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S1 Methods

In this section, we first explain how we set the automation shocks and build the occupational
mobility network. We then explain how we calibrate our model. Table S1 describes all vari-
ables and parameters needed to run the model, and Table S2 shows the calibrated values of the
parameters.

Main variables Description
ei,t Number of employed workers at time t in occupation i
ui,t Number of unemployed workers at time t who were last

employed in occupation i
vi,t Number of job vacancies at time t of occupation i

Other variables
di,t Realized labor demand at time t of occupation i. (di,t =

ei,t + vi,t)
qij,t Probability that an unemployed worker from occupation i

applies to a job vacancy of occupation j at time t
pj,t Probability that a job application sent to a vacancy of occu-

pation j is successful
sij,t Number of job applicants occupation j receives from work-

ers of occupation i at time t
sj,t Number of job applicants occupation j receives at time t
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fij,t Flow of unemployed workers of occupation i becoming em-
ployed at occupation j

u
(k)
i,t Number of unemployed workers of occupation i who at

time t have already been unemployed for exactly k time
steps

πu,i,t Occupation-specific probability that a worker of occupation
i is separated

πv,i,t Occupation-specific probability that a vacancy opens in oc-
cupation i, per worker employed in occupation i

ωi,t Number of workers from occupation i who are separated
from their jobs at time t. Drawn from Binomial distribution
Bin(ei,t, πu,i,t)

νi,t Number of vacancies of occupation i opened at time t.
Drawn from Binomial distribution Bin(ei,t, πv,i,t)

Parameters
δu Rate at which employed workers are separated due to the

spontaneous process
δv Rate at which employed vacancies are opened due to spon-

taneous process
γ Rate at employed workers and vacancies are separated or

opened due to the market adjusting towards the target de-
mand (state-dependent process).

τ Number of time steps after which an unemployed worker is
considered long-term unemployed

r Weight of the self-loops of the occupational mobility net-
work

A Adjacency matrix of the occupational mobility network
d†i Post-automation target labor demand. Number of work-

ers demanded at occupation i after the automation shock
is complete

d†i,t Target labor demand of occupation i at time t
Δt Duration of a time step in units of weeks

Table S1: Variables and parameters

S1.1 Building the occupational mobility network

Following Mealy et al. [8], we construct the occupational mobility network using empirical
data on occupational transitions [3]. The classification is based on the 4-digit occupation codes,
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which yields 464 distinct occupations. We used monthly panel data from the US Current Popu-
lation Survey (CPS) to count the number of workers Tij who transitioned from occupation i to
occupation j during the period from January 2010 to January 2017. Letting Ti =

�
j Tij , we

assume that if a worker changes occupation, the probability of transitioning from occupation i

to occupation j as follows

Pij =
Tij

Ti

. (S17)

We assume that the probability that a worker who changes jobs remains in the same occupation
is constant across occupations for simplicity. Letting r be the probability that a worker who
changes jobs stays in the same occupation, we write the adjacency matrix of the occupational
mobility network as

Aij =

�
r if i = j,

(1− r)Pij if i �= j.
(S18)

We estimate r based on the annual occupational mobility rate, which is the percentage of work-
ers that switch occupations within a year [6]. Specifically, we calibrate r to roughly match the
number of workers that annually change occupations in a year in the model with the empirical
data (see Section S1.3)

While the empirical mobility network allows us to calibrate an occupational mobility net-
work for us to use in our model, there are two different concepts to distinguish: The relative
preference with which a worker from occupation i applies to a job vacancy in j (model) is dif-
ferent from the probability that a worker from occupation i, who is switching jobs, transitions
to occupation j (empirical). However, the former is not directly observable from data. To over-
come this issue, we use the occupational mobility network as indicative of the preference with
which a worker from occupation i applies to a job vacancy in j. A caveat is that since the odds
of a worker being hired do not uniquely depend on the preference with which workers apply
to job vacancies, the transitions of workers observed in our model do not perfectly match the
empirically observed transitions. Though the matching between the transitions in our model
and the empirical network is not perfect, they are significantly similar – the Pearson correlation
between them is 0.97.

S1.2 Automation shocks

Labor reallocation due to labor automation While it is clear that automation will replace
some workers, this is an old process that has so far not caused persistent large unemployment
rates [4]. Instead, the work week’s average lengthwork week’s average length has declined
substantially [9] and work has shifted to new occupations [7]. Thus, we assume that automation
will lead to a post-shock reallocation of labor demand, with some occupations increasing and
others decreasing their labor demand.
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Our model requires us to specify the post-shock reallocated demand d†, which is the value
to which the target labor demand converges after the shock. As we explain here, we use the
probability of computerization scores of Frey and Osborne [5], and the suitability for machine
learning scores of Brynjolfsson et al. [2] to set the post-shock reallocated demand. We denote
by t∗ the time at which the target demand converges to the post-shock reallocation demand.

First, we set the automation level of each occupation, which is bounded by 0 and 1, equal
to the computerization probability or to the normalized suitability for machine learning scores3

depending on the shock.
We assume that the automation level is the fraction of total hours worked in an occupation

that are no longer needed post-shock. Furthermore, working hours are reduced for all workers
in the economy, so that the total number of jobs stays constant. We denote the labor force,
which is the number of workers, by L and assume that it remains constant. Let x0 be the current
number of labor hours for the average worker in a given period (say a week). The hours of work
each occupation demands are given by the components of the vector

h0 = x0e0.

Letting p be the vector with the automation level of each occupation, the new number of hours
of work ht∗ after automation is

ht∗ = h0 � (1− p),

where � denotes the element-wise multiplication of vectors and 1 the vector of ones. We split
the aggregate hours of work equally among workers, thus the number of hours of work per week
is

xt∗ =

�n
i hi,t∗

L
.

Finally, so that automation has no impact on the aggregate labor demand unemployment, we
split the hours of labor demanded by occupations equally among workers,

d†
t∗ ≡ d† = ht∗

1

xt∗
. (S19)

Of course, it is possible to assume that, rather than keeping the total number of jobs constant,
automation either increases or decreases the total demand for jobs. We explore this in section
S4.5.

Formulating a time dependent automation shock We follow the innovation literature, which
suggests that the adoption of technologies follows a sigmoid function or S-curve over time [11].
Frey and Osborne say that their estimates are over “some unspecified number of years, perhaps

3We divide the score by 5, which is the maximum possible score, to normalize the scores between 0 and 1
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a decade or two.” [5]. Our baseline assumption is that the overall automation process happens
within 30 years, but the steepest change within 10 years. We also explore different alternatives
(see section S4.4).

We assume that the aggregate target demand equals the US labor force (i.e., D† = L).
Initially, the target demand distribution equals the empirical employment distribution of occu-
pations in 2016. At the end of the automation period, we assume that the target demand reaches
the post-shock reallocated demand d†. Within 15 years, the target demand is at the mid-point
between the initial steady-state demand (given by the 2016 employment distribution) and the
post-shock reallocated demand. We use a sigmoid function for the target demand

d†i,t =

�
di,0 if t < ts

di,0 +
d†i−di,0

1+e−k(t−t0)
if t ≥ ts.

(S20)

where ts is the time at which the automation shock starts and t0 is 15 years after ts. We use
k = 0.797, which guarantees that the target demand equals the post-shock reallocate demand
up to a 0.0001 tolerance.

Before introducing the automation shock, we first initialize the model so that it converges
to the steady-state unemployment rate. After it reaches the steady-state, we introduce the target
demand d†i,t as explained above. In Section S4.5, we demonstrate the robustness of the results
under variations in the time span of the automation shock.

S1.3 Calibration

To calibrate the model we use fine-grained data when possible and aggregate data when this is
not possible.

Initializing target labor demand. To calibrate the target labor demand when the shock be-
gins, we assume that the labor market is initially in steady state, so that the distribution of target
labor demand across occupation is equal to the distribution of employment in that occupation
in 2016. We assume that the aggregate labor demand is constant through time.

Fitting δu and δv (spontaneous shocks), and Δt (time step duration). We simulate an ide-
alized business cycle and adjust these three parameters to find the best match to the empir-
ical U.S. Beveridge curve from December 2007 to December 2018. To create the artificial
business cycle, we assume the aggregate target demand Dt follows a sine wave of the form
Dt = D0 + a sin(t/2πTcycle), where D0 is the initial demand, and Tcycle is the period of the
business cycle. Based on visual inspection, we assume that the empirical curve has traversed
about three-quarters of a business cycle between December 2007 and December 2018. Thus
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December 2007 is about a quarter of a cycle past the previous peak, and December 2018 is the
new peak. This gives a period of the oscillation Tcycle = 14.6 years. (The assumptions about
phase do not influence the fit, they only explain our reasoning in choosing Tcycle).

