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Supplemental Experimental Procedures

Neuronal Differentiation of hiPSC lines. Noggin protocol. We differentiated three human male control iPSC cell
lines (07-01#1, 1123-01#3, 1120-01#7) into telencephalic neurons according to our established method (Mariani et
al., 2015). Human iPS cells were dissociated to single cells with Accutase (Chemicon), and a total of 3.2 million cells
was plated in AggreWell™ 800 plates and cultured in DMEM/F12-GLUTAMAX (neuronal medium) with 4% B27
without vitamin A, 1% N2 and supplemented with recombinant mouse Noggin (R&D Systems 1967-NG-025) and Y-
27632. After 2 days, embryoid bodies (EBs) were collected and plated onto 10-cm bacterial Petri dishes in neuronal
medium as above with the addition of B27 supplemented with vitamin A, Y-27632 and Noggin. On Day 4, free-
floating EBs were collected and plated in neuronal medium, supplemented with only Noggin, onto 10 cm tissue culture
dishes coated with growth factor-reduced Matrigel (BD Bioscience, diluted 1:30 with DMEM:F12 medium) to allow
neural rosette formation. The next day (day 5), the neuronal medium was changed and supplemented with 20 ng/ml
FGF2, 200 ng/ml Noggin, and 200 ng/ml rhDkk1 (R&D Systems, 5439-DK). After two or three days the neural
rosettes were manually dissected and replated as free-floating aggregates in 10-cm bacterial Petri dishes in neuronal
medium supplemented with FGF2 (10 ng/ml) and EGF (10 ng/ml). For the dissociation followed by immediate re-
aggregation (REAG) and monolayer (MON) culture conditions, after 4 days in suspension, neuronal rosettes were
dissociated to single cells with Accutase and quickly re-aggregated (20,000 cells) in a low cell adhesion 96 well plate
(REAG), or plated (30,000 cells/0.8cm?) onto poly-L-ornithine and laminin coated 8 well permanox chamber slides
(Thermo Scientific) as adherent monolayer cultures (MON). Alternatively, for the organoid (ORG) condition, free-
floating aggregates were left undissociated (see Figure 1A). All preparations were kept in the same neuronal medium
supplemented with FGF2 and EGF for another day. The next day all preparations were transferred in growth factor-
free neurobasal-type medium supplemented with BDNF (R&D), GDNF (R&D), ascorbic acid, and dibutyryl-cAMP
(Sigma). This medium change triggers the onset of terminal differentiation (TD) and thus, this day is indicated TD
day 0 (TD 0). Dual SMAD inhibition protocol. The same three iPSC lines were differentiated into cortical neurons
by using a modified version of the Dual-SMAD neuronal induction protocol of Rigamonti et al.,2016 (Rigamonti et
al., 2016), that use SB431542 and LDN-193189 in place of Noggin. Media used were: m7eSR™ Plus (STEMCELL
Technologies, #100-0276); KSR medium: 15% KSR (Invitrogen), KO DMEM (Invitrogen), L-glutamine (Gibco),
100X non-essential amino acids (NEAA) (Gibco), 100X penicillin-streptomycin (Gibco), and 1000X b-
mercaptoethanol (Gibeo); Neural induction medium (NIM): DMEM/F12 (Invitrogen), 100X N2 supplement (Gibco),
50X B27 supplement without vitamin A (Life Technologies),100X Glutamax (Gibco), 100X NEAA (Gibco), 100X
penicillin-streptomycin (Gibco), 0.15% D-(+)-Glucose solution (Sigma G8644). Human iPSCs were dissociated by
Accutase into a single cells suspension (day 0), and a total of 4 million cells was plated into a well of 6-multiwell plate
and rotated on an orbital shaker (Labstrong) at 95 RPKM in mTeSR™ Plus medium with Y-27632 (5 uM) in a 37°C,
5% CO2. On day 2, the medium was replaced with fresh mTeSR™ Plus medium. At day 3 of differentiation, medium
was changed to mTeSR with SB431542 (R&D Systems,10 mM) and LDN193189 (Stemgent,] mM) (referred as Dual-
SMAD inhibition). From day 4 to day 11 EBs were gradually adapted to neuronal induction medium (NIM) through
a dilution series of KSR and NIM in the presence of Dual-SMAD inhibition throughout. Medium was changed as
follows: day 4: 100% KSR medium with Wnt signaling inhibitor XAV939 (2 mM) (Stemgent); day 7: 75% KSR
medium, 25% NIM; day 9: 50% KSR medium, 50% NIM; day 11: 25% KSR medium, 75% NIM. From days 13 to
18, cultures were maintained in 100% NIM supplemented with FGF2 (10 ng/ml) and EGF (10 ng/ml). From day 19
onward, cultures were maintained in neurobasal medium neurobasal-type medium supplemented with BDNF (R&D),
GDNF (R&D), ascorbic acid, and dibutyryl-cAMP (Sigma). This medium change triggers the onset of terminal
differentiation (TD) and thus, this day is indicated TD day 0 (TD 0). Re-aggregated culture (REAG) and monolayer
(MON) conditions were generated in the same way as described above with the Noggin protocol at day 19 (TDO0)
where neuronal progenitor cells in EBs have organized themselves in rosettes structures evident at the brightfield
microscope.

