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Dear Prof. Dr. Samuel Gershman, dear Dr. Philipp Schwartenbeck, 

 

As encouraged by your letter of July 22, please find attached the revision of our manuscript                
(PCOMPBIOL-D-20-01012). 

We were delighted by the generally positive assessment of our study by the three reviewers               
and their very clear and helpful comments. We are grateful for the extensive review and               
insightful suggestions on improving clarity and argumentative strength of the manuscript           
which undoubtedly resulted from a thorough understanding of the involved methodology. We            
believe implementing the reviewers’ comments has significantly improved the manuscript. 

In brief, considerable additions concern a simulation model recovery study to validate that             
the models are recoverable in relevant signal-to-noise scenarios using our sequence data            
and model comparison scheme. Further random-effects model comparison analyses were          
performed as control analyses to address concerns about our choice of hierarchical ordering             
of model comparisons and choice of reported statistics. Moreover, we increased the focus             
on model interpretation and their relation to the conventional ERP analysis results. Finally,             
we have revised the text considerably to address smaller but very important requests on              
details of phrasing, spelling mistakes and errors of presentation. Please see our response to              
the reviews for details of each of the applied changes. 

We thank you and the reviewers for your consideration and helpful comments, and hope that               
you will find our study to be suitable for publication in ​PLoS Computational Biology. 

 

We look forward to your reply. 

 

Sincerely, 

 

Sam Gijsen, Miro Grundei, Robert T. Lange, Dirk Ostwald, Felix Blankenburg 

 



REVIEWER #1 

Points for clarification / elaboration 

- the Dirichlet-Categorical model, which does not explicitly feature a representation of            
multiple hidden states and their switches (i.e. is non-hierarchical), was better able to explain              
the neural data than a Hidden Markov Model (that more accurately corresponds to the true               
task generative model). The authors comment that perhaps this is evidence that the brain              
employs simpler (non-hierarchical) perceptual learning models for low level statistical          
regularity tracking, in the absence of explicit attention to regime switching. I wonder if the               
authors could comment on how their interpretation interfaces with recent accounts that            
suggest that even in low-level learning phenomena the brain posits associations between            
latent causes and observable outcomes (Gershman, Norman and Niv, 2015m Curr. Op.            
Behav. Sciences). 

The authors thank the reviewer for pointing us to the paper of Gershman, Norman and Niv                
where the authors argue for state representations in reinforcement learning to underlie            
computations involved in low-level mechanisms such as classical conditioning. The view that            
state discovery processes play a role for low-level learning in the context of reinforcement              
learning and corresponding processing of reward based stimuli is not necessarily           
incompatible with our claim that volatility within a stream of value-free sensory input might be               
accounted for without the necessity of explicit state representation. A simple forgetting            
approach might be an effective way to deal with the inputs in the context of our experimental                 
setup and we would not argue against low level hidden state representation in general. We               
have now included the suggested paper in our manuscript and briefly discuss it in light of our                 
results. Please see the response to the comment below for the suggested change. 

 

 

- I was surprised that the DC model class remained superior to the HMM class even under                 
conditions of perfect integration (no leak), as the leak parameter is precisely what equips the               
DC model with an ability to be flexible to changes in task statistics. Is it possible that this                  
result (and the superiority of the DC vs HMM in general) is simply due to the emission                 
probabilities associated with the two hidden states being too similar. If so, this limits how               
generalizable these findings are to task environments with more noticeable transitions           
between latent states. 

We indeed find superiority of the DC with perfect integration (tau=0) over the HMM and have                
included a figure of this result in a new supplementary figure collection of control random               
effects analyses (S7 Fig. A). 

Although we primarily interpret this as additional evidence of the apparent insensitivity of the              
brain to a posterior distribution over latent states as prescribed by the HMM, we              
acknowledge that the degree of dissimilarity between the hidden states may affect the             
findings. Despite the HMM retrieving the true, but unknown emission probabilities of the two              
hidden states on average, they may not be sufficiently distinct for human participants in the               
current experimental setting. In order to include this possibility, we have adjusted the             
discussion as follows: 



Changes in the revised manuscript (l.707 and l.713) are indicated by a bold fontweight: 

In addition to average-based ERP analyses, single-trial brain potentials in response to            
sequential input can provide a unique window into the mechanisms underlying probabilistic            
inference in the brain. Here, we investigated the learning of statistical regularities using             
different Bayesian learner models with single-trial surprise regressors. Partitioning the model           
space allowed us to infer on distinguishing features between the model families using             
Bayesian model selection (BMS). The first comparison concerned the form of hidden state             
representation: In order for a learner to adequately adapt one’s beliefs in the face of changes                
to environmental statistics, more recent observations may be favored over past ones without             
modeling hidden state dynamics (Dirichlet-Categorical model; DC), or different sets of           
statistics may be estimated for a discretized latent state (Hidden Markov Model; HMM). Our              
comparison of these two learning approaches provides strong evidence for the DC model             
class over the HMM for the large majority of electrodes and post-stimulus time. The              
superiority of the DC model was found to be irrespective of the inclusion of leaky integration                
to the DC model, indicating the advantage of a non-hierarchical model in explaining the EEG               
data. Participants were neither aware of the existence of the hidden states in the data               
generation process, nor was their dissociation or any tracking of sequence statistics required             
to perform the behavioural task. As such, the early EEG signals studied here are likely to                
reflect a form of non-conscious, implicit learning of environmental statistics [84, 85, 86].             
However, it is possible that the brain implements different learning algorithms in different             
environments, resorting to more complex ones only when the situation demands it. ​As the              
discrete hidden states produced relatively similar observation sequences, more         
noticeable transitions between hidden states may provide an environment with          
greater incentive to implement a more complex model to track these states, which             
might have yielded different results. Indeed, humans seem to assume different generative            
models in different contexts, possibly depending on task instructions [87]. This may in part              
explain why evidence has been provided for the use of both hierarchical [88, 89] and               
non-hierarchical models [90, 91]. ​Nevertheless, it has been suggested that the brain            
displays a sensitivity to latent causes in low-level learning contexts (Gershman,           
Norman and Niv, 2015), which might indicate the relevance of other factors. For             
example, it is possible the currently tested HMM may be too constrained and a              
simpler, more general change-detection model [89] may have performed better. By           
omitting instructions to learn the task-irrelevant statistics, our study potentially avoids the            
issue of invoking a certain generative model. We might therefore report on a ‘default’ model               
of the brain used to non-consciously infer environmental statistics.  