To match the time step duration Δt in our model with real-time units, we use the definition of
long-term unemployment. The U.S. Bureau of Labor Statistics defines long-term unemployed
workers as those who have an unemployment spell of 27 or more weeks4. Since τ is the number
of time steps after which a worker is considered long-term unemployed, Δt satisfies that Δt =
27weeks

τ
.

We assume the model is at its steady-state at the beginning of the simulation, with the initial
target demand d†0 of each occupation matching employment in 2016 (which is the most recent
year where we have data for individual occupations). We then let the target demand d†i,t of
individual occupations move in tandem according to the sine wave, so that each occupation
makes a pro-rata change tracking Dt, i.e. d†t = d†0 + asin(t/2πT ) and simulate the model.

We run an exhaustive search over possible values of the amplitude a of the sine function
(which determines the business cycle’s amplitude) and the parameters δu, δv, and τ . Once we
determine τ we can calculate the time step duration using Δt = 27weeks

τ
and match the business

cycle period Tcycle. The objective of the search is to minimize the discrepancy between the
model and the empirical Beveridge curve. As a criterion for the goodness of fit, we compare
the intersection of the enclosed areas. The objective function is

min
a,δu,δv ,τ

Am ∩ Ae

Am ∪ Ae

, (S21)

where Am is the area enclosed by the Beveridge curve of the model, Ae is the area enclosed by
the empirical Beveridge curve, Am ∩ Ae is the intersection of their areas, and Am ∪ Ae is the
union of their areas. This method requires each Beveridge curve to enclose an area. The model’s
Beveridge curve is closed since the sine wave is periodic. We close the empirical Beveridge
curve by connecting the starting and endpoints. The optimal parameters are a = 0.065, τ = 4

(i.e., Δt = 6.75 weeks), δu = 0.016 and δv = 0.012. The model’s optimal parameters are
reasonably stable concerning the optimal choice a = 0.065. For example, when we increase a

by 10%, Δt remains constant while δu and δv increase roughly by 6%, and when we decrease a

by 10%, Δt and δu remain constant while δv increases by less than 5%.

Calibrating r, the probability that a worker changing jobs remains within the same oc-
cupation. We are handicapped by the fact that this is not directly recorded. Still, we can use
data on the annual occupational mobility rate, which is the percentage of workers that change
occupations within a year, to infer this indirectly. Previous studies estimated that 19% of work-
ers in the USA changed occupations in a year, i.e., that 81% did not change occupations in a

4https://data.bls.gov/timeseries/LNS13008636
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year. A more recent study shows that in the Danish economy, the annual occupational mobility
rate is 20% [6]. Therefore, we assume that each year 81% of workers remain in their current
occupation and use this to estimate r, using the following approach.

In the previous section, we explained that we use the empirical occupational transitions
to incorporate the relative preference with which a worker from occupation i applies to a job
vacancy in j (for i �= j). Consistent with this approach (and acknowledging the same caveats),
here we use the fact that every year 81% of workers remain in their current occupation to
calibrate the preference r with which workers chose to apply to job vacancies in their current
occupation.

For simplicity, we consider the following abstraction. We assume that the probability that
a worker does not change occupation in one time step is time-invariant and constant across
occupations. Then, we observe that in the model, only workers who are unemployed change
occupation. Thus, the probability that a randomly chosen worker does not change occupation
in one time step is the probability 1 − u that she is employed plus the probability u that she is
unemployed times the probability r that she does not change occupation, that is ((1− u) + ur).
Then, the probability x that a worker does not change occupations in y time steps is x =

((1− u) + ur)y. Solving for r implies

r =
x1/y + u− 1

u
. (S22)

With the baseline parameters our model makes roughly y = 52/6.75 = 7.7 time steps in one
year. Assuming x = 0.81, δu = 0.016 and u = 0.06 (the average U.S. unemployment rate since
the year 2000) gives the estimate r = 0.55. For the alternative parameters we obtain r = 0.42.

Calibrating γ, which is the rate at which the realized demand adjusts towards the target
demand. Unfortunately, we have no empirical data to calibrate this parameter, but as we
demonstrate in section S4.2, the results of the model are fairly insensitive to γ across a wide
range of reasonable parameters. We choose γ = 10δu.

S1.4 Long-term unemployment

We can compute the number of long-term unemployed workers in each occupation using Eqs. (12
– 14) as follows. The expected number of workers with an unemployment spell of k steps for
occupation i at time t is the expected number of workers with an unemployment spell of k − 1

steps at the previous time step times the probability that a worker of occupation i is not hired.
Thus the expected number of unemployed workers of occupation i with an unemployment spell

8



Table S2: Parameter values after calibration (rounded)
Parameter Value Description
δu 0.0160 Rate at which employed workers

are separated due to the sponta-
neous process.

δv 0.0120 Rate at which employed vacan-
cies are opened due to the spon-
taneous process.

γ 0.160 Speed at which the realized de-
mand adjust towards the target
demand by separating workers
or opening vacancies.

Δt 6.75 Duration of a time step in units
of weeks.

r 0.55 Probability that a worker stays in
the same occupation

τ 4 Time steps after which a worker
is considered long-term unem-
ployed

of k time steps u(k)
i,t+1 is given by the recursive equation

ū
(k)
i,t+1 = ū

(k−1)
i,t

�
1−

�
j f̄ji,t

ūi,t

�
, (S23)

with ū
(1)
i,1 = ω̄i,1 = ēi,0πu,i,t.

We use the The U.S. Bureau of Labor Statistics definition of long-term unemployment,
where workers are considered long-term unemployed if they have an unemployment spell of 27
or more weeks5. Similarly, in our model the long-term unemployed workers are those who have
been unemployed for τ or more time steps. Using Eq. (S23), we compute the expected number
of long-term unemployed workers (ū(≥τ)

i,t+1) by summing over all workers with an unemployment
spell of τ or more time steps

ū
(≥τ)
i,t+1 =

∞�

k=τ

ū
(k)
i,t+1. (S24)

5https://data.bls.gov/timeseries/LNS13008636
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S2 Mathematical derivations and approximations

S2.1 Deterministic approximation for large population

Running the agent-based model is computationally costly. To calibrate the model, we have to
run the model many times with different parameter choices. Therefore, it is useful to have an-
alytical equations that approximate the agent-based model, which we can solve in seconds. In
this section, we derive approximations for the agent-based model dynamics; these approxima-
tions are based on deriving expectations for the next time step, conditional on observing the
current state of the system. A more in-depth mathematical analysis would need to show that
the approximation can work iteratively between time steps. We do not derive a thorough math-
ematical proof or such mathematical analysis here, but we show that the approximations work
well via simulations (see next subsection S2.2 and Fig. S7).

This section focuses on approximations within a time-step and condition calculations on the
realization of the random variables at the previous time step (i.e., we have hats on all variables
at time t denoting realized values).

We split this derivation into two. First, we discuss the approximation for the separation
and opening of vacancies (the terms with the maximum functions) in Eqs. (12 – 14). We then
discuss the approximation for the flow of workers.

S2.1.1 Separation and opening of vacancies.

In this subsection we show that in the limit of a large number of agents

ω̄i,t+1 = δêi,t + (1− δ)γmax
�
0, d̂i,t − d†i,t

�
≈ E[ωi,t+1|ei,t = êi,t, di,t = d̂i,t] (S25)

and that

ν̄i,t+1 = δêi,t + (1− δ)γmax
�
0, d†i,t − d̂i,t

�
≈ E[νi,t+1|ei,t = êi,t, di,t = d̂i,t]]. (S26)

The separation and opening of vacancies depends on the difference between the realized
demand di,t+1 = ei,t+1 + vi,t+1 and the target demand d†i . It follows from Eqs. (2–4) that the
realized demand is given by

di,t+1 = d̂i,t − ωi,t+1 + νi,t+1. (S27)

where ωi,t and νi,t are binomial random variables of êi,t draws and success probability πu,i,t and
πu,i,t respectively. In the limit of a large number of agents we can approximate their distributions
to Normal distributions, so that

νi,t+1 − ωi,t+1 = êi,t(πv,i,t − πu,i,t)− ηi,t+1 (S28)
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where
ηi,t+1 ∼ N (0, (πu,i,t(1− πu,i,t) + πv,i,t(1− πv,i,t)) ei,t) . (S29)

Using Eqs. (10) and (11) we obtain

d̂i,t+1 = d̂i,t + êi,tδ(1− γ)

�
max

�
0, d†i − d̂i,t

�

êi,t
− max

�
0, d̂i,t − d†t

�

êi,t

�
+ ηi,t+1

= d̂i,t + δ(1− γ)(d†i − d̂i,t) + ηi,t+1. (S30)

In other words di,t is normally distributed. This means that

E[max
�
0, d†i − d̂i,t

�
] = max

�
0, d†i − d̂i,t

�
+ � (S31)

where

� =

�
2

π
(πu,i,t(1− πu,i,t) + πv,i,t(1− πv,i,t)) ei,t. (S32)

