Stem Cell Reports, Volume 16

Supplemental Information

Gastruloid Development Competence Discriminates Different States of

Pluripotency

Federica Cermola, Cristina D'Aniello, Rosarita Tatè, Dario De Cesare, Alfonso Martinez-Arias, Gabriella Minchiotti, and Eduardo Jorge Patriarca

1	SUPPLEMENTAL INFORMATION
2	
3	Figures S1-S4
4	
5	Tables S1-S2
6	
7	Supplemental Experimental Procedures
8	
9	
10	
11	
12	

Figure S1. Experimental set up of the optimised gastruloid assay, Related to Figure 1. (A)
Representative picture of TBV2 mESCs (WT) aggregates at 48h after aggregation (left) and box
plot diagram (right) of the distribution of the aggregates' diameter (n=3; 60 gastruloids analysed).

1 (B) Representative pictures of different organoids' phenotypes at 120h after aggregation. Red 2 arrows indicate protrusions (bar=100 µm). (C) Pie chart representing the percentage of the 3 different phenotypic outcomes showed in panel B. Data are mean \pm SD (n=3; 60 gastruloids 4 analysed). (D) Representative pictures (left) and colony type quantification (right) of colonies generated from 2i+LIF cells. Data are mean \pm SD (n=3; ~ 450 colonies analysed). (E) Flow 5 6 cytometry scatter plot (FSC vs SSC) of 2i+LIF ESCs. Dead cells and debris are excluded based 7 on FSC/SSC parameters. (F) Flow cytometry histograms of the different sorted populations from 8 untreated FBS+LIF ESCs (left); bright field representative pictures of cell aggregates (middle), 9 diameter distribution (right, top graph) at 48h after aggregation and percentage of undeveloped 10 organoids at 120h after aggregation (right, bottom graph). Total population=red; population 11 without dead cells and debris=light blue; narrow population = grey (n=3; 30 gastruloids/condition 12 analysed; *p<0.01) (bar= 100µm). (G) Representative picture (left) and colony type quantification (right) of colonies generated from 2i+LIF E14 ESCs (n=3; ~ 450 colonies 13 14 analysed). (H) Flow cytometry scatter plot (FSC vs SSC) of 2i+LIF E14 ESCs (bar= 100µm). (I) 15 Representative picture of elongated-shaped gastruloids at 120h (bar=100 µm).

Figure S2. Validation of the gastruloid formation assay using *Cripto* KO ESCs, Related to
Figure 2. (A) Time course bright field representative pictures of WT and *Cripto* KO (Cl.#1 and
Cl.#2) aggregate to gastruloid transition. Light red arrows indicate the protrusion zone (bar=100)

1	μ m). (B) Percentage of spherical organoids without protrusions derived from WT (blue) and				
2	Cripto KO ESCs clones #1 (Cl.#1, red) and #2 (Cl.#2, grey). Data are mean ± SD (n=3; 30				
3	gastruloids/condition analysed; *p<0.01). (C) Representative confocal pictures of				
4	immunofluorescence with SOX17 (red) or SOX2/NESTIN (red/green) on Cripto KO-derived				
5	organoids at 120h. Nuclei were counterstained with DAPI (blue) (bar=100 μm). (D) qRT-PCR				
6	analysis of <i>T</i> , <i>Cdx2</i> , <i>Sox17</i> and <i>Sox2</i> in WT (blue), <i>Cripto</i> KO (red) and <i>Cripto</i> KO + sCRIPTO				
7	(orange) organoids at 120h. Data are normalized to <i>Gapdh</i> and are mean \pm SD of fold change				
8	(FI) vs WT ($n \ge 3$; *p<0.01). (E) Schematic representation of the experimental design (top).				
9	Representative bright field pictures and percentage distribution (bottom) of the different				
10	organoids generated from Cripto KO + ACT-A at 120h. Red arrows indicate the protrusion zone.				
11	Data are mean \pm SD (bar=100 μ m). (F) Representative confocal images of CDX2 (green), T				
12	(red), SOX17 (red) and SOX2/NESTIN (red/green) on Cripto KO + ACT-A organoids (120h).				
13	Nuclei were counterstained with DAPI (blue) (bar=100 μ m).				

