S1 Appendix. Bayesian learner models. In this supplementary text we provide
the derivations for the presented equations of the compared Bayesian learner models.

Dirichlet-Categorical model

Given a sequence of observations y1, ..., y; the Dirichlet-Categorical model combines
the likelihood with the prior to refine the posterior estimates over the latent variable
space (equation 4):
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The posterior predictive distribution in equation 6 can be obtained by integrating
over the space of latent states:
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The surprise readout functions for the Categorical-Dirichlet model introduced in
equations 9 to 11 are:

Predictive Surprise

PS(y:) = —Inp(yelyr, .-, ye—1)

Bayesian Surprise

BS(Ot) = KL(P(8t71|y17 .- ~yt71)”P(St|y17 cee »yt))

The general KL divergence for two Dirichlet distributions P and @) parametrized by
{am }M_, and {a,}M_, is given by
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KL(P||Q) =Ejp(z) [log P(z) — log Q(z)]
=Ep(z)[log F(Z Q) — Z logT(cvy) + Z(am — 1) logxy,

m

—logT'(Y_ay,) + ) logT(ay,) = D (o, — 1) logzy]

m

ZIOgF(Z am) - Zlogr(am) - IOgF(Z a'/rn) + ZIOgF(O‘{m)

- Z(am - a;n) <w(0‘m) - ¢(Z am))

where 9(.) denotes the digamma function.

Confidence-Corrected Surprise

CS(o¢) = KL(p(se—1ly1, -, ye—1)|[P(s¢]ye))

The flat prior can be written as Dir(aq, ..., @) where o, = 1 for all
m =1,..., M. The naive observer posterior simply updates the flat prior based on only
the most recent observation y;. Hence, we have that p(s:|y;) = Dir(af,...,al,) with

G =1+ 1y,—,,. Hence at a given point in time ¢, we have:

KL(p(si-1lys, -,y )l |p(sele)) =log T(O_aly ) = > logT(al, ') —1logT(Y _ ak,)

+) logT'(a,)
= (bt —al) (1/)(013”1) -0 Oéfnl)>

Hidden Markov Model

For the use of parameter inference via the expectation-maximisation algorithm and in
order to derive the factorisation of the joint likelihood p(o1., $1.t), we will make sure of
the following derivations:

p(silon,... o7) = p(01,...0¢|8¢)p(0t41,- -, or|st)p(5¢t)
p(o1,...,0r)
_ plo1,...04,8)p(011, ..., 07|8¢)
N p(o1,...,0r)
_alsy)B(se)
~ ploy,...,or)

where for the final line we have redefined the backward and forward probabilities as

a(sy) =p(o1,...0t,St)
B(st) = p(0t+1,-..,07|8¢) .
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In the following, we derive the forward and backward equations which may be used
in conjunction with a Dynamic Programming paradigm such as the Baum-Welch
algorithm in order to perform the Expectation-Maximisation inference procedure.

a(st) = P(Oh <o Ot St) = p(0t|8t)p(01, ceey Ot—1, St)

= p(orlse) Y alse—1)p(selse—1)

St—1
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a(s1) = p(s1)p(o1]s1) = H{Wkp(ol\slk)}slk
k=1

5(815) = P(0t+17 ceey 0T|St) = ZP(OHL <. 0T, St+1|5t)
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= Z P(0t+2, .- -, 07|8¢41)P(0r418¢41)P(St41]5¢)
St41
= Blser)p(ors1]se1)p(se+se)
St4+1
Blsr) =1

Both expressions for a and S involve a backward and forward recursion. Given a
sequence of observations, these can easily be computed in a sequential fashion. The final
quantity of interest for the EM algorithm are the smoothed transition probabilities:

a(si—1)p(or|s)p(se|si—1)B(st)
p(o1,...,0r)
In order to infer the parameters we now alternate between an expectation and a
maximisation step:

p(st—1,8¢l01,...07) =
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2. Maximization: The Lagrangian with the necessary constraints is determined
(i.e. row stochasticity and proper distributions) and the derivatives with respect
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to the set of parameters (0 = {A;x, Bk, 7 }) is computed.
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The filtering equation can then be written as

plot,...,00,8:)  afsy)

p(017--~70t) - Zst Oé(St)

Finally, the evaluation is then easily obtained by marginalising over the hidden state:

p(Ol, . ,Ot) = Za(st)

St

p(stlo1,...,01) =

For timestep ¢ the HMM was fit for a stimulus sequence oy, ..., 0 which gives a set of
parameter estimates, 7y, Ay, By and the filtering posterior 4:(s;) = p(s¢|o1, ..., 0¢). The
predictive surprise as formulated in equation 12 is derived in the following way:

PS(ot41) == —Inp(ott1]si41) = —Inp(optilor, ..., 0r)
= — In(p(ot+1|st4+1)p(st+1ls:)p(stlon, ..., 01))
~ —In(Bf AT 3,(s1))

The Bayesian surprise from equation 13, on the other hand, derives for the HMM as
follows:

BS(0¢41) = KL(p(s¢|ot, ... 01)||p(st41|0t41,-..,01))
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Finally, confidence corrected surprise from equation 14 may be expressed as a linear
combination of predictive surprise, Bayesian surprise, a model commitment term
(negative entropy) C(p(s:)), and a data-dependent constant scaling the state space O(t).

C(p(st+1lo1, s 0141)) = —H(p(8t41]01, -, 0641))

p(si4+1 = ko1, ..., 0041) In(p(se41 = ko1, ..., 0141))

Yer1(se41 = k) InFey1(se41 = k)
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CS(o) = BS(ot) + PS(0:) + C(p(st)) + In O(t)

All inference types shared the same state space s € S = {0,1}. Due to the
transformation of the observation sequence the observation space differed between
models:

Stimulus probability model: y; = o; for t = 1,...,T with Ogp = {0,1}

Alternation probability model: y; = d; for t = 2,...,T with O4p = {0,1} and
di = 101:7&0&71 )

Transition probability model 1st Order: y; = e} for ¢t = 2,...,T with
Orp1 = {0,1,2,3} as e belongs to the set containing each possible transition from
Ot—1 = 1.

Transition probability model 2nd Order: y; = e{ for t = 3,...,T with
Orps ={0,1,2,3,4,5,6,7} as e] belongs to the set containing each possible transition
from o;_o = j.
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