To obtain the above equations we have used the fact that max
�
0, b

�
= b

2
+ |b|

2
and that the

expected value of the absolute value of a normally distributed function with variance σ2 is

σ
�

2
π

. Similarly,

E[max
�
0, d̂i,t − d†i

�
] = max

�
0, d̂i,t − d†i

�
+ �. (S33)

It follows Eqs. (5 – 6), (8–11) and (S31–S33) that

E[ωi,t+1|ei,t = êi,t, di,t = d̂i,t] = δêi,t + (1− δ)γmax
�
0, d̂i,t − d†i,t

�
+ (1− δ)γ� (S34)

and that

E[νi,t+1|ei,t = êi,t, di,t = d̂i,t] = δêi,t + (1− δ)γmax
�
0, d†i,t − d̂i,t

�
+ (1− δ)γ�. (S35)

The first two term scale linearly with the employment of occupations, while � scales with the
square root of the employment of occupations. This means that in the limit of a large number
of agents we can make the approximation

E[ωi,t+1|ei,t = êi,t, di,t = d̂i,t] ≈ ω̄i,t+1 = δêi,t + (1− δ)γmax
�
0, d̂i,t − d†i,t

�

and that

E[νi,t+1|ei,t = êi,t, di,t = d̂i,t] ≈ ν̄i,t+1 = δêi,t + (1− δ)γmax
�
0, d†i,t − d̂i,t

�
.

Note that since we are interested in calculating unemployment, vacancy, and employment rates
(i.e. we will divide by factor proportional to L) we are only interested in the terms that scale
linearly with L.
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S2.1.2 Flow of workers approximation

In this subsection we derive the following approximation for the flow of workers

f̄ij,t+1 =
ûi,tv̂

2
j,tAij(1− e−s̄j,t+1/v̂j,t)

s̄j,t+1

�
k v̂k,tAik

≈ E[fij,t+1|ui,t = ûi,t,vi,t = v̂i,t, ei,t = êi,t],

where
s̄j,t+1 =

�

i

ûi,tv̂j,tAij�
k v̂k,tAik

. (S36)

We denote the number of workers from occupation i that apply to occupation j at time t by sij,t.
Given that only unemployed workers apply for jobs and that qij,t is the probability that a worker
from occupation i applies to a vacancy of occupation j the expected number of applications
submitted from occupation i to occupation j is

E[sij,t+1|ui,t = ûi,t] = ûi,tqij,t+1. (S37)

The labor flow fij,t+1 is equal to the number of workers from occupation i applying to
occupation j, ŝij,t+1, multiplied by the probability pj,t+1 that each application is successful.
(Once applications are sent to a vacancy, all applications have the same probability of being
accepted, so p does not depend on i). The expected value is

E[fij,t+1|ui,t = ûi,t,vi,t = v̂i,t, ei,t = êi,t] = E [sij,t+1pj,t+1|ui,t = ûi,t,vi,t = v̂i,t, ei,t = êi,t] .

(S38)
Letting the total number of applications sj,t+1 to occupation j be

sj,t+1 =
�

k

skj,t+1, (S39)

the fraction pj,t+1 of successful applications is the ratio of the number of vacancies mj,t+1 that
successfully match to the total number of applications, i.e.

pj,t+1 = mj,t+1/sj,t+1. (S40)

Matching. To simplify upcoming calculations that require derivatives, it is convenient to ex-
press the number of matches mj,t+1 in terms of the exponential function. This is a standard
approximation, and the derivation we present is based on [10]. Recall that mj,t+1 is the num-
ber of vacancies that successfully match with a job applicant. Since employees hire a worker
uniformly at random from the pool of applicants, then mj,t+1 is equal to the number of job
applications that receive at least one job application.
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An unemployed worker who applies for a job in occupation j with v̂j,t vacancies, will apply
to a particular vacancy with probability 1

v̂j,t
. Thus the probability that the worker does not send

her application to that vacancy is 1− 1
v̂j,t

. For ŝj,t+1 unemployed workers sending applications
to occupation j, the probability that a particular vacancy does not receive an application is
(1 − 1

v̂j,t
)ŝj,t+1 . Since each vacancy receiving an application hires one worker, the expected

number m̄j,t+1 of successful job applications is

m̄j,t+1 = v̂j,t

�
1− (1− 1

v̂j,t
)ŝj,t+1

�
.

Using the approximation that (1− 1
x
)y ≈ e−y/x for large x and y we obtain

m̄j,t+1 = v̂j,t(1− e−ŝj,t+1/v̂j,t). (S41)

Taylor approximation for flow of workers It follows from Eqs. (S38) and (S40) that the flow
of workers depends on sij,t+1, mj,t+1 and sj,t+1. These variables are not independent, but here
I show that in the large L limit We can approximate E[fij,t+1|ui,t = ûi,t,vi,t = v̂i,t, ei,t = êi,t]

by

f̄ij,t+1 = s̄ij,t+1v̂j,t
(1− e−s̄j,t+1/v̂j,t)

s̄j,t+1

. (S42)

To derive this approximation it is useful to define

sj\i,t+1 ≡
�

k �=i

skj,t+1, (S43)

which is the number of applications occupation j receives from all unemployed workers except
those from occupation i. Note that sj,t+1 = sj\i,t+1 + sij,t+1. Using this fact, and Eq. (S38) we
define the following multivariate form of the flow of workers

E[fij,t+1|ui,t = ûi,t,vi,t = v̂i,t, ei,t = êi,t] = g(sij,t+1, sj\i,t+1)

≡ sij,t+1v̂j,t
1− e

−
�

sij,t+1+sj\i,t+1
v̂j,t

�

sij,t+1 + sj\i,t+1

. (S44)

This definition will allow us to do a multivariate Taylor expansion of the function g around the
expected value of sij,t+1 and sj\i,t+1).

Recall that, for fixed i, the random variables sij,t+1 follow a multinomial distribution with
ûi,t trials and probabilities qij,t+1 for j = 1, ..., n. This means that sij,t+1 and sil,t+1 are drawn
from the same realization of the multinomial distribution, and are therefore correlated. How-
ever, sij,t+1 and skj,t+1 are drawn from different realizations (and distributions); thus they are
independent.
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In other words, the number of workers from occupation i that apply to occupation j is
correlated with the number of workers from occupation i that apply to occupation l – if all
ûi,t workers apply to occupation j it means that no workers from i applied to occupation l.
However, since workers do not coordinate when sending applications, the fact that many or few
workers from occupation i apply to occupation j says noting about the number of workers from
occupation k that applied to occupation j. Of course, this is conditional on v̂j,t, the number of
vacancies in occupation j at the previous time step.

It follows from the fact that sij,t+1 and skj,t+1 are independent and from Eq. (S43), that
sij,t+1 is independent from sj\i,t+1. Furthermore, in the limit of a large number of agents, ûi,t

is large, and the standard deviation of sij,t+1 is small in comparison to the average. The same
is true for sj\i,t+1; we therefore expand g(sij,t+1, sj\i,t+1) in a Taylor series around the expected
value of sj,t+1 and sj\i,t+1 as follows,

ḡ(sij,t+1, sj\i,t+1) = g(s̄ij,t+1, s̄j\i,t+1)

+
1

2

∂2

∂s2ij,t+1

�
g(s̄ij,t+1, s̄j\i,t+1)

�
Var[sij,t+1]

+
1

2

∂2

∂s2j\i,t+1

�
h(s̄ij,t+1, s̄j\i,t+1)

�
Var[sj\i,t+1] + . . . (S45)

Next, we now show that, in the limit of a large number of agents, the second and third terms
are negligible in comparison to the first term. Exclusively for this derivation, we introduce the
notation v ≡ v̂j,t, x ≡ sij,t+1 and y ≡ sj\i,t+1. we denote the expected value of a variable x by
µx and the variance by σ2

x, so that
µx = ûi,tqij,t+1, (S46)

µy =
�

k �=i

ûk,tqkj,t+1 (S47)

σ2
x = ûi,tqij,t+1(1− qij,t+1), (S48)

σ2
y =

�

k �=i

ûk,tqkj,t+1(1− qkj,t+1), (S49)

where we have used the formula for the expected value and variance of (independent) multino-
mial distributions. Note that µx, µy, σ2

x, and σ2
y are proportional to the unemployment variables

and therefore scale linearly with the number of agents L.
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Using this notation and taking partial derivatives from Eq. (S44), we obtain

h̄(x, y) = h(µx, µy) + σ2
x

��
vµx

(µy + µx)3
− v

(µy + µx)2

��
1− e−(µx+µy)/v

�

+

�
1

µy + µx

− µx

(µy + µx)2

�
e−(µx+µy)/v − 1

2

µx

v(µy + µx)
e−(µx+µy)/v

�

+ σ2
y

�
vµx(1− e−(µx+µy)/v)