Figure S3. Abortive development of gastruloids derived from primed pluripotent states,
Related to Figure 3. (A) Heat-map of mRNA levels of the indicated genes in naïve (2i+LIF)
cells, F/A_2d (EpiLCs) and EpiSCs/p0 (F/A_5d). (B) Bright field representative pictures of
colony formation assay of 2i+LIF, F/A_2d and F/A_5d cells (bar=100 µm). (C) Relative
reversion efficiency of colony formation assay of 2i+LIF (naïve), F/A_2d and F/A_5d cells. Data
are mean ± SD (n=3; ~ 450 colonies analysed). (D) Flow cytometry scatter plot (FSC *vs* SSC)
and histogram of the naïve (2i+LIF) ESCs, EpiLCs and EpiSCs FACS-sorted populations. (E)

- 1 Representative bright field pictures of aggregates to gastruloid transition of EpiLCs and naïve
- 2 ESCs at the indicated time points (bar=50 μ m).

2 Figure S4. PiCs-derived organoids show a peculiar developmental process, Related to 3 Figure 5. (A) Representative bright field pictures (left) and colony type quantification (right) of 4 colonies generated from Control (untreated) ESCs and PiCs (n=3; ≈450 colonies/condition 5 analysed; *p<0.01). (B) Flow cytometry 2D scatter plot (FSC vs SSC) and histogram (FSC) of 6 Control (Ctrl) and PiCs sorted populations used for the gastruloid formation assay. (C) 7 Representative bright field pictures (left) and diameter analysis (right) of aggregates (48h after 8 aggregation) generated from PiCs seeded at different densities (250, 300 and 350 cells per well) 9 (n=3, 30 gastruloids/condition analysed; bar=100 µm). (D) Length distribution of Control and PiCs-derived gastruloids at 120h (n=3, 60 gastruloids/condition analysed; *p<0,01). (E)
 Representative bright field pictures of PiCs-derived gastruloids at the indicated time points
 (bar=100 μm).

Gene symbol	Forward (5'-3')	Reverse (5'-3')	
Blimp1	GGTGAATCAGGGTGCCTTTA	GAGAGGTGCAGGGAAGCAC	
Cdx2	AGGAAGCCAAGTGAAAACCA	CAGCCAGCTCACTTTTCCTC	
Cerl	CAGGCCGTGACTCAGCCAGCAG	CCGGGAAAACGAATGGAACTGC	
Esrrb	GGCCACCAATGAATGTGAG	AGCCGTCGCTTGTACTTCTG	
Fgf5	CAAAGTCAATGGCTCCCACGAAG	CTACAATCCCCTGAGACACAGCAAATA	
Gapdh	TGCACCACCAACTGCTTAGC	TCTTCTGGGTGGCAGTGATG	
Klf4	TAGTGGCGCCCTACAGCGGT	TCGTGTGTGTGTGGGCCGGTG	
Nanog	AAGTACCTCAGCCTCCAGCA	GTGCTGAGCCCTTCTGAATC	
Nanos3	GGGTGCTGTGTCCCATTTTG	ACCTGCATAGACACCTGCTG	
Oct3-4	TCAGCTTGGGCTAGAGAAGG	TGACGGGAACAGAGGGAAAG	
Prdm14	AAGGCACACAGGGACAACTC	CTGGTTCCGCTGGATGTCTC	
Rex1	TTGCCTCGTCTTGCTTTAGG	AAAATGAATGAACAAATGAAGAAAA	
Sox17	AGCTAAGCAAGATGCTAGGCAAG	TCTCTGCCAAGGTCAACGC	
Sox2	CACAACTCGGAGATCAGCAA	CTCCGGGAAGCGTGTACTTA	
T/Bra	GAACCTCGGATTCACATCGT	TTCTTTGGCATCAAGGAAGG	
Tfcp2l1	TGCCCATCTTCAAGC	CCAGCAGCCGGATTT	

1 Table S1: List of Primers used in this study, Related to Figure 6 and Figure 7.

4 Table S2: List of primary and secondary antibodies used in this study, Related to Figure 1, 2, 5,

5 6 and 7.