To examine the role of laminin/B1-ITG signaling, rosettes (obtained from hiPSC line 1123-01#3) were dissociated
and plated as monolayer on Poly-l-ornithine/laminin, as described before, and grown for 2 (TD2) or 11 days (TDI11),



with the addition of either 2pg/ml of IgG2bk Functional Grade Isotype Control (Thermo Fisher cat number 16-4732-
85) or 2ug/ml of monoclonal antibody IgG2bk anti-human Blintegrin (MilliporeSigma, MAB1959Z7).

Immunofluorescence and stereological analysis. Organoids and reaggregates were fixed in 4% PFA for 3 hours,
washed three times in PBS1X and transferred in 30% sucrose overnight at 4°C, then embedded in OCT and
cryosectioned at 14 pm. Monolayers were fixed in 4% PFA for 3 hours and washed three times in PBS1X.
Cryosections or monolayers culture wells were blocked in 10% normal donkey serum (NDS)/0.1% Triton X-100/PBS
for 1 hour at room temperature and incubated overnight at 4°C with primary antibody diluted in a solution containing
5% NDS/0.05% Triton X-100/PBS. Sections were washed in PBS/0.1% Triton X-100 3 times and incubated for 1
hour with a secondary antibody diluted in 5% NDS/0.05% Triton X-100/PBS. Primary antibodies were as follows:
goat anti-Sox1 (1:20; R&D Systems, AF 3369), mouse anti-Pax6 (1:200; BD Biosciences, 561462), mouse anti
TUBBS3 (1:1000; Promega, G712A), rabbit anti-Ki67 (1:500; Vector, VP-RMO04), rabbit anti Tbrl (1:1000; Abcam,
ab31940), rat anti Citp2 (1:500; Abcam, 18465), rabbit anti GABA (1:500; Millipore, A2052), mouse anti
GADI/GAD67 (1:1000; Millipore, MAB5406), rat anti CTIP2/BCL11B (1:500; Abcam, ab18465), mouse anti f3-
Catenin (1:100; BD Transduction Laboratories, 610153), mouse anti-N-Cadherin (1:500; BD Transduction
Laboratories, 610920). Nuclei were stained with DAPI. All images were acquired using an ApoTome-equipped
Axiovert 200M with Axiovision 4.5 software. Quantification of immunostained cells was performed by stereological
analysis using a Carl Zeiss Axioskop 2 Mot Plus, connected to a computer running Stereoinvestigator Software
(MicroBrigh-Field) as previously described (Mariani et al., 2015).