(µx + µy)3
− µx

(µx + µy)2
e−(µx+µy)/v

− 1

2

µx

v(µy + µx)
e−(µx+µy)/v

�
+ o(

1

L
), (S50)

Since µx, µy, σ2
x, σ2

y and v scale linearly with L, in the limit of a large number of agents these
five variables are of the same order of magnitude. The higher moments terms in the expansion
are at most of the order of 1

L
given that the n-order partial derivatives are proportional to 1

Ln−1 . It
follows from these observation and from Eqs. (S44) and (S50) that, in the limit of large number
of agents, the first term of Eq. (S50) scales with L, while the other terms do not scale with L.
In other words, in the limit of a large number of agents, we can approximate

f̄ij,t+1 = s̄ij,t+1

v̄2j,t(1− e−s̄j,t+1/v̄j,t)

s̄j,t+1

, (S51)

where we have recovered our original notation. The relative error of this approximation is
inversely proportional to the number of agents i.e., the relative error of our approximation is

����
E[fij,t+1|ut,vt;A]− f̄ij,t+1

E[fij,t+1|ut,vt;A]

���� ∝
κij,t+1

L+ κij,t+1

, (S52)

where

κij,t+1 = σ2
x

��
vµx

(µy + µx)3
− v

(µy + µx)2

��
1− e−(µx+µy)/v

�

+

�
1

µy + µx

− µx

(µy + µx)2

�
e−(µx+µy)/v − 1

2

µx

v(µy + µx)
e−(µx+µy)/v

�

+ σ2
y

�
vµx(1− e−(µx+µy)/v)

(µx + µy)3
− µx

(µx + µy)2
e−(µx+µy)/v

− 1

2

µx

v(µy + µx)
e−(µx+µy)/v

�
+ o(

1

L
). (S53)

depends on the network structure (see section below for calculation of specific case), but does
not scale with L. Therefore, when L → ∞ the relative error is negligible.
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Substituting Eqs. (7) and (S37) into Eq. (S51), we can write f̄ij,t+1 in terms of the adjacency
matrix and the expected values of the state variables as

f̄ij,t+1 =
ûi,tv̂

2
j,tAij(1− e−s̄j,t+1/v̂j,t)

s̄j,t+1

�
k v̂k,tAik

, (S54)

where
s̄j,t+1 =

�

i

ûi,tv̂j,tAij�
k v̂k,tAik

. (S55)

We have derive our approximations within a time step, conditioning on the previous time step.
In practice we do these approximations at each time step, i.e. we substitute êj,t by ēi,t, ûj,t by
ūi,t, and v̂j,t by v̄i,t. As we show by simulations in section S2.2 these approximation works.

S2.2 Simulations vs. approximation at the occupation level

We show how our approximations compare with simulations at the occupation level. Addition-
ally, we discuss how the automation shock impacts occupations differently. In particular, we
focus on four occupations that we use as examples. For each, we compare the average of 10
simulations with our numerical solution. As shown in Fig. S7 our approximate solution closely
matches the average for all occupations. Because of computational constraints, we simulate
the model with roughly 1.4 million agents, which corresponds to one percent of the labor force
(note that the larger the number of agents, the better the approximation).

We focus on four occupations, sales representatives, lawyers and judges, electricians, emer-
gency management directors, whose empirical employment is 476, 550, 1.1 million, 632, 965,
and 6267, respectively. Emergency management directors are among the occupations with the
lowest employment, with only four others having less employment. We run the numerical sim-
ulations with a hundredth of the real labor force, so in our simulations, the target demand for
each occupation is roughly 4, 765, 11, 000, 6, 329, and 63, respectively. As shown in Fig. S7
our approximations match the average unemployment and long-term unemployment rate of each
occupation. Noticeably, the fluctuations are much larger for emergency management directors,
which is the occupation with the smallest employment and target demand. When we run the
simulations with 1.4 million, most occupations have a target demand consistently above 50. We
can therefore conclude that our approximations work well for cities with a labor pool above 1.4
million.

The unemployment rate of different occupations follows different trajectories. Sales repre-
sentatives, who are likely to be automated, have higher unemployment rates during the shock.
Then, the unemployment rate returns to a steady-state with a value similar to before the shock.
Instead, lawyers and judges, who are unlikely to be automated, have lower unemployment rates
during the shock. However, after the shock, the steady-state unemployment is slightly higher
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than it was before the shock. Finally, the electricians, who are unlikely to be automated, first
decrease their unemployment rate and increase it during the automation shock. We explain
this behavior as follows. During the first part of the automation shock, more electrician va-
cancies open, thus decreasing unemployment. Nevertheless, the automation shock also causes
workers of nearby occupations to become unemployed. As the automation shock continues to
separate workers of neighboring occupations, many of these unemployed workers apply for the
electrician vacancies causing the electrician’s unemployment rates to increase.

Figure S7: Unemployment rate at the occupation level, simulations and numerical solution
We compare the unemployment and long-term unemployment from the average of the simula-
tions (solid brown line) and the numerical solution (dashed line). We also show in transparent
green lines the 10 simulations. Each simulation uses 1.4 Million agents and we average over 10
simulations.
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S2.3 Fixed point and steady-state

In this section we derive fixed-point equations for the dynamical system given by Eqs. (12 –
14) under constant target demand, i.e., when d†i,t = d†i ∀i, t. In other words, we find equations
for employment, unemployment and vacancies whose solution e∗, v∗, and u∗ satisfy that when
ēi,t = ē∗i , ūi,t = ū∗

i and v̄i,t = v̄∗i , then Eqs. (12 – 14) imply ēi,t+1 = ēi,t = ē∗i , ūi,t+1 = ūi,t = ū∗
i ,

and v̄i,t+1 = v̄i,t = v̄∗i . These fixed-point equations depend on the parameters δu and δv, the
network structure, and the target labor demand. We find an analytical solution to these fixed-
point equations for a very simple case when the network is complete. When we consider the
occupational mobility network, we can solve this equations numerically, as we have shown in
the main paper (for example, see Fig. 3B). As we have shown by simulations, in the limit of a
large number of agents, for all cases we studied, the steady-state corresponds to the solution of
the fixed-point equations. Because of this, we use steady-state unemployment and fixed-point
unemployment interchangeably in the main text.

We split this derivation into two, first we derive a fixed-point equation for the realized de-
mand. We then show that this fixed point solution is consistent with a fixed point solution for
employment, vacancies, and unemployment.

S2.3.1 Realized demand fixed-point equation

Since the realized demand is the sum of employment and vacancies, when we sum Eqs. (12 –
14) we obtain the following dynamic equation for the realized demand,

d̄i,t+1 = d̄i,t + (δv − δu)ēi,t +

�
γu(1− δu)(d

†
i,t − d̄i,t) if d̄i,t ≥ d†i,t

γv(1− δv)(d
†
i,t − d̄i,t) if d̄i,t < d†i,t.

(S56)

We simplify this expression by defining γ�
u = γu(1− δu) and γ�

v = γv(1− δv) as follows,

d̄i,t+1 = d̄i,t + (δv − δu)ēi,t + γ�
u(d

†
i,t − d̄i,t) + (γ�

v − γ�
u)max

�
0, d†i,t − d̄i,t

�
. (S57)

Since the target demand is constant, when we apply the fixed-point condition d̄i,t+1 = d̄i,t, we
obtain the following equation

(δu − δv)ē
∗
i = γ�

u(d
†
i − d∗i ) + (γ�

u − γ�
v)max

�
0, d†i − d̄∗i

�
, (S58)

where ē∗i is an employment fixed-point. Later on we derive and equation for e∗i consistent with
this equation. Let us consider the case δu > δv. To solve the above equation we consider the
two possible which affect the maximum functions, d†i < d∗i and d†i > d∗i . If d†i < d∗i , Eq. (S58)
yields

d†i − di∗ =
δu − δv
γ�
u

ēi,t
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which is a contradiction since the right hand side is positive, but the left hand side negative
(since δu > δv). In the case when d†i > d∗i , we find the following fixed-point solution

d∗i = d†i −
δu − δv

γ�
v

ē∗i .

Doing an analogous analysis for the case δu < δv we obtain the following fixed-point solu-
tion for the realized demand,

d̄∗i =

�
d†i − δu−δv

γ�
v

ē∗i if δu ≥ δv

d†i +
δv−δu
γ�
u

ē∗i if δu < δv.
(S59)

In other words, when δu > δv the realized demand is smaller than the target demand at a fixed-
point. This happens because when δu > δv (i.e., the probability of separation is greater than
the probability of opening a vacancy at random) the adjustment towards the target demand does
not fully compensate for asymmetry between the opening and separation rates; thus a fixed-
point realized demand is smaller than the target demand. Similarly, when δu < δv, a fixed-point
realized demand is greater than the target demand. In both cases, the difference between a fixed-
point realized and the target demand is proportional to |δu − δv| and inversely proportional to
the adjustment rate γ. Except for the case when δu = δv a fixed-point realized demand depends
on ē∗i .