 

 

 

 

 

 

 



Supplementary figure S7 subplot A: 

 

Additional random effects family-wise comparisons. A) Comparison of the model          
families: Null model, Dirichlet-Categorical model (DC) with tau = 0 (i.e. no forgetting             
and no penalization) and Hidden Markov Model (HMM). Exceedance probabilities ( )           
are plotted for all comparisons. 

 

- The authors fit the DC model leak parameter separately for each time bin of the evoked                 
response, and found that the optimal parameter corresponding to early periods (where            
confidence-corrected surprise is encoded) differed from later periods (encoding Bayesian          
surprise). The authors also suggest that the former signal (CS) may control the latter (BS).               
Could the authors comment on how the difference in the time-scale of integration between              
the two signals is likely to affect this interaction. 

We thank the reviewer for this comment. The hypothesis of early surprise signals controlling              
subsequent belief updating signals would indeed appear most straightforwardly compatible          
with the scenario in which both signals are computed using similar time-scales of integration.              
However, to the best of our knowledge, no mechanistic theory exists to date that specifies               
the relation of surprise signals and belief updating in the brain. The current investigation of               
the forgetting-parameter features some limitations, as touched on in the discussion. These            
include highly correlated regressors and considerable inter-individual variability leading to          
non-significance of a t-test between the optimized parameters for the early CS and             
subsequent BS signals. As such, the observed difference in best-fitting parameter values            
may result from the additional constraints of the surprise functions: Bayesian surprise            
converges to zero in the case of low forgetting and thus may be biased towards lower                
observation half-lives compared to predictive and confidence-corrected surprise. For these          
reasons we remain cautious in interpreting the difference in exact observation half-lives and             
instead consider the possibility that similar timescales of intermediary length underlie these            
signals. To clarify our interpretation, we have rephrased the relevant section in the             
discussion as follows: 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0


Changes in the revised manuscript (l. 837):  

Given a very large timescale, BS converges to zero as the divergence between prior and               
posterior distributions decreases over time, imposing an upper bound on the timescale.            
Meanwhile, for PS and CS it tends to lead to more accurate estimates of as more                 
observations are considered. However, given the regime switches in our data generation            
process, a trade-off exists where a timescale that is too large prevents flexible adaptation              
following such a switch. In the current context, the timescales are local enough where the               
estimated statistics are able to be adapted in response to regime switches (with a switch               
occurring every 100 stimuli on average). Especially CS shows a large range of $\tau$-values              
producing similarly high model evidence due to the high correlation between regressors. ​In             
sum, it is possible that the same timescale is used for the computation of both the CS                 
and BS signals, as the differences in optimal -values between clusters were not             
found to be significant. This interpretation is most intuitively compatible with the            
hypothesis that the early surprise signals may control later belief updating signals.            
Although the uncertainty regarding the exact half-lives is in line with the large variability              
found in the literature, local over global integration is consistently reported [13, 39, 90, 9, 48,                
91]. Given a fixed inter-stimulus interval of 750ms, a horizon of 85 and 25 observations may                
be equated to a half-life timescale of approximately 63 to 17 seconds, with regime switches               
expected to occur every 75 seconds. 
 

- The mathematical rigour with which the authors spell out their methods is commendable.              
However, for very simple points perhaps equations could be omitted to ease readability (e.g.              
equation 1 which simply reiterates that s(t) is ‘static’). 

We thank the reviewer for their input. We agree the omission of the equation at line 246 is                  
favourable for readability and removed it together with the accompanying sentence which            
spanned lines 247-248. 

 

- Typo Figure 3 legend. Middle is the ‘alternation probability’ mode, not ‘transition probability’              
model 

We thank the reviewer for pointing out this unfortunate typo and have corrected it. 

The figure caption (now Fig 2.) reads as follows: 

Fig ​2​. Dirichlet-Categorical model as a graphical model. Left: The stimulus probability model             
which tracks the hidden state vector determining the sampling process of the raw             
observations. Middle: The ​alternation probability ​model which infers the hidden state           
distribution based on alternations of the observations. Right: The transition probability model            
which assumes a different data-generating process based on the previous observations.           
Hence, it infers M sets of probability vectors . 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%5Ei#0


REVIEWER #2 

I would happily support publication of this report in PLOS CB, as it offers both a new analysis                  
framework to compare different models based on observed EEG responses, and has the             
potential to significantly advance our understanding of the mechanisms underlying          
somatosensory learning. However, I would challenge the authors to tap this potential further             
by being more explicit about (1) which learning mechanisms are supported/ruled out by their              
data, (2) what the different surprise signatures (PS, CS, BS) mean for an implementation of               
Bayesian learning, and (3) how the model-based results fit together with the MMRs identified              
in the conventional ERP analysis. 

In particular, I would like to see the authors' response to the 4 main points listed below. 

Sincerely, 

Lilian Weber 

Major: 

1. First of all, I would challenge the authors with the following claim: 

Showing that electrophysiological responses co-vary with specific computational quantities         
only contributes to a mechanistic understanding of the neuronal computations underlying the            
learning process, if 

a) a concrete implementation of the computations that the quantity is involved in is              
conceivable (because the results can then be seen as prelim. evidence for such an              
implementation/neural process), or, 

b) the specific quantities or the order of their representation rules out otherwise plausible              
proposals of the underlying mechanisms (i.e., not all variants of Bayesian inference in the              
somatosensory system are compatible with the observed pattern of results) 

My feeling is that at least one of these is given in the current study, but would love to hear                    
the authors' thoughts on this. I think this would greatly clarify the contribution that the current                
results make towards a mechanistic understanding of somatosensory learning. 

We thank the reviewer for the insightful claim, which we would tend to agree with.               
Concerning a), although our study does not directly deal with the implementational level per              
se, the sort of computations (relating to surprise and belief updating in probabilistic             
inference) and learning models we consider are presumed to be compatible with popular             
theories of Bayesian brain function such as predictive coding and the free energy principle.              
For these, preliminary work suggests an implementational plausibility, e.g. on the level of             
cortical microcircuits (Bastos et al., 2012, Neuron, doi: 10.1016/j.neuron.2012.10.038). We          
propose our investigated models to share similarity with the concepts governing these            
theories and by extension may be subject to their claims of neural plausibility. Furthering the               
understanding of the concrete implementation of these learning models we consider of great             
importance for future research. Regarding b), we submit that a reverse order of the one               
found in the current study seems implausible (i.e. belief updating prior to surprise). However,              
despite early surprise signals having been reported, much of the literature focused on the              
P300 and it thus remained unclear whether early surprise signals only reflect puzzlement             
surprise or also encode belief updating. By considering two additional levels of model             



comparison (concerning model class and sequence statistics), we not only aimed to            
contribute to the understanding of early somatosensory learning, but also to identify a more              
suitable generative model to further improve the ability to dissociate these quantities. 

