular spectrum at v = 0	µmP".  c, d) Same as (a, b) for SLED illumination. The frequency cut-off is 

at u% + v% = 67
89

. e, f) Map of the degree of spatial coherence 𝑗/0 𝑥% − 𝑥", 𝑦% − 𝑦"  and its profile at      

𝑦% − 𝑦" = 0µm. g, h) Same as (e, f) for SLED illumination.  
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For illumination of the object using the fluorescent emission of the SLED surface the angular 

spectrum (Fig. S1c, d) is  

𝒥QRST u θ, φ , v θ, φ = 	 𝐸(𝜃, 𝜆K) , 

 

where the angle- and wavelength-dependent emission of the SLED surface 𝐸 𝜃, 𝜆  is given by  

𝐸 𝜃, 𝜆K = 𝑇 𝜃, 𝜆K ∙ 𝐸WT(𝜆K), where  𝑇 𝜃, 𝜆K  describes the transmission of light by the Bragg-

reflector and 𝐸WT(𝜆K) the emission spectrum of the quantum dots (see Fig. 1c in the main text).  

With the quantum dot emission spectrum being reasonably narrow, the calculus below will be 

restricted to the quantum dot emission centre wavelength 𝜆K = 630nm. 

 

The Fourier transforms of 𝒥/0 and 𝒥QRST are proportional to the degrees of spatial coherence 

𝑗/0(𝑥% − 𝑥", 𝑦% − 𝑦") for bright-field (Fig. S1e, f) and 𝑗QRST(𝑥% − 𝑥", 𝑦% − 𝑦") for SLED 

illumination (Fig. S1g, h):  

   

𝑗/0 𝑥% − 𝑥", 𝑦% − 𝑦" = 		
2 ∙ 𝐽" 2𝜋𝑁𝐴𝜆K

𝑥% − 𝑥" % + 𝑦% − 𝑦" %

2𝜋𝑁𝐴𝜆K
𝑥% − 𝑥" % + 𝑦% − 𝑦" %

 

  

𝑗QRST 𝑥% − 𝑥", 𝑦% − 𝑦" = 𝐸(𝜃, 𝜆K) ∙ e
%]^ C89

_`a b∙[de_f∙ ghPgi j_`af∙(khPki)]d𝜃d𝜑

]
%

K

%]

K

 

 

Here 𝐽" is the Bessel function of the first kind and first order.  

 

Representation of coherence effects in the illumination via the degree of spatial coherence to assess 

their influence on the formation of images of trans-illuminated phase objects is strictly valid only 

when the delay differences induced by the object are much less than the coherence time of the 

illumination. The coherence time 𝜏d associated with the quantum dot emission is of the order of 

𝜏d ≤
"
∆p
≈ 89h

r∙∆8
≈ 10P"ss, where ∆𝜈 is the spectral bandwidth, 𝜆K = 630nm is the peak quantum 

dot emission wavelength, the speed of light 𝑐 ≈ 3 ∙ 10v w
_

, and ∆𝜆 ≈ 40nm is the emission peak 
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width at half maximum (FWHM). The temporal delays expected for microscale phase objects with 

weak refractive index contrast to the surrounding medium are of the order of  ∆C∙y
r
≈ 10P"zs to 

10P"{s (for object thicknesses 𝑑 ranging from 1µm to 50µm and refractive index contrasts ∆𝑛 

from 0.01 to 0.03), which is at least an order of magnitude smaller than the source’s coherence 

time 𝜏d.  

 

Having determined the degrees of spatial coherence in the object plane, we now aim to obtain the 

spatial degrees of coherence in the image plane after the light has interacted with the object and is 

transmitted through the imaging system. From this information, we can deduce the intensity 

distribution in the image plane. 

For simplicity, we assume a 4-f system with unit magnification, which reduces the amount of 

scaling factors to be accounted for in the description of the propagation of light from object to 

image (Fig. S2).  

 
Figure S2: Schematic of the imaging system. Bright-field and SLED illumination are both akin to Köhler 

illumination, which enables us to deduce the degrees of spatial coherence 𝑗/0 and 𝑗QRST for both illumination 

types from the illumination’s angular spectra 𝒥/0 and 𝒥QRST. A phase object modifies the incident light and 

the intensity distribution in the image plane can be deduced from the corresponding degree of spatial 

coherence 𝑗`w in the image plane. 𝜃 is the polar angle of incident light, while 𝜑 (not shown here) describes 

the azimuthal angle.  