S2.3.2 Employment, unemployment, and vacancies fixed-point equations

We use Eq. (S59) to derive a fixed-point equation for vacancies. We focus on the case δu ≥ δv
since the other case can be solved analogous. It follows from Eq. S59) and the fact that the
realized demand is the sum of employment and vacancies that a fixed-point solution for the
vacancies must satisfy that

v̄∗i = d†i −
�
1− δu − δv

γ�
v

�
ē∗i . (S60)

When δu ≥ δv, d†i < d∗i , so the maximum term is zero in the employment and unemployment
equations (Eqs. (12) and (13)). It follows that, under the fixed point condition ēi,t+1 = ēi,t,
Eq. 12) leads to

ē∗i =
1

δu

�

j

f̄ ∗
ji, (S61)

where f̄ ∗
ji is the flow of workers at the steady state and is given by

f̄ ∗
ij =

ū∗
i (v̄

∗
j )

2Aij(1− e−s̄∗j/v̄
∗
j )

s̄∗j
�

k v̄
∗
kAik

, (S62)
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with

s̄∗j =
�

i

ū∗
i v̄

∗
jAij�

k v̄
∗
kAik

. (S63)

Using Eq. (S61) and imposing the fixed-point condition ūi,t+1 = ūi,t we find that

1

δv

�

j

f̄ ∗
ji =

1

δu

�

j

f̄ ∗
ij. (S64)

In other words, at a fixed-point the total inflow of workers into an occupation is proportional to
the total outflow of workers of that same occupation. When δu = δv these two flows are equal.

Eqs. (S61) and (S64) are non-linear functions of e∗, u∗, and v∗. We have not found a general
closed-from solution for these equations, but we can make three important observations. i)
Eq. (S60) shows that a fixed-point solution will depend on the target demand, which is an
external input to the model. ii) Eq. (S61) shows that an employment fixed-point depends on the
flow of workers between occupations, which depends on the network structure (see Eq. (15)).
Therefore the network structure plays a role in determining the steady-state. iii) Eq. (S64) shows
that a fixed-point solution will also depend on the parameters δu and δv. Finally, even though we
do not have an analytical solution for Eqs. (S60) (S61), and (S64), we have found fixed-point
solutions using computer calculations for all the networks and parameters we have studied. We
have only found one non-trivial fixed-point solution for each case, i.e, only one solution besides
the trivial solution e∗ = v∗ = u∗ = 0.

S2.3.3 Complete network fixed-point

Our model has an analytically computable fixed-point solution under the following assumptions:
i) a complete network of n nodes, i.e., Aij =

1
n

∀i, j, ii) δu = δv = δ and that γu = γv = γ,
and iii) the target labor demand is constant, equal to the labor supply, and distributed homoge-
nously among all occupations i.e., d̄†i =

L
n

∀i. As before, we denote a fixed-point value of the
variables with a star superindex (e.g. x∗).

In the main text we show that the steady-state depends on the target demand and the network
structure. Since, in this scenario, all occupations have equal target demand and are positioned
indistinguishably in the network, all occupations have the same fixed-point. Therefore, we lose
the i subindex in our notation. Since δu = δv, Eq. (S64) yields

�
j f̄

∗
ji =

�
j f̄

∗
ij ≡ F ∗. Using

the full expression for the flow of workers in Eq. (15) we obtain

F =
n�

j=1

1

n

u∗v∗2(1− es
∗/v∗)

s∗
�n

k=1
1
n
v∗

=
u∗v∗(1− e−s∗/v∗)

s∗
.
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Similarly, it follows from Eq. (S37) that

s∗ =
n�

i=1

1

n

u∗v∗�n
k=1

1
n
v∗

= u∗.

We then substitute s∗ in F and obtain,

F = v∗(1− e−ū∗/v̄∗) (S65)

It follows from assumption ii) and Eq. (S59) that d̄∗ = d†. With this in mind, using Eq. (S65) and
Eqs. (12)–(14), we obtain the following dynamic equations for the total number of employed
and unemployed workers and job vacancies,

ē∗ = ē∗ − δē∗ + v∗(1− e−u∗/v∗) (S66)

u∗ = u∗ + δē∗ − v∗(1− e−u∗/v∗)

v∗ = v∗ + δē∗ − v∗(1− e−u∗/v∗).

We know that the number of unemployed and employed workers equals the labor, i.e., U∗ +

E∗ = L. Since all occupations have the same steady state, then ū∗ + ē∗ = L
n

. It follows from
this observation, the fact that d∗ = L

n
, and Eq. (S59) that

ū∗ =
L

n
− ē∗ = v̄∗. (S67)

We then substitute Eq. (S67) into Eq. (S66) and obtain

ē∗ =
L

n

(1− e−1)

δ + (1− e−1)
, (S68)

and
u∗ = v∗ =

L

n

δ

δ + (1− e−1)
. (S69)

These equations along with the condition of constant labor force imply that the unemployment
rate is

U∗

L
=

δ

δ + 1− e−1
. (S70)

In other words, in this case the unemployment rate is an increasing function of δ.
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S2.3.4 Zero steady-state

Eqs. (12) – (14) accept a trivial fixed-point e∗i = u∗
i = v∗i = d†i = 0. We neglect this steady-state

since it is uninteresting for our analysis. However, when running the agent simulation there is
a non-zero probability that the number of employed workers and vacancies of an occupation
is zero, i.e., êi,t = v̂i,t = 0. At this point, even if d†i,t > 0, no vacancies would open and
therefore employment would be zero for the rest of the simulation. To avoid this, we introduce
the additional rule that if êi,t = v̂i,t = 0 but d†i,t > 0, then a vacancy is opens. When running the
simulation with a large number of agents (which is the case of the labor market) the probability
that êi,t = v̂i,t = 0 is negligible and this additional rule is very unlikely to be used.

S2.3.5 Long-term unemployment at the steady-state

We note that Eq. (S24) gives the number of long-term unemployed workers for time t. A special
case is that of the steady-state when the unemployment rate of each occupation is u∗

i . Then, the
approximate expected number of unemployed workers with a job spell of k time steps is

ū
∗(k)
i = δē∗i

�
1−

�
j f̄ij(ū

∗, v̄∗;A)

ū∗
i

�k

.

and decays exponentially with k.

S3 The dynamics of the Beveridge curve

Undertaking a detailed assessment of the exact behavior of the Beveridge curve under different
parameter choices is out of scope for this paper. However, we do briefly discuss how the direc-
tion in which the Beveridge curve cycles is influenced by the state-independent rates at which
workers are separated (δu) and vacancies open (δv).

We explore the dynamics of the Beveridge curve by varying δu and δv. We keep all other
parameters fixed to the values used to fit the Beveridge curve (a = 0.065, Δt = 6.75 weeks,
and γu = γv = γ = 0.16). As before, we use a sine wave to model business cycle dynamics.
In the top left of Figs.S8 and Fig.S9) we show the dynamics of the aggregate target demand.
We start with a constant target demand and then introduce the business cycle dynamics. We
show the first part of the dynamics with a dashed line to mark the transition between a constant
target demand and an oscillating target demand. Then, we plot in color-scale the dynamics of a
business cycle; the purple/blue part corresponds to the recession period, while the green/yellow
part to the recovery period.

We test five different parameter options for δu and δv. Starting from the calibrated values
δu = 0.016 and δv = 0.012, we gradually decrease δu by 0.001 and increase δv by 0.001 until
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δu = 0.012 and δv = 0.016. This yields 5 different cases, which we show in Fig.S8 for the
occupational mobility network and in Fig.S9 for the complete network.

We find that the Beveridge curve first reduces its enclosed area, then it changes its cycling
direction from counter-clockwise to clockwise, and finally, it increases its enclosed area. For
the two networks and for the five cases we study, we observe that when δu > δv, the curve cycles
counter-clockwise. On the contrary, when δv > δu the curve cycles clockwise. However, when
δu = δv the network determines the direction of the cycle – the occupational mobility network
shows clockwise cycles while the complete network shows an “8”-shaped curve, where the
bottom part cycles counter-clockwise and the upper part clockwise. These results suggest that
for some similar values of δu and δv, which depend on the network structure, the curve flips
and starts to exhibit the opposite cycling direction. We also observe that the network structure
affects the area enclosed by and the position of the curve (see differences between Fig.S8 and
Fig.S9).
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Figure S8: Beveridge curve dynamics for the occupational mobility network. On the top
left panel we show the aggregate demand. The grey part corresponds to the steady-state and
transition to the business cycle. The purple/blue part corresponds to the recession period, while
the green/yellow part to the recovery period. The following 5 panels show the dynamics of the
model’s Beveridge curve under different parameter choices. We observe that when δu > δv the
curve cycles counter-clockwise, while when δu ≤ δv the curve cycles clockwise. We also show
the empirical Beveridge curve in magenta for reference.
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Figure S9: Beveridge curve dynamics for the complete network On the top left panel we
show the aggregate demand. The grey part corresponds to the steady-state and transition to the
business cycle. The purple/blue part corresponds to the recession period, while the green/yellow
part to the recovery period. The following 5 panels show the dynamics of the model’s Bev-
eridge curve under different parameter choices. We observe that when δu ≥ δv the curve cycles
counter-clockwise, while when δu < δv the curve cycles clockwise. We also show the empirical
Beveridge curve in magenta for reference.
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S4 Robustness

In this section present our robustness analysis for the results.