As in particular the topic of neurobiological plausibility goes unmentioned in the manuscript,             
we have added the followed text to the discussion section (l. 717): 

By omitting instructions to learn the task-irrelevant statistics, our study potentially avoids the             
issue of invoking a certain generative model. We might therefore report on a ‘default’ model               
of the brain used to non-consciously infer environmental statistics. ​The sort of            
computations (relating to surprise and belief updating) and learning models we           
consider might be viewed in light of theories such as predictive coding and the free               
energy principle for which preliminary work suggests implementational plausibility         
(e.g. Bastos et al., 2012). By extension, neural plausibility of the currently investigated             
models can be considered subject to their relation to such theoretical frameworks. 

 

In this context, I would also encourage the authors to carve out the critical difference               
between the two models they are comparing, to understand why the simpler model fits the               
data better. In their analysis approach the more complex model, which mimics the data              
generating process much better than the simpler DC model, is not penalized for complexity              
(because no subject-specific parameters are fitted). So what is the data feature that the              
DC-TP1 model captures, but the HMM-TP1 doesn't? E.g., does the HMM-TP1 predict            
different learning rates (and thus different surprise values) for the two different regimes (the              
volatile and the stable blocks), which are not supported by the data? Such insight would help                
to clarify the conclusions we can draw from the data about the learning mechanisms, and               
relate the results to the literature on whether or not participants adapt their learning rates to                
the volatility of the environment (e.g., refs 63, 86, 87, Behrens et al. 2007 Nat Neurosci). 

The authors thank the reviewer for the interesting questions. The fast and slow switching              
regimes only refer to the transition probabilities between observations, while the probability            
for state transitions was fixed to p=0.01 across all blocks. As such, the current study is                
unfortunately not well suited to address the effects of the volatility of the environment on               
learning rates. We now comment on this interesting possible extension in our manuscript             
(please see below). In our interpretation, the main difference between the models is with              
respect to the HMM’s attempt to dissociate the two latent states of the generative model,               
whereas they are combined/averaged for the DC.  

We have chosen the following approach to improve model interpretation. First, we establish             
that the models provide distinct enough predictions so that they are recoverable under noisy              
conditions using our methodology in a simulation model recovery study. Subsequently, we            
have edited the regressor plots to better highlight the differences between models, and have              
added a description of these in the Methods section. Conducting further extended model             
interpretation analyses we consider out of the scope of the currently presented experimental             
work, but agree that future theoretical efforts in regards to this will be highly valuable. 

Changes in the revised manuscript: 

Discussion l. 769, regarding the volatility of the environment: 



While PS is also a fast-computable puzzlement surprise measure and (similarly to CS) is              
scaled by the subjective probability of an observation, CS additionally depends on the             
confidence of the learner, read out as the (negative) entropy of the model. Evidence for a                
sensitivity to confidence of prior knowledge in humans has been reported in a variety of               
tasks and modalities (Boldt, Blundell, & De Martino, 2019; Meyniel & Dehaene, 2017;             
Payzan-LeNestour & Bossaerts, 2011). This further speaks to the possibility that CS informs             
belief updating, as confidence has been suggested to modulate belief updating for other             
modalities in the literature (Meyniel 2015; Meyniel 2020) and is explicitly captured in terms of               
belief precision by other promising Bayesian models (Mathys 2011; Mathys 2014). We            
suspect that, similarly, confidence concerns the influence of new observations on current            
beliefs in somatosensation. However, as this was not explicitly modelled and investigated in             
the current work we were not able to test it directly. ​Furthermore, as the state transition                
probability between regimes was fixed in the current study, it is not well suited to               
address the effects of the volatility of the environment on belief updating. Future work              
might focus on the interplay of environmental volatility and confidence in their effects             
on the integration of novel observations. ​It is important to note that one may also be                
confident about novel sensory evidence (e.g. due to low noise) which may result in larger               
model updates (Meyniel, Sigman, & Mainen, 2015). This aspect of confidence, however, lies             
outside the scope of the current work. 

 

Model recovery methods addition (at the end of the methods section from l. 448): 

A simulation model recovery study was performed to investigate the ability to recover the              
models given the sequence data, model fitting procedure, and model comparison scheme.            
To this end, data was generated for ​n = ​4000 (corresponding to the five concatenated               
experimental runs) by sampling from a GLM , after which model selection            
was performed. For the null-model, the design-matrix only comprised a column of ones. For              
all non-null models, an additional column of the z-normalized regressor was added. We set              
the true, but unknown β​2 parameter to 1, while varying σ​2​, which function as the signal and                 
noise of the data respectively. Given the z-scoring of the data, the β​1 ​parameter responsible               
for the offset is largely inconsequential and thus not further discussed. The model fitting              
procedure was identical to the procedure described in the supplementary material used for             
the EEG analyses. 
 
For each noise level, we generated 40 data sets (equaling the number of subjects) allowing               
for random-effects analyses. This process was repeated 100 times for each of the different              
comparisons: Null Model vs DC Model vs HMM (C1), DC TP1 vs TP2 (C2), DC SP vs AP vs                   
TP1 (C3), and DC TP1 PS vs BS vs CS (C4). Family and model retrieval using exceedance                 
probabilities worked well across all levels (S6 Fig 1A-D), with a bias to the Null Model as                 
signal-to-noise decreases. By inspecting the posterior expected values of β​2 ​and which             
resulted from fitting the model regressors to the EEG data, an estimate of the signal-to-noise               
ratio that is representative of the experimental work can be obtained. By applying the              
thresholds of > 0.99, > 0.95, > 0.95, and > 0.9 across the four comparisons                   
respectively and subsequently inspecting the winning families and models at σ​2​=750 (i.e., an             
SNR of 1/750), no false positives were observed. For C1 and C4, recovery was successful               
for all true, but unknown models in all of the 100 instances. While for C2 and to a lesser                   
extent C3, concerning the families of estimated sequence statistics, false negatives were            

https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0


observed only when confidence-corrected surprise was used to generate data. For C2, this             
led to false negatives in 67 (TP1 CS) and 55 (TP2 CS) percent of cases, while for C3 28 (SP                    
CS), 0 (AP CS), and 33 (TP1 CS) percent false negatives were observed.  
 