ANTIBODY	COMPANY	CAT. NO.	APPLICATION
ΑΡ2γ	Santa Cruz	sc-53162	IF 1:100
BLIMP1	Santa Cruz	sc-47732	IF 1:50
CDX2	Cell Signaling	3977	IF 1:100
Ki67	ThermoFisher	MA5-14520	IF 1:50
	Scientific		
NANOG	Cell Signaling	8822	IF 1:400
NESTIN	Santa Cruz	sc-33677	IF 1:100
OCT4	Santa Cruz	sc-8628	IF 1:100
SOX17	R&D	AF1924	IF 1:200
SOX2	Cell Signaling	D1C7J	IF 1:100
Т	Santa Cruz	sc-17745	IF 1:200
Alexa Fluor 488 Donkey	Invitrogen	A11055	IF 1:400
anti-Goat IgG			
Alexa Fluor 488 Donkey	Invitrogen	A21206	IF 1:400
anti-Rabbit IgG			
Alexa Fluor 594 Donkey	Invitrogen	A21207	IF 1:400
anti-Rabbit IgG			
Alexa Fluor 594 Donkey	Invitrogen	A11058	IF 1:400
anti-Goat IgG			
Alexa Fluor 594 Donkey	Invitrogen	A21203	IF 1:400
anti-Mouse IgG			
Alexa Fluor 647 Goat	Invitrogen	A-21247	IF 1:400
anti-Rat IgG			

1 Supplemental Experimental Procedures

2

3 EpiLCs, EpiSCs, L-Proline- induced cells (PiCs) and Primordial Germ Cell-like cells (PGCLCs) 4 generation.

To generate EpiLC and EpiSCs (p0), 2i+LIF mESCs were seeded at 1500 cells/cm² onto FBS-coated
plates in N2B27 supplemented with ACTIVIN A (20 ng/ml; Invitrogen) and bFGF (12 ng/ml;
Provitro) and cultured for 2 and 5 days, respectively.

8 To generate PiCs (Comes et al, 2013), ESCs were plated at low density (50–250 cells/cm²) on gelatin-

9 coated plates in DMEM/15%FBS/LIF supplemented with L-Pro (250–500 μM) (Sigma-Aldrich) and

10 grown for 4-5 days. Crystal Violet cell colony staining and colony type analysis (domed vs flat) was

performed as previously described (Comes et al., 2013). The analysis was performed blinded by two
investigators on at least 400 colonies per condition.

For PGCLCs differentiation, 2.5x10⁴ cells/well were plated in U-shaped ultra-low attachment 96multiwell (Corning Costar) in serum-free GK15 (GMEM [Invitrogen]) medium containing 15% KSR, 0.1 mM NEAA, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2 mM L-glutamine. To induce PGCLC differentiation, complete medium was supplemented with BMP4 (500 ng/ml; R&D Systems), LIF (1000 u/ml; ESGRO, Millipore), SCF (100 ng/ml; R&D Systems), and EGF (50 ng/ml; R&D Systems). After 4 days, the cell aggregates were dissociated with Trypsin and analysed.

20

21 Immunofluorescence analysis

Stem cell colonies were dissociated with either accutase or trypsin-EDTA (5 min at 37°C), cells were re-suspended in 15% FBS/1x PBS and centrifuged (800 rpm for 8 min) onto glass slides $(5x10^5)$ 1 cells/spot) using a Thermo Shandon Cytocentrifuge (CytoSpinTM 4). Cytospin cell samples were 2 fixed in 4% paraformaldehyde (PFA), permeabilized in 0.1% Triton X-100 (10min at RT) and 3 incubated overnight at 4°C with primary antibodies. After washing (0,5% Tween-1x PBS), cells were 4 incubated with appropriate secondary antibodies. Nuclei were counterstained with DAPI 5 (Invitrogen). Images were obtained using the DMI6000B microscope and the DFC 350FX B/W 6 digital camera (Leica Microsystems). Confocal images were obtained on a Nikon A1 microscope. 7 The AF6000 (Leica Microsystems) and NIS Element C (Nikon, Tokyo) software were used for image 8 acquisition/elaboration. Primary and secondary antibodies are listed in Supplementary Table 2.

9