S4.1 Heterogeneous self-loops

Due to a lack of quality data on workers that switch employers but stay in the same occupa-
tion, we assumed that the self-loops weight is the same for all occupations, ri = r ∀i. In
this section, we explore a way of calibrating heterogeneous self-loops, that is, allowing each
occupation i to have a self-loop with weight ri.

While same-occupation job switches are scarcely recorded in the census, we can use some
census information to define heterogenous self-loops after making some assumptions. IPUMS
Current Population Survey has an ‘EMPSAME’ variable indicating whether a person’s em-
ployer is still the same. However, this data has significant quality issues. Specifically, IPUMS
reports that “there are a large number of people in all samples who appear to be in-universe for
EMPSAME, that is, they are currently employed and were employed in the previous month, but
still have NIU (Not in Universe) values for EMPSAME”.

When we use these data to estimate the self-loops, we find unrealistically low values. For
example, 41 occupations would have a zero self-loop, meaning that workers in these occupa-
tions always change occupation when they change employer. Furthermore, the highest self-loop
weight we observe is 0.19, corresponding to lawyers and judges. This would imply that four-
fifths of lawyers and judges change occupation when they change employer. However, even
though the self-loop weights are unrealistically low, we find that the heterogeneity between oc-
cupations is reasonable. Licensed occupations such as lawyers and judges, nurses, and surgeons
have high self-loops compared to the rest of the occupations. In the next paragraph, we explain
how, with some assumptions, we can use this heterogeneity in the data of workers remaining or
not in the same occupation to set a relative likelihood of workers to remain in their occupation.

First, we assume that occupations have positive self-loop weight i.e., ri > 0 ∀i. We assign
a 0.0007 self-loop weight to the 41 occupations which previously had ri = 0. We choose 0.0007
since it is the minimum positive weight of the original distribution of self-loops. Second, we
define linearly re-scaled r�i weights, which we obtain using the functional form r�i = mri + b,
where m and b are parameters and ri is the self-loop weight of occupation i for the original
distribution. We search for parameter values of m and b that satisfy the conditions that i) the
maximum self-loop weight is 0.95 and ii) that 1

n

�n
i=1 ri = r, where r is the homogenous self-

loop weight we calibrated as explained in section S4.2. In other words, we add the condition
that the mean of the distribution of the re-scaled self-loops should equal the weight of the
homogenous self-loop we previously calibrated to match the annual occupational mobility rate.
The parameter values we find are m = 0.5 and b = 0.5. We used the re-scaled self-loop weight

26



r�i to run the model with heterogenous self-loops.
Our results vary little when we introduce heterogeneous self-loops. As we show in Fig. S11

the effect is mild even at the aggregate level. Few occupations deviate from the identity, and
none differ by a large amount.

Figure S10: Occupation’s self-loop distribution Left Self-loops of occupations before setting
minimum value and linear re-scaling. Right Self-loop of occupations after setting minimum
value and re-scaling.

S4.2 Parameter calibration robustness tests and validation discussion

In our calibration exercise of the Beveridge curve, we have four free parameters (δu, δv, τ , and a)
and relatively few empirical observations (unemployment and vacancy rate), raising concerns of
overfitting. However, our primary goal is not to show that we have a good fit for the Beveridge
curve but to study the effects of limited occupational mobility on the automation-unemployment
relationship. To show that the results on automation shocks are relatively immune to this issue
of over-fitting, here we propose an alternative way to fit parameters δu and δv, one that does not
depend on the Beveridge curve. We show that our main results hold for these new parameters.

Alternative calibration As shown in Fig. S8, the parameters δu and δv have a large effect on
the shape and area enclose by the Beveridge. To address concerns that we are over-fitting the
Beveridge curve, we propose a more simple calibration of parameters δu and δv that does not
depend on the Beveridge curve. Instead of using the time series of vacancy and unemployment
rate, we calibrate the model so that when we run it using a complete network, the unemployment
and vacancy rate is 4%.

When we run the model using a complete network with parameters δu = δv, we can ana-
lytically derive the unemployment rate (see section S2.3.3). It follows from Eq. (S69) that the
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Figure S11: Heterogenous self-loops effect We compare the model results between using ho-
mogenous and heterogenous self-loops, for both percentage change in unemployment and long-
term unemployment change

unemployment and vacancy rate equal 4% when δu = δv = 0.026. We then run the model
as before but using parameter values δu = δv = 0.026. These values are approximately twice
the original size. However, as we show in Fig. S12 our results remain robust. On the left we
see that the increase in unemployment due to automation is larger for the occupational mobility
network. On the right we see that the impact of automation on occupations varies substantially
due to the network structure.

Overall there is a strong correlation between the unemployment and long-term unemploy-
ment changes for both calibrations at the occupation level. In Fig. S13 we show this correlation,
where we see that all points lie close to the identity line. We also highlight the result for particu-
lar occupations. For both the original and alternative calibration, Childcare workers experience
an increase in long-term unemployment (of 6% and 10% respectively), and Statistical techni-
cians experience a decrease in long-term unemployment (of −24% and −18% respectively).
This result shows that even though our original calibration may over-fit the Beveridge curve,
the estimates of the impact of automation on employment are robust. That is, both calibration
methods suggest that Statistical technicians are less likely to be long-term unemployed due to
an automation shock than Childcare workers.
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Figure S12: Alternative calibration results Left Unemployment and long-term unemploy-
ment rate using the alternative parameter values for δu and δv. Right The percentage change in
unemployment and long-term unemployment for different occupations.

Results for different values of γ When target demand and realized demand differ, the differ-
ence between the two is reduced by a fraction γ of the difference, either by opening vacancies or
separating workers, depending on the difference’s sign. We expect that γ ≥ δu and γ ≥ δv, so
that market adjustment dynamics dominates random events. In the main text, we use γ = 10δu
as a reference point. In this section, we explore how the results change for different values. In
particular we test for γ = 5δu and γ = 20δu. We chose these ranges since there is little change
in the results for larger values of γ, and for lower values, we obtain unreasonably high values
of the unemployment rate at the aggregate level (more than 15%).

In Fig. S21 we plot the percentage change in the unemployment rate using γ = 10δu
(our benchmark) vs the percentage change in unemployment rate when γ = 5δu and γ = 20δu
respectively. Our results show that the changes are very similar, although as γ increases, so does
the increase in unemployment and long-term unemployment for occupations that are likely to be
automated. These results are not surprising since the larger γ is, the faster the target demand’s
adjustment and thus sharper the shock.

Occupation-specific calibration and validation methods For simplicity, we used only the
aggregate unemployment and vacancy rate to calibrate the model. However, the Great Recession
likely had effects of different magnitude in each occupation. One could improve the calibration
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Figure S13: Original and alternative calibration results comparison. We plot the percent-
age change in unemployment (top) and long-term unemployment (bottom). The horizontal axis
corresponds to the original calibration, the vertical axis to the alternative calibration.
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method by using occupation-specific employment and vacancy levels. Although there is no pub-
licly available vacancy data directly available at the occupation level, under some assumptions
and using a couple of crosswalks, one could map industry vacancy data from the U.S. Bureau
of Labor Statistics 6 into the 464 occupations used in this work. With this occupation-level
data, one could match the target demand used for calibration to match the empirical demand
distribution at the occupation level.

One could also use the occupation-level data to validate model predictions. Although this
model’s current aim is to show that the network structure plays an important role in understand-
ing the impact of automation on occupational employment, we believe that (with substantial
further work) one could develop a data-drive network model to forecast occupation-specific
employment levels. To do this, one would need shock predictions that could be introduced into
the model to calculate second-order effects. After that, one could use the occupation-specific
data to validate such a model.

S4.3 Brynjolfsson et al. shock

Brynjolfsson et al. took a different approach than Frey and Osborne to assess the automatability
of occupations. Taking advantage of the 8-digit level O*NET classification of occupations based
on work activities [1], which has 974 occupations, they asked workers from a crowdsourcing
platform to rate what they called the suitability for machine learning of each work activity. They
then used the breakdown of work activities for each occupation to estimate the suitability for
machine learning for each occupation. The Suitability for Machine Learning score is based on
a five-point scale [2]. We normalize this measure by dividing it by 5 so that it is in a range from
zero to one. Most occupations have at least some tasks that are suitable for machine learning,
but few, if any, have all tasks suitable for machine learning. This suggests that many jobs will
be re-designed rather than destroyed.