 

For small enough objects the imaging system can be considered space-invariant (isoplanatic); its 

amplitude transmission function ℎ(𝑥e/�, 𝑦e/�, 𝑥`w, 𝑦`w), which describes how a disturbance at point  

(𝑥e/�, 𝑦e/�) in the object plane contributes to the complex amplitude at point (𝑥`w, 𝑦`w) in the 
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image plane, to a good approximation then only depends on the coordinate differences 	𝑥`w −	𝑥e/� 

and 𝑦`w −	𝑦e/�, i.e. ℎ 𝑥e/�, 𝑦e/�, 𝑥`w, 𝑦`w = ℎ(𝑥`w − 𝑥e/�, 𝑦`w − 𝑦e/�).[2,3]  

 

The normalized intensity 𝐼 𝑥`w, 𝑦`w  projected by the object in the image plane can then be 

obtained by evaluating the image plane degree of spatial coherence at that coordinate, which is 

given by a four-dimensional integral: 

 
 𝐼 𝑥`w, 𝑦`w = 𝑗`w 𝑥`w, 𝑦`w; 𝑥`w, 𝑦`w   

	=⨌
𝑎
	𝑗_ 𝑥 − 𝑥�, 𝑦 − 𝑦� 	𝐴 𝑥, 𝑦 𝐴∗ 𝑥�, 𝑦� 	ℎ 𝑥`w − 𝑥, 𝑦`w − 𝑦 ℎ∗ 𝑥`w − 𝑥′, 𝑦`w − 𝑦′ 	d𝑥d𝑥′d𝑦d𝑦′ 

 

Here, 𝑗_	 = 𝑗QRST for illumination of the object with the SLED surface and 𝑗_	 = 𝑗/0 for bright-field 

illumination. The integration area 𝑎 is the illuminated object area that is parsed by the integration 

variables 𝑥, 𝑦, 𝑥� and 𝑦′.  𝐴 𝑥, 𝑦  is the complex amplitude transmission function of the phase 

object. * marks the complex conjugates. 

 
This theoretical assessment of image formation with partially coherent light allows us to model 

the SLED surfaces in comparison with bright-field illumination. The metric of comparison used 

here (see Fig. 5g in the main text) is the ratio of contrast 𝑟	d achieved with SLED light and bright-

field illumination, given by  

𝑟d = 	
𝑐QRST
𝑐/0

 

where the usual definition of contrast  

𝑐QRST	/	/0 =
𝐼w�� − 𝐼w`a
𝐼w�� + 𝐼w`a QRST	/	/0

 

 

based on the maximum and minimum intensities (𝐼w��, 𝐼w`a) in the image is used.   

For the simulations presented in Fig. 5 in the main text, we used an imaging system with a 

numerical aperture of 1 to image a phase object with refractive index 1.37 in a medium of refractive 

index 1.33.  
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Alternatives for the bottom reflector - comparison between the spherical concavities and 
randomly rough surfaces  
 
To answer the question whether bottom reflectors made from spherical concavities (Fig. S3a) are 

advantageous compared to a randomly roughened reflective surface (Fig. S3b), we modelled the 

angular emission of gold surfaces with Gaussian random height distribution and the same 

correlation length as the spherical concavities.  

 

 
Figure S3: Comparison of the optical performance of the semi-spherical geometries with simulated 
randomly generated rough surfaces. a, b) Schematics representing the simulated spherical cavity 
geometry (a) and a rough surface with random Gaussian height distribution and the same correlation length 
of 5µm. c) Probability density function of surface normal angles for rough surfaces with zero- (grey), 0.25- 
(dark blue), one- (violet), two- (orange), and three-times (red) the RMS amplitude of the spherical 
concavities, whose surface angle probability density is shown for comparison in yellow. d) The cumulative 
distribution function of the probability distributions shown in (c) indicating the probability of a surface 
angle being smaller than or equal to any specific chosen value. e) Polar plot comparing the modelled 
surface’s angular emission profiles for amplitudes of zero-, 0.25-, one-, two-, and three-times the RMS 
amplitude of the spherical concavities, whose angular emission profile is shown in the yellow shade for 
comparison. f) Plot of the intensity of the random rough surfaces integrated over the whole angle range and 
shown as a function of the roughness factor, i.e. the ratio of the surfaces’ RMS amplitude to the spherical 
concavities’ RMS amplitude. The integrated intensity values are normalized with respect to the integrated 
intensity of the emission from the substrates with spherical concavities as the bottom reflector, which is 
shown as the top black line. The intensity level of a flat bottom reflector is shown with the bottom black 
line. The red shading marks the range in which the random rough surfaces outperform the spherical 
concavity bottom reflector. 
 