Model recovery results supplementary figure: 
 

 
S6 Fig. Model recovery study. A model recovery study was performed using simulated data.              
Subplots A-D show the average exceedance probabilities (shading represents standard          
deviations) of 100 random-effects Bayesian model selection analyses under different          
signal-to-noise ratios. This was performed for (A) Null Model vs DC Model vs HMM families,               
(B) DC TP1 vs TP2 families, (C) DC SP vs AP vs TP1 families, and (D) DC TP1 PS, BS, and                     
CS models. Noteworthy is that the instances of reduced differentiability for (B) and (C)              



occurred only when the true, but unknown model was confidence-corrected surprise. (E) An             
estimate of the signal-to-noise of the experimental single-trial EEG analyses by inspecting            
the ratio of the expected posterior estimates of the model fitting procedure for  and . 
 
Surprise regressor plot addition (replacing current figures 6 and 7) 

 
Fig 5. Surprise readouts. (A) Example sequence with in red, in black with =0 for                 
the slow-switching regime and =1 for the fast switching regime, and the HMM filtering              
posterior in between. The rare catch-trials are not plotted to facilitate a direct              
comparison between the HMM and DC models. (B) The normalized probability estimates of             
the HMM TP1 and DC TP1 model with an observation half-life of 95, displaying differences               
in estimates arising from different adaptations to regime switches. (C,E,G) The z-scored            
surprise readouts of the HMM TP1 models: predictive surprise (PS), Bayesian surprise (BS),             
and confidence-corrected surprise (CS). (D,F,H) The z-scored surprise readouts of the DC            
TP1 models. 

Methods section addition describing the new plot to conclude the “Surprise readouts”            
section (l.354): 

Fig 5 shows the regressors for an example sequence of the HMM TP1 and DC TP1 models                 
with an observation half-life of 95. The PS regressors of both models show greater variability               
in the slow switching regime as compared to the fast-switching regime, where repetitions are              
more common (and consequently elicit less predictive surprise) while alterations are less            
common (and thus elicit greater surprise). As such, the PS regressors differ between             
regimes as a function of the estimated transition probabilities. The speed at which models              
adapt to the changed statistics depends on the forgetting parameter for the DC model while               
for the HMM it is dependent on the degree to which the regimes have been learned. BS is                  
markedly distinct for the two models due to the differently modeled hidden state. DC BS               
features many small updates during the fast-switching regime, with more irregular, larger            
updates during the slow-switching regime, while HMM BS expresses the degree to which an              
observation produces changes in the latent state posterior. Finally, HMM CS is scaled by the               
confidence in the latent state posterior, tending to greater surprise the more committed the              
model is to one particular latent state, and lower surprise otherwise, such as at the end of                 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cbeta%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clambda%5E-1#0
https://www.codecogs.com/eqnedit.php?latex=o_t#0
https://www.codecogs.com/eqnedit.php?latex=s_t#0
https://www.codecogs.com/eqnedit.php?latex=s_t#0
https://www.codecogs.com/eqnedit.php?latex=s_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Cgamma%7D(s_t)#0


the example sequence. Meanwhile, due to its static latent state, confidence for DC CS              
results only from commitment to beliefs about the estimated transition probabilities between            
observations themselves, with rare events causing drops in confidence. Taken together, the            
HMM regressors ultimately depend on its posterior over latent states, and while this is              
absent for the DC, its regressors display differences between the two regimes as a function               
of its integration timescale which in turn allows it to accommodate its probability estimates to               
the currently active regime. 

 

2. Secondly, one major claim of the study is that different measures of surprise are               
represented by EEG signals at different time points and sensors. 

I would love to know what the authors think is the functional significance of PS/CS? In                
particular, in the update equations for the winning (DC) model, PS/CS is never             
used/computed explicitly. Why would the organism invest the additional energy to compute            
this (eqs.7,10,12), if it does not have any functional significance in updating beliefs? The              
authors, in the discussion, hint at a potential role of CS serving to control update rates (p.30,                 
l.666), and interpret their findings as evidence that a higher-level region (S2) represents             
aspects of confidence, which is used to modulate belief updating on lower levels (S1). In               
other Bayesian models of inference learning like the HGF, update equations explicitly            
consider confidence (belief precision) as a driver of learning (update) rates. Such models             
have been used by our group to understand learning in auditory mismatch paradigms             
(Stefanics et al. 2018 J Neurosci; Weber, Diaconescu et al. 2020 J Neurosci). Do the               
authors see their data as compatible with such an account? 

We indeed consider a role for puzzlement surprise in controlling rates of subsequent belief              
updating which may be regulated by belief confidence. However, we discuss this idea in              
relation to our data cautiously as our models do not prescribe a specific set of temporally                
ordered computations. That is to say, the currently tested models do not provide a plausible               
manner by which the brain acquires the estimated transition probabilities and subsequent            
surprise quantities. Rather, we view our model comparison as a methodology to infer on              
qualities that a future successful neural algorithm is likely to exhibit (e.g. using estimated              
transition probabilities to compute an early puzzlement surprise signal scaled by           
confidence). Insofar as confidence formulated as precision under the HGF and confidence            
as captured by confidence-corrected surprise both concern the balance between current           
beliefs and observations to inform belief updating, we suspect that these accounts are             
compatible. As we did not explicitly model and investigate the influence of confidence on              
updating of beliefs, as well as other differences between the models, it however remains an               
open empirical question. 

Changes in the revised manuscript (Discussion: l.763): 

While PS is also a fast-computable puzzlement surprise measure and (similarly to CS) is              
scaled by the subjective probability of an observation, CS additionally depends on the             
confidence of the learner, read out as the (negative) entropy of the model. Evidence for a                
sensitivity to confidence of prior knowledge in humans has been reported in a variety of               
tasks and modalities (Boldt, Blundell, & De Martino, 2019; Meyniel & Dehaene, 2017;             
Payzan-LeNestour & Bossaerts, 2011). ​This further speaks to the possibility that CS            
informs belief updating, as confidence has been suggested to modulate belief           
updating for other modalities in the literature (Meyniel 2015, Meyniel 2020) and is             
explicitly captured in terms of belief precision by other promising Bayesian models            



(Mathys et al., 2011; Mathys et al., 2014). We suspect that, similarly, confidence             
concerns the influence of new observations on current beliefs in somatosensation.           
However, as this was not explicitly modelled and investigated in the current work we              
were not able to test it directly. ​Furthermore, as the state transition probability between              
regimes was fixed in the current study, it is not well suited to address the effects of the                  
volatility of the environment on belief updating. Future work might focus on the interplay of               
environmental volatility and confidence in their effects on the integration of novel            
observations. ​It is important to note that one may also be confident about novel sensory               
evidence (e.g. due to low noise) which may result in larger model updates (Meyniel, Sigman,               
& Mainen, 2015). This aspect of confidence, however, lies outside the scope of the current               
work. 