Western Blot analysis. Western blot analysis was performed to determine protein expression levels as previously
described (Scuderi et al., 2013). Samples were suspended in RIPA cell lysis buffer (Millipore 20-188) supplemented
with Protease and Phosphatase inhibitor cocktail (Roche Diagnostics) and homogenized by using a teflon-glass
homogenizer, then sonicated twice for 20 sec using an ultrasonic probe, followed by centrifugation at 10,000 g for 20
min at 4 °C. Protein concentration was determined by the Qubit Protein Assay Kit (Invitrogen). Samples (30 pg each)
were diluted in 2X Laemmli buffer (Invitrogen, Carlsbad, CA, USA), denatured at 70°C for 10 min and proteins were
separated on a Biorad Criterion XT 4-15% Bis-tris gel (BIO-RAD) by electrophoresis and then transferred to a
nitrocellulose membrane (BIO-RAD). Blots were blocked using 5% bovine serum in Tris-buffered saline with 0.1%
Tween 20 and probed with the following antibodies: 1:500 rabbit anti-TBR1 (cat n. 31940, Abcam), 1:500 rabbit anti-
DCX antibody (cat n. 18723, Abcam), 1:200 goat anti-Neurogenin2 (cat n. SC19233, Santa Cruz Biotechnology),
1:500 mouse anti-GAPDH (cat n. MAB374 Millipore), 1:1000 rabbit anit-FAK (cat n. #3285, Cell Signaling), 1:1000
rabbit anti-Phospho-FAK(cat n. #8556, Cell Signaling). An anti-rabbit IgG HRP-linked antibody (cat #7074; Cell
Signaling) or an anti-mouse IgG HRP-linked Antibody (cat #7076; Cell Signaling) or anti-goat IgG HRP-linked
Antibody (cat n. 705-035-003 Jackson ImmunoResearch) were used. Blots were visualized using SuperSignal West
Pico Chemioluminescent Substrate (Thermo Scientific, 34080), gels were quantified by using Image] (NIH)
(Schindelin et al., 2012).

RNA isolation and RNA sequencing experiments. Total cellular RNA was collected from intact organoids and
reaggregates (about 15-20 organoids for each line), and from two 9 cm? wells of a 6 wells plate for a monolayer culture
at TD 2, TD 11 and TD 31 and purified using PicoPure RNA isolation kit (Applied Biosciences) as per manifacturer’s
instructions. Poly(A)+ RNA from 3 biologically different iPSC lines per condition (ORG, REAG and MON) was used
as template for the preparation of 27 human cDNA libraries, which were then subject to single end RNA seq.

Quantitative real time RT-PCR. An aliquot of the Poly(A)+RNA from ORG, REAG and MON that was previously
used for RNAseq analysis, was used for secondary validation through real-time PCR analysis. Our analysis revealed
a correlation coefficient of 0.77 between log2 (fold changes) in expression from the two techniques. 10 ng of RNA
was used for cDNA synthesis using SuperScript 11 First-strand synthesis Supermix and random hexamers (Invitrogen,
#1808-051). Primers for 34 randomly picked differentially expressed genes were designed using NCBI/Primer-
BLAST (Table S3e). PCR reactions were conducted on a StepOnePlus Real-Time PCR System (Applied Biosystems)
by using a SYBR-green based method (Fast SYBR Green Master Mix, ABI) followed by melt curve analysis to verify
specificity of the product. The Ct value was used to calculate the relative amount of mRNA molecules. The Ct value
of each target gene was normalized by subtraction of the Ct value from GAPDH housekeeping genes to obtain the
ACt value.



Statistical Analysis. Statistical analysis of cell counts, JPCR and Western blot assays was performed using GraphPad
Prism Version 7 (GraphPad Software, USA). Significance was determined by Student t-test or ANOVA as indicated
in figure legends. Results are expressed as mean + SEM.

RNAseq data analysis. Sequencing reads were mapped to the human genome (hg19) and the GencodeV7 (Harrow et
al., 2012) transcriptome annotation. The BEDtools function coverageBed (Quinlan and Hall, 2010) was used to
estimate gene expression as counts. The R package edgeR (Robinson et al., 2010) was used to estimate gene
expression as RPKM.