Specifically, we tested rough bottom reflector surfaces with seven different root mean square 

(RMS) amplitudes, amounting to between zero- to three-times of the RMS amplitude of the 
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spherical concavities. The probability distributions of the surface normal angles and their 

cumulative distribution functions are shown in Figures S3c and S3d for a selection of randomly 

rough surfaces in comparison to the spherical concavities. Our modelling results (summarized in 

the polar plot of emission intensity vs. emission angle in Fig. S3e and the integrated intensity vs. 

RMS surface amplitude in Fig. S3f) suggest that the rough surfaces with a RMS amplitude of 0.5- 

to 1.5-times that of the spherical concavities perform slightly better. Outside of this range the 

spherical concavities provide a higher emission intensity. Provided that randomly rough surfaces 

can be formed with a controlled RMS amplitude without adding fabrication complexity they could 

represent the preferable choice for the bottom reflector. It could also prove beneficial to decrease 

the rough surface’s correlation length but a detailed quantitative assessment of that lies beyond the 

scope of this paper.    
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Digital contrast enhancement  
 
Digital contrast enhancement of the bright-field images did not allow us to reveal the specimen 

structure anywhere nearly as well as with the SLED approach (Fig. S4).   

 
 

 
 

Figure S4: Influence of increasing numerically the contrast of both bright-field and SLED images on 
the intensity profiles. a) Schematics of the optical setup used for imaging. A drop of water containing E. 
coli was deposited on the surface and imaged using a water immersion lens. SLED measurements rely on 
exposure of the substrate with blue light from a laser diode. b, c) Comparison of standard bright-field images 
of E. coli with images obtained by SLED. b) The as-captured pictures and c) the same images after a contrast 
increase of 50% and brightness decrease of 20% to be able to reveal the feature on the bright-field image 
as much as possible. 
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Design variables for SLED surfaces  

Provided the SLED surface has a bottom reflector that can diffusely scatter light, two key elements 

determine its emission characteristics: (1) the emission spectrum of the light sources embedded in 

the SLED surface (here the quantum dots) and (2) the transmission characteristics of the Bragg 

reflector, which for a given choice of materials can be tuned by altering the thickness of individual 

layers and the overall number of layers. For different emission spectra and Bragg reflector designs, 

Figure S5 shows a collection of modelled angular emission profiles accompanied by the Bragg 

reflector’s dispersion diagram with a coloured overlay at the angle ranges at which emitted light 

can escape from the Bragg reflector and a plot of emitted intensity vs. emission angle. The 

corresponding relevant parameters for each of the data sets are shown in the matrix in Figure S6.  

 

 
 
Figure S5: Angular emission profiles, Bragg reflector characteristics and angular emitted intensity 
plots of different SLED surface designs. The emission peak centre wavelengths of the SLED surfaces are 
627nm for (a-d), 576nm for (e), 526nm for (f, g), and 446nm for (h). All Bragg reflectors are ideal 
multilayers made from alternating layers of TiO2 (n = 2.20) and SiO2 (n = 1.49). The total layer number is 
13 for (a-c, e, f, h), while the reflection peak centre wavelength of the Bragg reflector varies: (a, e) 680nm, 
(b) 720nm, (c) 500nm, (f) 570nm, and (h) 500nm. The SLED surfaces corresponding to the data in (d, g) 
consist of two ideal Bragg stacks with nine alternating TIO2 and SiO2 layers. The two Bragg reflectors are 
deposited on top of each other to form a half-wave defect layer made from TiO2, which creates a 
characteristic narrow passband in the Bragg mirror’s reflection spectrum at (d) 660nm and (g) 550nm.  
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Figure S6: SLED surface parameters corresponding to the angular emission profiles and Bragg 
reflector characteristics shown in Fig. S5. The emission spectrum for each design is shown graphically 
in the centre columns. The critical Bragg reflector parameters are the reflection peak centre wavelength 
𝜆d�a���, the number of alternating layers 𝑁, and the thicknesses of the individual titania and silica layers 
𝑑�`�h and  𝑑Q`�h. For the designs in Fig. S5/S6 d, g a half-wave defect layer of titania with thickness 𝑑��0�d� 
is located in the center between to multilayer stacks with layer numbers 𝑁" and 𝑁%.  
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