3. The authors present two complementary analysis approaches - a conventional           
average-based ERP analysis, and a single-trial model-based analysis. Both of these drive            
seemingly independent conclusions about the temporal dynamics of perceptual inference in           
peristimulus time: the results from the conventional analysis hint at early change detection in              
S1, then perceptual learning in S1/S2, and later attention-related effects. The results from             
the single-trial analysis suggest an early representation of CS in S2, and later representation              
of BS in S1. How do these relate to each other? 

I would encourage the authors to address this question, for example by deriving predictions              
from the different models for MMR effects: (how) does the MMR arise from differences in               
surprise between trials labeled as standards and those labeled as deviants in the             
conventional analysis? What predictions do the models make about the effects of train             
length on surprise? Is the winning model compatible with the experimental observations for             
the different MMRs? 

We thank the reviewer for the suggestion to attempt to more explicitly connect the two               
analysis approaches. We appreciate the input and agree that tying the different results             
together improves the manuscript. As such, we now provide a paragraph in the discussion              
where we relate them, starting at l. 797. (In order to avoid repetition we also removed a                 
sentence at l.660) 

Additional paragraph in the revised manuscript (l. 797): 

Conjointly, the average-based ERP analysis shows an early MMR indicative of           
change-detection around 57ms in S1, while the single-trial analysis indicates CS           
encoding from around 70ms in S2. Given the temporal and spatial difference, these             
may correspond to different responses. On the other hand, both the early 57ms MMR              
as well as CS as a surprise quantification share an apparent independence of their              
response to train lengths. Namely, PS and BS decrease as a stimulus is repeated and               
are proportionally greater in response to a deviant. CS is scaled by PS and BS, as well                 
as by belief commitment, which increases for standards and decreases for deviants.            
This counteracting effect of belief commitment and the surprise terms can lead to             
independence of CS and train length when responses are averaged, as appears to be              
the case for the early MMR, indicating the possibility for a potential relation between              
these results. The intermediate MMR roughly temporally co-occurs with a          
simultaneous representation of BS and CS in S1 and S2. The dependence of the              
mid-latency MMR on train-length for both standards and deviants and the encoding of             
belief inadequacy and updating quantities is suggestive of convergent support in           
favor of a perceptual learning response which involves both somatosensory cortices.           



Finally, the P300 MMR spans both late BS clusters, indicating a role of the P300               
response in Bayesian updating, which has been previously reported (Ostwald et al.,            
2012, Kolossa et al., 2015), and might specifically reflect an updating process of the              
attention-allocating mechanism as suggested by Kopp and Lange (2013).  

 

4. Separate, independent model comparisons are performed for each sensor and           
peristimulus time bin. (As far as I can tell, the variational inference procedure described in               
the supplementary section S2 was applied on all of these data points separately.) Can the               
authors comment on whether this creates a multiple comparison problem and if yes, in how               
far their analysis deals with this? Does their choice of exceedance probabilities at each step               
of the hierarchical model comparison, and/or their choice of cluster size thresholds (in time              
and sensor space) used for detection of significant clusters account for this? 

In Bayesian model comparison there is no conventional way to correct for multiple             
comparisons and it has been established that Bayesian methods provide inherent           
adjustments of sensitivity and specificity to deal with false positive rates (Friston 2002,             
Neuroimage, doi:10.1006/nimg.2002.109 and Friston 2002, Neuroimage,      
doi:10.1006/nimg.2002.109). However, in line with a comment of reviewer #3 (below) we            
added information on the number of comparisons in the text.  

 

Also, to get an impression of the model fit beyond the relative comparison to other models,                
can the authors report the % variance explained in the trial-by-trial EEG amplitudes by the               
winning model? 

The authors thank the reviewer for their suggestion. The percent variance explained (PVE)             
in the data by the winning models is between 0.1 and 0.4 % for both the EEG as well as the                     
dipole amplitudes. While the explained variance is quite small, comparable reports of kindred             
studies are largely lacking. However, the reported range of PVE is in agreement with a               
recent MEG study using surprise regressors of comparable Bayesian models (Maheu et al.,             
2019, eLife, doi: 10.7554/eLife.41541). In order to provide this information in the manuscript             
we edited the presentation of the dipole model comparison results (Fig. 13) to include the               
PVE by the respective regressors. 

 

 

 

 

 

 

 
Changes in the revised manuscript: 



 

Fig. 11. Modeling results in source space with best fitting forgetting-parameter values.            
Red: Predictive surprise (PS), Green: Bayesian surprise (BS), Blue:         
Confidence-corrected surprise (CS) A) Colors depict significant time points for the           
surprise readout functions of the Dirichlet-Categorical TP1 model within the dipoles           
S1P50, right S2 (RS2) and left S2 (LS2). The S1N20 dipole was omitted in the               
visualization as no significant effects were observed. Grey area plots above each            
dipole plot show the respective mean percent variance explained of the winning            
models +- standard error. Thus, the variance explained of BS (S1P50 dipole) and CS              
(RS2 and LS2 dipoles) is plotted. B) The group log model evidence (GLME) values              
corresponding to the stimulus half-lives for forgetting-parameter , after averaging          
the significant timebins of the dipoles (S1P50: 145-191ms; RS2: 68-143ms; LS2:           
76-168ms). The grey lines indicate a difference of 20 GLME from the peak, indicating              
very strong evidence in favour of the peak half-life value compared to values below              
this threshold. 

 

 

 

 

Minor comments/questions: 
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Intro: 

- p.3,l.66: I find the reference to prediction error confusing here, as (precision-weighted) PE              
in Bayesian models is often equivalent to model adjustment (Bayesian surprise) 

To avoid any potential confusion we have removed this reference to prediction error. 

 

- p.3,l.72 etc.: the introduction of the different surprise measures could be improved. First if               
all, predictive (Shannon) surprise in practical applications (including here) is computed with            
reference to subjective beliefs about the probability of events, not the objective frequency.             
Second, the difference to CS then remains vague, and the mathematical description for CS              
which is given on p.15 comes very unexpected. Can the authors more clearly state in the                
introduction what is different in CS from PS (e.g., even if an event is subjectively unlikely                
(PS), it is not necessarily surprising)? 

