
Technical note: interpolation of Origin-Destination mobility data

between different geospatial partition schemes

Cameron Zachreson1

1The University of Melbourne, Melbourne School of Engineering,

School of Computing and Information Systems

Abstract

Origin-destination matrices that represent the movement of populations between regions are

ubiquitous data structures used frequently when building models of infectious disease transmission

in mobile populations. Of course, the topology of such matrices depends on the classifications

used to define regions (nodes) of the matrix. Typically the nodes of an origin-destination matrix

are defined spatial regions, but any unique set of classifiers may be used to describe the flows

of individuals between compartments. Often, it is necessary to interpolate data from one set of

classifiers (regions) into a different, possibly overlapping, set. In this note, I describe a simple

method and algorithm for performing this type of interpolation using correspondences represented

as conditional probabilities of regional occupancy.

1

I. OVERVIEW

Given:

� set of N origins (O), these could be spatial regions, or any other appropriate classifier

� set of M destinations (D), this can be the same set of partitions used for origins, or

it can be some other set of classifiers

� An N ×M asymmetric, weighted adjacency matrix (G), in which each element Gij

describes the movement of discrete quantities (i.e., populations) from origin node

i ∈ [1, N] to destination node j ∈ [1, M]

� set of L partitions (O∗) that will be the set of origins after re-partitioning

� set of K partitions (D∗) that will be the set of destinations after re-partitioning

� A correspondence O → O∗. For example, a N ×L matrix PO of conditional probabil-

ities pnk(O∗k | On) describing the probability that an individual will be found in the

k-th region of the set O∗ given that they are in the n-th region of the set O.

� A correspondence D → D∗, e.g., a M × K matrix PD of conditional probabilities

describing the correspondence between destinations (see above).

The method uses the correspondences PD and PO to re-partition the elements of G into

a new L×K matrix G∗.

II. METHODS

Once the partition sets and their correspondences are in hand, the method is straight-

forward and proceeds as per the example illustrated in Figure 1. Each connection between

the new sets of partitions consists of a linear combination of components, one for each edge

in the original matrix G. For origin A and destination B in the original matrix G, let

G(A→ B) represent the flow of individuals from A to B. For origin x and destination y in

the new matrix G∗, the contribution of G(A→ B) is computed as follows:

G∗(x→ y) =
∑
i, j

G(Ai → Bj)× PO(Ai, x)× PD(Bj, y) (1)

2

in which subscripts i, j indicate summation over all elements of G and PO(A, x) = p(x | A)

and PD(B, y) = p(y | B) are the correspondences between origin and destination regions

computed as conditional probabilities. The product [PO(A, x) × PD(B, y)] gives the prob-

ability that an individual departing from region A and arriving in region B also departed

from region x to arrive in region y. Iterating over all pairs G(Ai → Bj) gives the set of

factors composing each new connection. Of course, all elements for which G(Ai → Bj) = 0,

PO(Ai, x) = 0, or PO(Bj, y) = 0 may be omitted from the sum in implementation. In the

MATLAB implementation included below, these exclusions are implemented implicitly in

the sparse input tables, in which zero-valued entries are not included.

By expressing the correspondeces PO and PD as N×L and M×K matrices, respectively,

the transformation G→ G∗, can be succinctly expressed as:

G∗ = P>O G PD (2)

While the method presented here is simple to implement, the production of the corre-

spondences PO and PD can be non-trivial and will depend on the type of data represented

in the matrix G, as well as the types of compartments used for O, D, O∗, and D∗. As an

example, consider the common case where O∗ is a particular set of spatial partitions (e.g.,

administrative regions) and O is a dramatically different set of regions (e.g., Bing Tiles). To

generate a correspondence, it is necessary to establish some type of overlap measure between

these regions, this could be spatial, or it could be based on some other quantity that may

vary in space (e.g., population), so that spatial overlap can be translated into the desired

conditional occupancy probabilities. In the latter case, a useful technique is to find some

set of partitions of much smaller scale, so that the quantities of interest (numbers of people,

addresses, businesses, etc.) can be over-sampled for each region and the degree of overlap

quantified, without requiring data on the level of individual people (which is typically not

available).