Differential expression analysis. Differentially expressed genes were inferred using the edgeR pipeline (Robinson
et al., 2010), using the trended dispersion to estimate the biological variance. In one instance, where blocking by line
would result in an N=1, we blocked by batch to have N=2 (see Table S1a). We contrasted cell culture models (i.e.
MON vs ORG) and developmental time points (i.e. TD11 vs TD2 and TD31 vs TD11). Within each contrast, counts
data were first filtered, by requiring that at least 50% plus one of the samples have a level of expression of 1 count per
million or more. About 17000-20000 genes survived the filter and were further processed. Nominal p-values from
differential expression analysis were FDR corrected, and an FDR cut-off of 0.05 was used for all the tests. Functional
enrichment analysis. ConsensusPathDB (Kamburov et al., 2011) was used to test differentially expressed genes for
overrepresentation in Gene Ontologies and Canonical Pathways.

Weighted gene co-expression network analysis. We used Weighted Gene Co-expression Network Analysis
(WGCNA) (Langfelder and Horvath, 2008) for co-expression network analysis using gene expression estimates (as
log2(RPKM+1)) from all the hiPSCs derived organoids (3 cell lines and 3 time points). We then estimated the co-
expression network and modules using the function blockwiseModule with the following parameters:
maxBlockSize=30000; corType=bicorr; power=30; networkType=signed; deepSplit=2; minModuleSize=50.

The analysis produced a network of 42 modules, corresponding to about 20214 genes, including the grey module of
unassigned genes (Table S6). We used permutation analysis to verify that the modules identified were not artifacts of
the clustering procedure. We assumed the mean topological overlap of a network module to be greater than the mean
topological overlap of a random set of genes, in order for the module genes to be co-expressed beyond chance. For
each module we estimated the average topological overlap (Langfelder and Horvath, 2008), then randomly selected a
number of genes equal to the number of module members and estimated the corresponding mean topological overlap.
This operation was repeated 100 times. The p-value for the analysis was estimated by dividing the number of times
the mean topological overlap of the random set of genes was greater than that of the network module, by the number
of permutations (N=100). Finally, the p-values for all the modules were FDR corrected for multiple comparisons, and
a cut-off of 0.05 was considered for significance. All the modules passed the test and were considered for further
analysis. Correlation analysis of modules’ eigengenes was used to highlight module to module relationship (Table
S6). We used ConsensusPathDB (Kamburov et al., 2011) for functional annotation of modules.

Transcription factor analysis. We inferred transcription factors (TFs) potentially upstream of genes within the blue
module using the EnrichR online database (Kuleshov et al., 2016) and retained only statistically significant TFs at a
fdr corrected p-value of 0.05. We then filtered out TFs whose target genes do not show overlap with the MON vs
ORG DEG:s list at all time points. This ensures that inferred TFs with no clear sign of activity are removed from
downstream analysis. Next, we downloaded the Neurogenesis and the GO_CELL CELL ADHESION gene sets from
the Broad Institute MSigDB (v6.2) collection (Liberzon et al., 2011; Subramanian et al., 2005). Then, we tested each
TF-target for statistical overlap with the Neurogenesis gene set, and the resulting set was then tested for overlap with
the cell-cell adhesion gene set. We retained only TFs showing overlap with both gene set at an FDR<(0.05. We
integrated the TF-target genes directed relationships derived from literature, with our undirected WGCNA network
edges. This resulted in a directed network, with data driven edges strength (i.e. correlation coefficient), where non
relevant edges (i.e. edges with zero correlation coefficients) could be filtered out. The resulting directed network
highlights the regulatory relationship between the TFs that are upstream from the blue module and their target genes.
Next, we estimated a weighted connectivity within this network, ranked the TFs in order of decreasing weighted
connectivity. The resulting directed network highlights the regulatory relationship between the TFs that are upstream
from the blue module and their target genes (see Figure 6D).