The authors thank the reviewer for pointing out helpful clarifications of the definitions of              
surprise to highlight their differences in the introduction and prepare the reader for their              
mathematical definitions. The respective paragraph starting at l.44 has been edited with this             
in mind: 

In the context of probabilistic inference, the signalling of a mismatch between predicted and              
observed sensory input may be formally described using computational quantities of surprise            
[6, 34]. By adopting the vocabulary introduced by Faraji et al. [35] surprise can be grouped                
into two classes: puzzlement and enlightenment surprise. Puzzlement surprise refers to the            
initial realization of a mismatch between the world and an internal model. ​Predictive             
surprise (PS) captures this concept based on the measure of information as            
introduced by Shannon [36]. Specifically, PS considers the belief about the probability            
of an event such that the occurrence of a rare event (i.e. an event estimated to have                 
low probability of occurrence) is more informative and results in greater surprise.            
Confidence-corrected surprise (CS), as introduced by Faraji et al. [35] extends the            
concept of puzzlement surprise by additionally considering belief commitment. It          
quantifies the idea that surprise elicited by events depends on both the estimated             
probability of occurrence as well as the confidence in this estimate, with greater             
confidence leading to higher surprise. For example, in order for the percept of a drop               
of rain on the skin to be surprising, commitment to a belief about a clear sky may be                  
necessary. 

 

 

Methods: 

- p.5, l.118: 'oddball-like'? 

The formulation of an oddball-like roving-stimulus paradigm was referring to the similarity of             
our (roving-stimulus) paradigm with the classic oddball paradigm (which most readers will be             
familiar with) while highlighting that the roving-stimulus paradigm differs in important ways. In             



an attempt to avoid any confusion we are now simply stating to use a “roving-stimulus               
paradigm”. 

 

- p.7: It would be much easier for the reader to first briefly describe the resulting tone                 
sequence and then go into the generative model for it. 

The generation of stimuli sequences (p.7) follows the description of the sequence            
presentation (p.5) where an exemplary part of a sequence is plotted and described. To              
further combine the generative model and resulting sequence properties we now present            
one combined figure (now Fig. 1) including previous Fig. 1 and Fig. 2 as well as additional                 
information on the average train lengths per regime as requested in the comment below. 

Changes in the revised manuscript (Fig. 1): 

 

Fig. 1. Experimental design and stimulus generation. A) Presentation of experimental           
stimuli using a roving-stimulus paradigm. Stimuli with two different intensities are           
presented. Their role as standard or deviant depends on their respective position            
within the presentation sequence. B) Graphical model of data-generating process.          
Upper row depicts the evolution of states s​t over time according to a Markov chain.               
The states emit observations o​t (lower row), which themselves feature second order            
dependencies on the observation level. C) Average proportion of resulting stimuli           
train lengths. Higher proportion of shorter trains for the fast switching regime (R2;             



red) and more distributed proportion across higher train lengths for the slow            
switching regime (R1; blue). 

 

- p.8, table1: please provide stimulus stats, e.g. average train length in the two regimes 

We thank the reviewer for the suggestion. We have now added a plot (Fig. 1C - please see                  
the previous comment) which details the average proportion of train lengths in each regime. 

 

- p.8, 'Event-related potentials' - given that the GLM already included the parametric             
regressors for train length, why was this effect further investigated in the significant beta              
estimates by testing for a linear relationship with train lengths? 

The reported linear fit of train lengths for standards and deviants is equivalent to the results                
of the GLM parametric contrast and shows the same p-values at the peak voxel (of the main                 
effect, standards vs. deviants). Since we are interested in the details of these main effects               
we reported only these corresponding betas and used linear fits for the convenience of              
plotting the regression lines for visualization purposes. To be more explicit the revised             
manuscript l.182-185 now reads: 

The significant peaks of the GLM were further inspected by looking at their effect of               
train length and the corresponding -parameter estimates of each train length were            
subjected to a linear fit for visualization purposes. 

 

- p.11-13: a simple and intuitive description of the DC model learning process might be               
given, e.g. 'the observer simply counts the observations of each type to determine her best               
guess of their probability (eq.6), with an exponential forgetting, i.e. discounting observations            
the further in the past they occurred (eq.9).' 

We thank the reviewer for this helpful suggestion to provide a more intuitive description. We               
appreciate the suggestion and added the following text to the DC model section (l.253): 

The Dirichlet-Categorical model is a simple Bayesian observer that counts the           
observations of each unique type to determine its best guess of their probability (eq.              
5). Its exponential forgetting parameter implements a gradual discounting of          
observations the further in the past they occurred (eq. 8). 

 

- it seems from figure 6 that catch trials were included for the DC model? If so, why were                   
they modeled for one model, but not the other (HMM)? 

With the intent to model the sequence data as complete as possible, catch trials were indeed                
included for the DC model (though as described, the trials were deleted prior to model               
fitting). To facilitate the HMM implementation, the catch trial regime was omitted as it was               
not a hidden state (catch trials are emitted with a probability of 1). To make sure that the                  
superiority of the DC model is not due to the modelling of catch trials, we re-analyzed the                 
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Null Model vs DC vs HMM family comparison without modeling the catch trials for the DC                
model, which still showed a clear superiority of the DC model without any significant results               
for the HMM (see S7 Fig. B). Additionally, we inspected the effect of modelling the catch trial                 
with the DC model in a family comparison of Null vs DC-catch vs DC-no-catch (see S7 Fig.                 
C) which shows that a complete DC model that includes all observations of the participants               
is a better fit than a less complete DC model. 

Supplementary figure addition in revised manuscript: 

 

S7 Fig. Additional random effects family-wise comparisons. A) Comparison of the           
model families: Null model, Dirichlet-Categorical model (DC) with tau = 0 (i.e. no             
forgetting and no penalization) and Hidden Markov Model (HMM). B) Comparison of            
the model families: Null, DC without modelling the catch trial and HMM. C)             
Comparison of the model families: Null, DC with and DC without modelling the catch              
trial. D) Comparison of the model families within the DC model: Stimulus probability             
model (SP), alternation probability model (AP) and transition probability model family           
(TP) subsuming first and second order TP models in one family. Exceedance            
probabilities (φ) are plotted for all comparisons. 



 

- in addition to visualizing the surprise readouts, it would be nice to also visualize the                
learning process itself, in particular in the DC model (e.g. the evolution of the estimated               
probability vector alpha over the tone sequence) - a figure for the DC model similar to fig.5                 
for the HMM. 