3

B1

A1

B2

10

100

A2

1000

x2

x1

x3

y1

y2

y3

G B1 B2

A1 10 100

A2 0 1000

PO

p(x|A)
x1 x2 x3

A1 0.5 0.4 0.1

A2 0.5 0.2 0.3

PD
p(y|B)

y1 y2 y3

B1 0.4 0.3 0.3

B2 0.1 0.3 0.6

G* y1 y2 y3

x1 57 166.5 331.5

x2 25.6 73.2 145.2

x3 31.4 93.3 186.3

G*(x1, y1) =
[G(A1,B1) × PO(A1, x1) × PD(B1, y1)] +
[G (A1,B2) × PO(A1, x1) × PD(B2, y1)] +

[G(A2,B1) × PO(A2, x1) × PD(B2, y1)] = 57

G → G*

FIG. 1. Schematic of the described procedure

4

III. MATLAB IMPLEMENTATION

This code implements the example shown in Figure 1

1 % converts a matrix between partition schemes, ingredients are the

2 % orignial edge list and a correspondence file for conversion of boundaries

3 % between sets.

4

5 % input data structures

6

7 %input files are:

8

9 % OD test.csv

10 % origin destination n

11 % A1 B1 10

12 % A1 B2 100

13 % A2 B2 1000

14

15 % PD.csv

16 % D old D new p

17 % B1 y1 0.4

18 % B1 y2 0.3

19 % B1 y3 0.3

20 % B2 y1 0.1

21 % B2 y2 0.3

22 % B2 y3 0.6

23

24 % PO.csv

25 % O old O new p

26 % A1 x1 0.5

27 % A1 x2 0.4

28 % A1 x3 0.1

29 % A2 x1 0.5

30 % A2 x2 0.2

31 % A2 x3 0.3

32

33 % original matrix, to be converted to new partition

34 % scheme -> table columns: {origin, destination, n}
35

36 input filename = 'OD test.csv';

37 output filename = 'OD out.csv';

38

39 % set up correspondence structures

40

5

41 % PO.csv -> table columns: {O old, O new, p}
42 % PD.csv -> table columns: {D old, D new, p}
43

44 PO filename = 'PO.csv';

45 PD filename = 'PD.csv';

46

47 PO corr table = readtable(PO filename);

48 PD corr table = readtable(PD filename);

49

50 orig IDs = cellstr([PO corr table.O old ; PD corr table.D old]);

51 new IDs = cellstr([PO corr table.O new ; PD corr table.D new]);

52 corr vals = [PO corr table.p ; PD corr table.p];

53

54 corr table = table(orig IDs, new IDs, corr vals);

55

56 orig ID list = unique(corr table.orig IDs, 'rows');

57

58 % converting correspondence table into map of maps:

59 % outer key values will be old codes

60 % inner key values will be new codes

61 % inner values are the associated correspondence proportion

62

63 corr map = containers.Map('KeyType', 'char', 'ValueType', 'any');

64

65 % initialise correspondence structure

66 for i = 1:size(orig ID list, 1)

67

68 corr map(orig ID list{i}) = containers.Map('KeyType', 'char', ...

'ValueType', 'any');

69

70 end

71

72 % fill the inner maps

73

74 for i = 1:size(corr table.orig IDs, 1)

75

76 id source = corr table.orig IDs{i};
77 tmp = corr map(id source);

78 id target = corr table.new IDs{i};
79 corr val = corr table.corr vals(i);

80 tmp(id target) = corr val;

81 corr map(id source) = tmp;

82

83 end

84

85 orig edges = {};

6

86

87 e table = readtable(input filename);

88

89 for i = 1:size(e table, 1)

90 orig edges{i, 1} = {e table.origin{i}, e table.destination{i}, ...

double(e table.n(i))};
91 end

92

93 % make the new edge list, each edge in the old list will map to edges ...

in the

94 % new list based on the correspondence map.