Creation of the neurodevelopmental genes list. We manually curated a neurodevelopmental list of genes by
selecting group of genes whose function and expression has been previously described in published data from human



cortical developmental studies (Amiri et al., 2018; de la Torre-Ubieta et al., 2018; Hu et al., 2017; Johnson et al., 2015;
Kang et al., 2011; Nowakowski et al., 2017; Pollen et al., 2014; Thomsen et al., 2016) and based on their annotation
in existing datasets (KEGG pathway, HUGO Gene Nomenclature Committee). The neurodevelopmental genes list
(Table S4) consists of the sublist Neuronal cell fate genes (168 genes), Cell Adhesion Molecules (247 genes) Axon
Guidance (175 genes) and Extracellular Matrix (86 genes). We use this curated gene list to characterize the biological
processes underlying the differences in gene expression among the ORG, MON and REAG conditions. For each
comparison (e.g. MON vs ORG, REAG vs ORG) at each time point analyzed (TD2, TD11 TD 31), the log2(FC) of a
DEGs of a specific category (sublists in Table S4) were collected into a data matrix, where each row represented one
gene and each column represents one time point. After the matrix was created, a heat map plot was created by using
GraphPadPrism Version 7 (GraphPad Software, USA).

We also interrogated a Dorsal-ventral forebrain Human Gene list obtained from the Human BRAINSPAN
Developmental transcriptome (http://www.brainspan.org/rnaseq/search/index.html) by using differential search of
target vs contrast structure and selecting human dorsolateral prefrontal cortex (DFC) vs basal telencephalon (e.g.
lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE), caudal ganglionic eminence (CGE), Striatum
(STR)) and viceversa to obtain lists of up- or down-regulated genes in cortex and ventral telencephalon, respectively.
The developmental stages selected were 8-9PCW, 10-12PCW and 13-15PCW, considering that ORG, the reference
condition, best matches these human brain developmental stages (Amiri et al., 2018).

Mass Spectrometry (LC MS/MS)

Human iPSC derived neurons frozen cell pellets from ORG and MON at TD25 (2 iPSC lines, 07-01 and 1120), were
lysed with RIPA buffer containing a protease and phosphatase inhibitor cocktail and with ultra-sonication (10%
Amplitude, with 15 sec followed by 1 sec burst twice). Cellular debris were removed after centrifugation at 14,600g
for 10 minutes at 4°Celsius. 100 pL of the supernatant was transferred to a new tube and proteins were precipitated
with Chloroform:MeOH:water (100:400:300 pL). Protein pellets were washed three times with cold methanol prior
to air drying for 5 minutes, and stored at -80°C. Dried protein pellets were resolubilized with 8M urea containing
400mM ammonium bicarbonate, reduced with dithiothreitol (DTT) at 37°C for 30 minutes, alkylated with
iodoacetamide (IAN) at room temperature for 30 minutes in the dark, and then trypsin (1:50 enzyme:protein) digested
twice, at 37°C overnight and at 37°C for 4 hours. Digestion was quenched with 20% trifluoroacetic acid, desalted
using C18 reverse phase macrospin columns (The Nest Group Inc., Southborough, MA), and eluted peptides were
dried using SpeedVac. Total peptides amount was determined by nanodrop (Thermo Fisher Scientific; Waltham, MA)
High resolution tandem mass spectrometry was carried out on a Thermo Fisher Scientific Q-Exactive Plus connected
to a UPLC system (Waters nanoACQUITY) equipped with a Waters Symmetry® C18 180 pm x 20 mm trap column
and a 1.7-pm, 75 pm x 250 mm nanoACQUITY UPLC column (35°C). For additional details on UPLC and mass
spectrometer conditions see (Goel et al., 2018). The LC-MS/MS data was processed using Proteome Discoverer (v2.1;
Thermo Fisher Scientific) and protein identification was carried out using the Mascot search algorithm (Matrix
Science). The Scaffold proteome software suite (ver 4.1.1) was used to estimate peptide/peptide groups, resulting in
the identification of 21,597 peptide/peptide groups. Differential expression between MON and ORG, was then inferred
using the Scaffold 4 Q+ module with default parameters (Precursor Intensity and Centroided Peak Intensity) to infer
protein expression levels, using 99.0% minimum and 2 peptides minimum for protein threshold, 95.0% minimum for
peptide threshold) and the Mann-Whitney Test for differential expression and FDR < 0.05 as significance levels. The
resulting 199 differentially expressed proteins were used for functional annotation and subsequent analysis.
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Figure S1 (Related to Figure 1).
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Figure S1. A-F, Representative images of immunocytochemical staining with the proliferative marker Ki67 and the neuron-specific
class TUJ1 in ORG, REAG and MON preparations at TD 2 (A-C) and TD 11 (D-F). G, Proportion of Ki67" cells by stereological
quantification over DAPI" nuclei. Results in (G) are the mean+ SEM of n=3 biologically different iPSC lines per condition (ORG,
REAG, MON) differentiated in parallel (one preparation each). For each preparation, 3 technical replicates (individual organoids,
reaggregates or tissue culture wells) were analyzed. ***p<0.001 analyzed by Student’s t-test, two tailed. Related to Figure 1.