As described in response to a comment above, in order to include a better representation of                
the behaviour of the models we present a new combined figure (Fig. 5) including exemplary               
trials of a sequence and the corresponding behaviour of all model regressors as well as the                
state estimation of the HMM. This figure now also includes the evolution of the estimated               
transition probabilities over a sequence for both the DC and HMM.  

 

- p.14, l.327-334: This is not clear. In particular, l. 333 "Thus, the HMM estimates two vectors                 
of emission probabilities corresponding to these events" - which two vectors and which             
events? 

Given that the HMM estimates emission probabilities of the form , it was necessary              
to re-code all observations to reflect whether an alternation or repetition occurred (AP) or              
which transition occurred (TP), as the identity of these events depend on as well as ​.                 
A two-state HMM estimates two sets (rather than our previous use of ‘vectors’) of emission               
probabilities of such events.  

We have adjusted the text in order to improve clarity (l.314): 

The aim of the HMM was to approximate the data generation process more closely by using                
a model capable of learning the regimes over time and performing latent state inference at               
each timestep. To this end, prior knowledge was used in its specification by fixing the state                
transition matrix close to its true values ( ). The rare catch trials were             
removed from the data prior to fitting the HMM and thus their accompanying third regime               
was omitted, resulting in a two-state HMM. Given that an HMM estimates emission             
probabilities of the form and thus does not capture any additional explicit             
dependency on previous observations, the input vector of observations was transformed           
prior to fitting the models. For AP and TP inference this equated to re-coding the observation                

to reflect the specific event that occurred. Specifically, for the AP model the input               
sequence was , while for TP1 and TP2 a vector of events was used              
corresponding to the four possible transitions from or eight transitions from             
respectively. ​Thus, the HMM estimates two sets (reflecting the two latent states) of             
emission probabilities which correspond to the events ( ). ​Despite this deviation of the             
fitted models from the underlying data generation process, the AP and TP models reliably              
captured R1 and R2 to their capability, with TP2 retrieving the true, but unknown underlying               
emission probabilities (see ​S3 Fig​). As expected, SP inference was agnostic to the regimes,              
while AP and TP inference allowed for the tracking of the latent state over time (​S3 Fig​). An                  
example of the filtering posterior may be found in Fig ​4​. 
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- p.15, figure 5: might be worth mentioning that the 2 states modelled by the SP model do                  
not correspond to the two regimes - the figure might suggest that p(s_t) should track the                
underlying regimes, while s_t has a different meaning for the SP! 

We thank you for your helpful suggestion. This is indeed correct. To prevent any such               
confusion, we have edited the caption of Fig 4 (was  Fig 5): 

Fig 4. Posterior probabilities of the HMM. Comparison of the posterior of the             
different HMM inference models for an example sequence. The true, but unknown regimes             
of the data generation process are plotted in red. ​Note that, as the regimes were balanced                
in terms of stimulus probabilities, SP inference is not able to capture the underlying              
regimes and instead attempts to dissociate two states based on empirical differences            
in observed stimulus probabilities. 

 

- p.15, l.355: the prior used in CS is not the (flat) prior of the naive observer: CS = KL                    
between the informed prior and the naive posterior. 

Thank you for bringing this unclear phrasing to our attention. The text on l.337 now reads: 

“It is defined as the KL divergence between the ​informed ​prior and the posterior distribution               
of a naive observer, where the naive posterior corresponds to a flat prior (i.e. all                
outcomes are equally likely) which observed .” 

  

- p.17: might be worth mentioning that regressors were the same across participants (or if               
they differed, they only did so because the stimulus differed), and no participant-specific             
parameters were estimated (except for the optimization of tau) 

Thank you for this suggestion. l.382 now reads: 

“Each combination of model class (DC and HMM), inference type (SP, AP, TP1, TP2), and               
surprise readout function (PS, BS, CS) yields a stimulus sequence-specific regressor. ​The            
same models were used across subjects and as such the regressors did not include              
any subject specific parameters. These regressors, as well as those of a constant             
null-model, were fitted to the single-trial, event-related electrode and source activation data.” 

 

- p.17 please state the total number of linear regressions run (i.e., number of sensors x                
number of peristimulus time bins) (i.e., the total number of model comparisons run for              
'independent' data points) 

- p.18, l.415: and each sensor? 

We have now clarified this in the text (l.422): 

The furnished model evidences were subsequently used for a random-effects analysis as            
implemented in SPM12 [61] to determine the models’ relative performance in explaining the             
EEG data. In order to combat the phenomenon of model-dilution [65], a hierarchical             
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approach to family model comparison was applied (for a graphical overview see S3 Fig).              
Note that this procedure is performed for each peri-stimulus time bin ​and electrode             
independently ​(resulting in 22976 model comparisons per subject)​. In the first step, the             
two model classes DC and HMM were compared against each other and the null-model in a                
family-wise BMS. A threshold of exceedance probabilities >0.99 in favour of either the DC              
or HMM was applied, so that only whenever there was very strong evidence in favour of one                 
of the model classes the following analyses were applied. For timepoints with exceedance             
probabilities above this threshold, a family-wise comparison of TP1 and TP2 was performed             
in order to determine which order of transition probabilities would be used for the second               
level. Subsequently, either the TP1 or TP2 models were compared to the SP and AP               
models. Wherever >0.95 for one of the inference type families, the third analysis level was               
called upon. On this final level, surprise read-out functions were compared for the winning              
model class and corresponding inference type with a threshold of >0.9. As such, this              
step-wise procedure allows spatio-temporal inference of the read-out functions for which           
there is strong evidence of the belonging model class and inference type. The same              
procedure was used for the EEG sensor and source data. 

 

Results: 

- p.23, l.490&491: exact p-values and t statistic? 

We are happy to provide these statistics and have included them in the section, it now reads                 
(l.541):  

“The S1P50 dipole shows a significant difference at both time windows (at 57ms ​p=0.006,              
t=2.94​; at 119ms p=0.009, t=2.75​; bonferroni corrected) and can be suspected to be the              
origin of the effect at 57ms as well as contribute to the 119 MMR while the right S2 dipole is                    
mainly driving the strong 119ms effect (at 119ms​ p=0.001, t=3.44​; bonferroni corrected).”  

 

- p.23, l.510-512: please explain this here, so that the reader does not have to refer to the                  
supplementary to understand what is plotted in the scalp topographies. Please state            
explicitly in the text and the figures what the scalp topographies show, and what this               
parameter means. 