95

96 new edges = containers.Map('KeyType', 'char', 'ValueType', 'any');

97

98 % iterate through the old edge list, and distribute the commuters into the

99 % new edge list

100

101 % imperfect correspondence can lead to lost travellers,

102 % let's count them and see if it's a significant issue:

103 lost travellers = 0;

104 total travellers = sum(e table.n);

105

106 for i = 1:size(orig edges, 1)

107

108 % each edge will produce a set of source and target nodes based on the

109 % correspondence between partition schemes, these are the key ...

values from

110 % the inner corr map associated with source and target codes

111

112 old source = orig edges{i}{1};
113 old target = orig edges{i}{2};
114 w old = orig edges{i}{3};
115

116 if ¬isKey(corr map, old source)

117 lost travellers = lost travellers + w old;

118 fraction lost = lost travellers / total travellers;

119 fprintf(['no correspondence for tile ' old source ', ',...

120 '\n fraction travellers lost: ' num2str(fraction lost) '\n'])
121

122 continue

123

124 end

125

126 new source IDs = keys(corr map(old source));

127 corr source old = corr map(old source);

128

7

129 if ¬isKey(corr map, old target)

130 lost travellers = lost travellers + w old;

131 fraction lost = lost travellers / total travellers;

132 fprintf(['no correspondence for tile ' old target ', ',...

133 '\n fraction travellers lost: ' num2str(fraction lost) '\n'])
134

135 continue

136

137 end

138

139 new target IDs = keys(corr map(old target));

140 corr target old = corr map(old target);

141

142 for j = 1:size(new source IDs, 2)

143

144 if ¬isKey(new edges, new source IDs{j})
145

146 new edges(new source IDs{j}) = ...

147 containers.Map('KeyType', 'char', 'ValueType', 'any');

148 end

149

150 new source id = new source IDs{j};
151 proportion source = corr source old(new source id);

152 tmp = new edges(new source IDs{j}); %inner map

153

154 for k = 1:size(new target IDs, 2)

155

156 new target id = new target IDs{k};
157 proportion target = corr target old(new target id);

158 w new = w old * proportion source * proportion target;

159

160 % disp([old source, ' , ', old target, ', ' num2str(w old)])

161 % disp(['p source: ' num2str(proportion source), '; ...

p target: '...

162 % num2str(proportion target)])

163 % disp([new source id ' , ' new target id ' , ' ...

num2str(w new)])

164 % disp(' ')

165

166 if ¬isKey(tmp, new target IDs{k})
167

168 tmp(new target IDs{k}) = w new;

169

170 else

171

172 tmp(new target IDs{k}) = tmp(new target IDs{k}) + w new;

8

173

174 end

175 end

176

177 % update edge map

178 new edges(new source IDs{j}) = tmp;

179

180 end

181 end

182

183 % convert edge map to table for export

184

185 source ID new = {};
186 target ID new = {};
187 edge weight new = [];

188

189 new source IDs = keys(new edges);

190 edge index = 0;

191

192 for i = 1:size(new source IDs, 2)

193

194 target IDs i = keys(new edges(new source IDs{i}));
195 tmp = new edges(new source IDs{i});
196

197 for j = 1:size(target IDs i, 2)

198

199 edge index = edge index + 1;

200 source ID new{edge index, 1} = new source IDs{i};
201 target ID new{edge index, 1} = target IDs i{j};
202 edge weight new(edge index, 1) = tmp(target IDs i{j});
203

204 end

205

206 end

207

208 origin = source ID new;

209 destination = target ID new;

210 n = edge weight new;

211 new edge table = table(origin, destination, n);

212

213 writetable(new edge table, output filename);

214

215

216 % OR, using the matrix implementation -

217 % note- this will cause memory issues if the matrices are large

218

9

219

220 G = [10, 100; 0, 1000]

221 P O = [0.5, 0.4, 0.1; 0.5, 0.2, 0.3];

222 P D = [0.4, 0.3, 0.3; 0.1, 0.3, 0.6];

223

224 G star = P O' * G * P D

10