Figure S2 (Related to Figure 3 and Table S4).
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Figure S2. (A-D) Heat map of genes in the Cell Adhesion sublist (Table S4b) exhibiting differential gene expression (log2 fold
change values, FDR<0.05) between MON and ORG (A-B), or between REAG vs ORG (C-D) at least at one time point analyzed.
Related to Figure 3 and Table S4.



Figure S3 (Related to Figure 3 and Table S4).
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Figure S3. (A-B) Heat map of genes in the Axon guidance sublist (Table S4b) differentially expressed (log2 fold change values,
FDR<0.05) between MON vs ORG (A) and REAG vs ORG (B) at least at one time point analyzed. C-D) Heat map of genes that
identify radial glial subtypes (VRG, ventricular radial glia; tRG, truncated radial glia; oRG, outer radial glia) differentially
expressed (log2 fold change values, FDR<0.05) between MONvsORG and between REAGvsSORG, at least at one time point
(TableS4a). Related to Figure 3 and Table S4.



Figure S4 (Related to Figure 4 and Table S4).
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Figure S4. (A-B) Heat map of genes in the Extracellular matrix sublist (Table S4d) differentially expressed (log2 fold change
values, FDR<0.05) between MON and ORG (A), or REAG vs ORG (B) at least at one time point analyzed. (C-F) Western blot
analysis of phospho-FAK over total FAK protein expression in ORG and REAG at TD2 and TD11. Related to Figure 4 and
Table S4.



Figure S5 (Related to Figure 6).
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Figure S5. Characterization of the seven co-expression modules differentially expressed between ORG and MON. (A) Barplots of
corrected p-values (expressed as —logl10) for the top 5 Gene Ontologies (left) and Canonical Pathways (right) annotations. (B)
Module to module eigenvalue correlation plots. Shown are the correlation coefficients and the associated significance. Related to
Figure 6.



Figure S6 (Related to Figure 7).
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Figure S6. Consistency of transcriptomic changes in MON compared to ORG culture systems across different times of
dissociation. (A) Venn diagram of total number of DEGs in early and late dissociated MON vs ORG. (B) Correlation plot
of the shared DEGs in MON_diss.0 and MON_diss.11 compared to ORG. (C-F) Top GO-enrichment terms for up-

regulated (red, C,E) and downregulated (blue, D,F) genes in early dissociated MON (C,D) and late dissociated MON (E,F).

(G) Heat map of genes in the neurodevelopmental genes list differentially expressed (log2 fold change values, FDR<0.05)
in MON_diss.0 and MON _diss 11 vs ORG. (H) Representation of the coverage and overlap between total identified transcripts
and proteins in MON_diss.0 and ORG at TD25. (I) Number of differentially expressed proteins (DEPs) in MON_diss.0 vs

ORG. (J) Heatmap of convergent DEPs and DEGs (log2 fold change values, FDR<0.05). (K) Top GO-enrichment terms

for up- or down-regulated proteins in MON. Related to Figure 7, Table S8.
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Table S1. Metadata: list of all samples and experiments.
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