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1 Relationship between quantile score, interval score and CRPS

The standard piecewise linear quantile score [1, 2] for the level τ is defined as

QSτ (F, y) = 2× {1(y ≤ qτ )− τ} × (qτ − y),

where qτ is the τ quantile of the forecast F and y is the observed outcome. It can be shown by
some re-ordering of terms that the interval score of a central (1− α) PI can be computed from
the quantile scores at levels α/2 and 1− α/2 as

ISα(F, Y ) =
QSα/2(F, y) + QS1−α/2(F, y)

α
. (S.1)

Interestingly, this is the only available proper interval score that is invariant under translation [3,
Theorem 4], so that for a prediction horizon of one time unit, evaluations in terms of incident
counts yield the same results as evaluations in terms of cumulative counts.

Moreover it is known [4,5] that

CRPS(F, y) =

∫ 1

0
QSτ (F, y) dτ,

≈ 1

2K + 1
×

2K+1∑
k=1

QSτk(F, y),

=
1

2K + 1
×

2K+1∑
k=1

2× {1(y ≤ qτk)− τk} × (qτk − y), (S.2)

with a large number of (approximately) equally spaced levels τk stretching the unit interval such
that τ1 < · · · < τK+1 = 1/2 < · · · < τ2K+1. Note that expression (S.2) is the same as the
alternative expression (4) for the WIS from the main text, where τk = αk/2 and τ2K+2−k =
1− αk/2 for k = 1, . . . ,K.

Indeed, starting from the original definition of the WIS in equation (1) with weights w0 = 1/2
and wk = αk/2 for k = 1, . . . ,K as in equation (2) from the main text, using equation (S.1),
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and noting that τK+1 = 1/2 and qτK+1 = m is the median, we see that

WISα0:K (F, y) =
1

2K + 1
×

(
|y −m| +

K∑
k=1

αk × ISαk
(F, y)

)

=
1

2K + 1

(
QSτK+1

(F, y) +

K∑
k=1

{
QSτk(F, y) + QSτ2K+2−k

(F, y)
})

=
1

2K + 1
×

2K+1∑
k=1

2× {1(y ≤ qτk)− τk} × (qτk − y).

As noted in Section 2.2, the τk we use in practice are not equally spaced in the tails (due to
the addition of the quantiles at levels 0.01, 0.025, 0.975, and 0.99 forming the 95% and 98%
prediction intervals). Relative to the CRPS, we thus put slightly more weight on the tails.
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