The Brynjolfsson et al. study yielded substantially different results than the Frey and Osborn
study. First, these studies differ in their correlation to wages. The Frey and Osborne estimates
have a strong negative correlation with wages, whereas the Brynjolfsson et al. estimates have
a low correlation with wages. Second, as we see in Fig.1A, the distribution of the Frey and
Osborne estimates is wide, whereas the Brynjolfsson et al. distribution has a narrow peak (see
Fig.S14A). Since the Frey and Osborne estimates vary substantially between occupations and
the Brynjolfsson et al. estimates, do not, the corresponding changes in the target labor demand
are large for the Frey and Osborne shock but small for the Brynjolfsson et al. shock. (See Fig.4B
and S15B for examples of how the target labor demand changes for different occupations under
the two shocks).

6https://www.bls.gov/news.release/jolts.t01.htm
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Figure S14: Estimates of automatability in the occupational mobility network. Panel (A)
is a histogram of the suitability for machine learning as estimated by Brynjolfsson et al. [2].
Unlike the Frey and Osborne distributions, the suitability for machine learning distribution is
unimodal. Panel (B) shows the occupational mobility network, where nodes represent occu-
pations and links represent possible worker transitions between occupations. The color of the
nodes indicates the suitability for machine learning. Red nodes have higher suitability for ma-
chine learning and blue nodes have a low one. The size of the nodes indicates the logarithm of
the number of employees in each occupation.
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The differences between the Frey and Osborne and the Brynjolfsson et al. shock imply that
these shocks have a different effect on employment. The Brynjolfsson et al. shock causes no
noticeable change in the aggregate unemployment or long-term unemployment rate (see Fig.
S15B and C). This is because the Brynjolfsson et al. shock implies small changes in the target
demand of occupations (for example, see Fig. S15A).

Although there is no noticeable change in the aggregate unemployment rates, the Brynjolfs-
son et al. shock still affects occupations disproportionately. This effect depends not only on the
suitability for machine learning but also on each occupation’s network position. As we observe
in Fig. S15, the change in the long-term unemployment and unemployment varies substantially
for occupations with similar suitability for machine learning. For example, both machinists and
avionic technicians have a high 0.70 suitability for machine learning score. Still, long-term un-
employment for machinists slightly increases, while the long-term unemployment for avionic
technicians decreases by more than 20%. In other words, our results suggest that retraining
efforts would be better spent on machinists than on avionic technicians.

S4.4 Automation time and adoption rate

This section discusses how our results change when we assume a different duration of the
automation shock. We assume that automation happens within 20 or 40 years, instead of 30. We
measure the change in unemployment during the whole automation period and during the steep
transition period. We define the steep transition period as the middle part of the automation
period when the sigmoid is steepest. In Fig. S17 we highlight the whole automation period
with a grey area coloring and the steep automation period by a coral shadowing.

As expected, the shorter the automation period is, the larger the increase in the aggregate
unemployment and long-term unemployment rates (see top panels of Fig. S17). On the bot-
tom panels of Fig. S17 we plot the percentage change in the unemployment and long-term
unemployment rates of each occupation during the whole automation period vs. the percentage
change of the unemployment rates of each occupation during the steep automation period. There
is a strong correlation between unemployment change during the whole transition period and
the steep transition period. However, during the steep automation period, the unemployment
rate’s percentage change is more extreme than during the entire automation period. Namely,
occupations with high automation levels have a higher percentage change in the unemployment
and long-term unemployment rate during the steep automation period than during the whole
automation period. Likewise, occupations with low automation levels tend to decrease their un-
employment and long-term unemployment rate more during the steep automation period than
over the entire automation period.
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Figure S15: Aggregate labor market outcomes under the Brynjolfsson et al. shock. The
grey area denotes the 30 years during which the automation shock takes place. Panel (A) shows
the evolution of the target labor demand for two example occupations. The occupation colored
in blue has a low suitability for machine learning and the occupation colored in red has a high
one. Because the distribution of the suitability for machine learning is more evenly distributed
across occupations that the probability of computerization, the Brynjolfsson et al. shock implies
a small change in the target labor demand of most occupations. Panel (B) shows the unemploy-
ment rate as a function of time. Dashed lines are our approximations of the expected value
(solved numerically) and the solid lines are 10 simulations with 1.5 M agents. Panel (C) shows
the long-term unemployment rate as a function of time. As before, dashed lines correspond to
the deterministic approximation of Eqs. (12 - 14) and solid lines to the full stochastic model
simulation of Eqs. (2 - 4).
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Figure S16: Impact of the Brynjolfsson et al. shock on unemployment and long-term
unemployment at the occupation level. The green dots are for the occupational mobility
network and the red dots are for the complete network. The size of the green dots is proportional
to the employment of the occupation they represent. Panel (A) shows the percentage change in
the unemployment rate vs the automation level for each occupation, while panel (B) shows the
same thing for the long-term unemployment rate. The scatter in the results demonstrates that,
due to network effects, the automation level only partially explains occupational unemployment.
The right panels show the network effects i.e. the difference between the green and the black
dots in the left panels. If this difference is positive, network effects are detrimental for the
occupation. Panel (C) Network effects on percentage change in unemployment rate vs. median
wage. Panel (D) Network effects on percentage change in long-term unemployment rate vs.
median wage.
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Figure S17: Effect of shock duration and length of the measuring window on the measure-
ments of unemployment rates Top. For different duration of the automation shock (20, 30 and
40 years) we show the target demand of two occupations with similar demand level (Childcare
workers and officer clerks), the unemployment, and long-term unemployment rates. The grey
area denotes the whole period of automation, meaning that the target demand has reached the
automation level within a 1× 10−4 tolerance. The coral area denotes the sharp transition period
which is middle steepest part of the sigmoid shock. Bottom. For each occupation we plot the
percentage change during the whole transition period vs the percentage change during the sharp
transition period. Occupations are colored by their automation probability.
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S4.5 Automation shocks that change aggregate labor demand

We assumed that the aggregate demand remains constant after the shock. In this section, we
relax this assumption, and we run the model for an aggregate demand increasing or decreasing
by 5%. We use the Frey and Osborne automation shock.

Fig. S18 shows scatter plots of the change in (automation period) unemployment rates when
aggregate labor demand is constant vs. when it changes. As expected, when the aggregate de-
mand increases, the percentage change in unemployment and long-term unemployment is lower,
and the points lie below the identity line. When the aggregate demand decreases, the percentage
change in unemployment and long-term unemployment is larger, and the points lie above the
identity line. In contrast, there is a strong correlation between the changes in the unemployment
rates when the demand changes. When the demand remains constant, occupations with low au-
tomation probabilities (blue dots) lie further away from the identity line. This result means that
the structural part of the automation shock mostly affects the occupations with high automation
estimates. When we include a change in the aggregate labor demand, then occupations with
low automation estimates are also affected considerably.

Figure S18: Frey and Osborne shock with different post-automation target demand sce-
narios. In each panel we plot on the x-axis the percentage change in the period unemployment
rates when the aggregate demand does not change and on the y-axis the percentage change in
the period unemployment rate when the aggregate demand does change. On the left panels we
assume the aggregate demand increases by 5% and on the right we assume it decreases by 5%.
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S4.6 A different measure of unemployment and long-term unemployment
during automation

In the main text, we define the occupation-specific average unemployment and average long-
term unemployment as

ui,average(T ) =
100

T

�
t∈T ui,t�

t∈T (ui,t + ei,t)

and

u
(≥τ)
i,average(T ) =

100

T

�
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t∈T (ui,t + ei,t)
.

However, we could have chosen to compute the unemployment rate at each time step of the
automation period and then take the average, that is
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In Fig. S21 we compare the change in the average unemployment and long-term unemployment
rates with the change in the alternative unemployment and long-term unemployment rates. On
the top-right, we show the change in the average unemployment rate in green and the change in
the alternative unemployment rate in cyan. On the bottom-right, we do the same for the long-
term unemployment rate. Both these plots show that there is a substantial overlap between the
average change and the alternative change.

We plot the change in the average unemployment rate vs. the alternative unemployment rate
on the top-left panel for better visualization. We plot the change in the average long-term unem-
ployment rate vs. the alternative long-term unemployment rate on the bottom-left. We observe
that almost all occupations lie close to the identity line, except occupations with low employ-
ment (small circles) and are highly likely to be automated (red color). These occupations, which
are highly automatable and have low employment, substantially increase their unemployment
and decrease their employment share (due to the structural change). Thus, the ratio between
the two, which is considered by the alternative unemployment rates, increases considerably. In
contrast, when we measure the average unemployment rate, the initial employment share pre-
vents a sharp increase. However, both measurements exhibit the network effects – occupations
with similar automation probabilities have different percentage changes in their unemployment
and long-term unemployment rates.
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Figure S19: Average and alternative unemployment and long-term unemployment rates
Left. Percentage change in the average unemployment and long-term unemployment rates in
green and the percentage change in the alternative unemployment and long-term unemploy-
ment rates in cyan. Right. Percentage change of the average unemployment and long-term
unemployment rate vs the percentage change of the alternative unemployment and long-term
unemployment rate
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Figure S20: Expected change in unemployment and long-term unemployment with different γ
parameters.

Figure S21: Change in unemployment and long-term unemployment with different values
of gamma Top panels show the change in unemployment rates vs the automation probability.
The bottom panels show the change when γ = 5δu and γ = 20δu on the y axis and on the x-axis
when γ = 10δu.
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S5 The network structure, retraining effects, and steady-state
shifts

This section further explores how the network structure affects the impact of automation on em-
ployment with three exercises. In the first exercise, we test our conjecture that the steady-state
decrease in unemployment after automation happens because the automation shock distribution
across the network structure is assortative. In the second exercise, we study random network
structures that preserve some of the occupational mobility network’s statistical features. Finally,
we explore how a retraining policy could affect the network structure and mitigate the impact
of automation on employment.

S5.1 Shift in the steady-state unemployment post-automation

In this section, we give arguments that support our conjecture that the Frey and Osborne shock
causes such persistent effects since automation levels of neighboring occupations tend to be
similar. In other words, the distribution of the automation level across occupations is assortative
in the occupational mobility network.

To test our conjecture, we create a surrogate Frey and Osborne shock by randomizing oc-
cupations’ automation levels. We do this by randomly shuffling the automation level of each
of the 464 occupations, i.e., randomly reassigning each automation level to a new occupation
(without replacement). This preserves the distribution of automation levels but removes any
correlation between neighboring occupations, i.e., this breaks the assortative distribution of au-
tomation levels. When we do this, the aggregate unemployment rate does not decrease, while
the long-term unemployment tends to increase slightly (see Fig.S22 ). Thus the most persistent
effects disappear when the correlation inherent in the network structure is removed.

To show that the assortative distribution of automation levels in the occupational mobility
network can cause the steady-state unemployment to decrease, we create another surrogate
shock where we randomize relative to the Frey and Osborne shock while intentionally creating
a correlation between neighbors. Since occupations of the same classification typically have
high connectivity, we redistribute the probabilities of computerization so that occupations with
similar classifications have a similar automation level. We do this by ordering the probabilities
of computerization in ascending order and ordering the occupations in ascending order with
respect to their occupation code. We then match these to create a surrogate shock with the
desired property. When we impose this shock, the post-automation aggregate unemployment,
and long-term unemployment rate decrease, supporting our conjecture (see Fig.S22).
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Figure S22: Randomized and assortative versions of the Probability of Computerization
shock. On the top the unemployment rate. On the bottom the long-term unemployment rate.

S5.2 Randomizing the network structure

We randomize the network structure of the occupational mobility network in two ways: the
weight reshuffling and the edge rewiring. We keep the edges fixed in the weight reshuffling
but randomize the number of transitions between occupations and then renormalize to have
a column-stochastic adjacency matrix. In the edge rewiring, we randomize the ending point
of an edge and preserve the edge’s weight and starting point. We do not need to renormalize
the adjacency matrix since by keeping the starting point of the edge and its weight fixed, the
column-sum of the adjacency matrix remains constant. These randomizations preserve differ-
ent information about the network structure. The weight reshuffling preserves the topology,
while the edge rewiring preserves the out-strength (i.e., weighted out-degree) but changes the
topology. We run each randomization ten times and analyze how our results change.

At the aggregate level, both randomizations have a lower spike in unemployment and long-
term unemployment during the automation shock (see Fig. S23). This is expected given that,
in the occupational mobility network, occupations with high automation probability tend to be
clustered together. Randomizing the structure destroys clustering and allows an easier transition
into the new steady state.

As shown in Fig. S23 the reshuffling of weights (blue lines) shows a much larger decrease
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Figure S23: Network structure effect at the aggregate level We show the change in unem-
ployment and long-term unemployment due to the automation shock for different networks.
The increase in unemployment rates is larger for the occupational mobility network. Both
randomizations decrease the automation spike in unemployment rates, the weight reshuffling
substatially more.

in unemployment and long-term unemployment than the rewiring of edges (yellow lines). This
happens because most of the information on the occupational mobility network is in the weights.
The occupational mobility network is dense; the mean degree of a node is 155. In other words,
on average, there has been at least one worker of each occupation transitioning into 155 out of
464 other occupations. The median degree of a node is 134, which is close to the mean. How-
ever, the number of transitions encoded in the weights vary substantially. When we randomize
the weights, we lose the most significant part of the structure, while rewiring edges does not
destroy too much information.

At the disaggregated level, occupations experience a considerably lower increase in unem-
ployment and long-term unemployment percentage change in the randomized networks than in
the occupational mobility network. In Fig. S24, we compare the percentage changes in the
unemployment rates when we run the model using the occupational mobility network and one
realization of the reshuffled version. The black line is the identity, and the green line the linear
fit. In all panels, the slope of the green line is noticeably lower than one. In other words, the
change in unemployment rates for occupations is substantially less for the randomized versions
of the occupational mobility network. The difference is more pronounced for long-term unem-
ployment. This makes sense since the unemployment change is driven to a larger extent by the
automation shock, while the network structure has a higher effect on long-term unemployment.
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Figure S24: Randomized network structure comparison with original network results. On
the top panels we plot the percentage change in unemployment when running the model using
the OMN and the reshuffled version of the OMN. On the bottom panels we plot the percentage
change in long-term unemployment comparison. On the left we show the egde reshuffling and
on the right the weight reshuffling. In both scenarios the changes in the unemployment rate are
considerably smaller for the reshuffled versions of the OMN.
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S5.3 Retraining policies

We model retraining schemes by adding links to the occupational mobility network. Acknowl-
edging that retraining is most plausible between somewhat similar occupations, we restrict the
possible edges that we can add as follows. Previous research [8] has built the Job Space network,
where occupations are linked according to the number of work activities they share (weighted
by a scarcity factor). This research shows that sharing work activities is the best predictor of
empirical occupation transitions. We consider a retraining scheme between occupations to be
viable only if there is an edge between the two occupations in the Job Space with a weight
above ιjs = 0.0013, which is roughly half the mean weight of the Job Space network.

The first retraining scheme we consider focuses on the subset of occupations that experience
a high increase in long-term unemployment (above 50%). We link these occupations to ten
occupations that experience lower long-term unemployment. We choose these ten occupations
according to the weight of the edge connecting them in the Job Space. For all the subset of
high unemployment occupations, we are able to find ten low unemployment occupations that
have a link with the high unemployment occupation with weight above ιjs. Once we selected
the ten low unemployment occupations for each of the high unemployment occupations, we
add edges with a weight equal to ιomn = 0.006, which is the mean weight of the edges in the
occupational mobility network. Finally, we renormalize the occupational mobility network with
the added retraining links so that it is column-stochastic since we use these values as transition
probabilities.

The second retraining scheme we consider is random. We add the same number of links
as in the previous exercise, but we select occupation pairs randomly. We keep the restriction
of only adding edges with a weight larget than ιjs in the Job Space and also add them with a
weight of ιomn in the occupational mobility network. As before, we also renormalize so that the
matrix is column-stochastic.

Our results show that both the targeted retraining random retraining decrease the spike in
unemployment and long-term unemployment caused by automation at the aggregate and occu-
pational level (see Figs. S25 and S26). Similar to what happened for the occupational mobility
network, the post-automation steady-state unemployment rate is lower than the pre-automation
unemployment rate for the networks with retraining (see Fig. S25). The random retraining de-
creases the aggregate unemployment rate slightly more than the targeted retraining policy. This
is likely because the occupations whose long-term unemployment increased the most tend to
have low employment. Therefore targeted retraining may be targeted to occupations with few
workers and thus involve fewer workers than the random retraining overall, which is shown in
the aggregate level post-automation steady-state.

It might still be surprising that the random retraining works so well at the disaggregated
level. This is another result that highlights the importance of the network structure. Even if
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Figure S25: Retraining policies Left The aggregate outcome of retraining policies, for either
random retraining or targeted retraining. In blue, we plot 10 realizations of the random retrain-
ing strategy, all show very similar outcomes.

retraining is not directly targeted towards the most affected occupations, increasing mobility
helps the affected occupations through second-order effects by freeing vacancies in adjacent
occupations. It is important to bear in mind that we do not consider wage dynamics, which
would play an important role for workers being harshly affected.

46



Figure S26: Retraining policies at the occupation level Left Targeted retraining towards oc-
cupation with long-term unemployment percentage change above 50 Right Random retraining.
We pick one at random one realization of the random retraining to show in this plot.
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