To aid in interpreting the parameter and its topographies, we have added context to its               
meaning in the figure caption, while removing it’s mention in the text itself: 

Change in the revised manuscript: 

Fig 10D shows the result of the random-effects Bayesian model selection analysis. The             
scalp topographies depict the winning readout functions of the Dirichlet-Categorical TP           
model at different time windows. ​The converged variational expectation parameter m           
resulting from the model fitting procedure (see S2 Appendix) are displayed for the             
winning models to facilitate interpretation of the topography​. Given the difference in            
temporal dynamics of faster, early (<200 ms) and slower, late (200-600ms) EEG            
components, different thresholds were applied. Early significant clusters were identified by           
averaging exceedance probabilities over 10ms windows and using a minimum cluster size of             
two electrodes. After 200ms, clusters were identified by averaging over 50ms time windows             
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with a minimum cluster size of four. From around 70ms on, early surprise computations can               
be observed with confidence corrected surprise (CS) best explaining the EEG data on             
contralateral and subsequently ipsilateral electrodes up to around 200ms. A significant           
cluster of Bayesian surprise (BS) is prominent at centro-posterior electrodes between           
130-200ms, with similar electrodes later again representing Bayesian surprise around 300           
and 375ms. These clusters are temporally in accordance with the N140 and P300 MMR              
effects. The latest cluster at around 500ms post-stimulus is entirely driven by predictive             
surprise. 

 
 
Model caption change in the revised manuscript 

Fig ​10​. Modeling results. Exceedance probabilities (') resulting from the RFX family model             
comparison. A) Dirichlet-Categorical (DC) model, Hidden Markov Model (HMM) and Null           
model family comparison, thresholded at '>0.99:. B) Family comparison within the winning            
DC family, thresholded at >0.95: first and second order transition probability models (TP1,             
TP2). C) Family comparison within the winning DC family, thresholded at > 0:95: first order               
transition probability (TP1), alternation probability (AP) and stimulus probability (SP) models.           
D) Family comparison of surprise models within the winning DC TP1 family, thresholded at             
>0.9: Large discrete topographies show the significant electrode clusters of Predictive           
surprise (PS) in red, Bayesian surprise (BS) in green and confidence-corrected surprise (CS)             
in blue. Small continuous topographies display the converged variational expectation          
parameter m​β​. ​This parameter may be interpreted as a \beta weight in regression,             
indicating the strength and directionality of the weight on the model regressor that             
maximizes the regressor’s fit to the EEG data (see S2 Appendix). 

 

- figure 12 and figure S3: please state explicitly which steps resulted in data reduction (i.e., a                 
selection of EEG sensors and time points for which a meaningful model comparison results              
could be retrieved, to be included in the comparison at the next step) 

Currently, the steps for data reduction are explained in the methods section headed             
‘Bayesian model selection’. We have now edited the figure descriptions to include this             
information. 

Changes in the revised manuscript: 

Fig 10. Modeling results. Exceedance probabilities (φ) resulting from the RFX family model             
comparison. A) Dirichlet-Categorical (DC) model, Hidden Markov Model (HMM) and Null           
model family comparison, thresholded at φ>0.99 and applied for data reduction at all             
further levels. B) Family comparison within the winning DC family,thresholded at φ>0.95:            
first and second order transition probability models (TP1, TP2) determining which order of             
TP is compared to stimulus probability (SP) and alternation probability (AP) models. C)             
Family comparison within the winning DC family, thresholded at φ > 0.95 and applied at the                
final level. D) Comparison of surprise models within the winning DC TP1 family, thresholded              
at φ > 0.9: Large Discrete topographies show the significant electrode clusters of Predictive              
surprise (PS) in red, Bayesian surprise (BS) in green and confidence-corrected surprise (CS)             
in blue. Small continuous topographies display the converged variational expectation          
parameter m​β​. This parameter may be interpreted as a weight in regression, indicating the               

https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvarphi#0


strength and directionality of the weight on the model regressor that maximizes the             
regressor’s fit to the EEG data (see S2 Appendix). 

 

S4 Fig. Hierarchical approach to family wise Bayesian model selection. First level (depicted             
in the top row): The 12 DC models and the 12 HMM models were grouped into their                 
corresponding model class family and compared via BMS against each other and an offset              
Null-Model. Second level (lower row, left rectangle): Within the DC model class, the two              
transition probability models TP​1​and TP​2 ​were grouped into families and the winner of the              
BMS was used for the comparison against the other two inference type models (Stimulus              
Probability (SP) and Alternation Probability (AP)). Third Level (lower row, middle rectangle):            
The surprise readouts of the DC TP​1 ​model were subjected to BMS and the resulting               
exceedance probabilities are reported in the main results. Thresholding of the model class             
families and inference types was again applied at successive levels leading to data             
reduction. 

 

- figure 13: please state the unit for the half-life (observations?) 

The unit for half-life is indeed observations and is now stated as such in the figure. 

 

Discussion: 

- p.26, l.548-550: the interpretation, especially of the P300 effect as an attention-allocating             
process, comes somewhat ad-hoc, because it hasn't been motivated before. It is discussed             
later again (p.27, l.580-6), but only afterwards (p.28) are the aspects of the current results               
mentioned which support this interpretation (i.e., linear dependence of the P300 to deviants             
on train length). If this is the main finding that the authors base their attentional interpretation                
on, it should be mentioned earlier. 

We appreciate the concern and present our interpretation now later in the discussion. l.623              
now reads: 

“​The early MMR effects were source localized to the somatosensory system and the             
N140 and P300 MMR’s show differential linear dependence on stimulus train lengths            
for standard and deviant stimuli.​ Using computational modelling, …” 

 

- p.29, l.622-625: Not sure I understand this conclusion. The winning model did not learn               
about the different regimes in any way, so neither explicit nor implicit learning of the regimes                
are supported. 

Here we intend to refer to the more general forming of probability estimates of observations,               
rather than discrete hidden state inference While the DC model is not able to explicitly               
capture any volatility in the environmental statistics (i.e. our regime change probability) it is              
however able to approximate the sequence statistics across the regimes by utilizing            
exponential forgetting to account for change-points as we discuss in the following section of              



the discussion. We do appreciate that this is currently not obvious given the preceding              
sentence happens to only concern the hidden states. 

We try to be more clear with the following changed text (l.705): 

“Even though the data generation process included discrete hidden states in the form of fast               
and slow switching regimes, participants were neither aware of their existence nor was their              
dissociation or any tracking of sequence statistics ​required to perform the behavioural            
task. As such, the early EEG signals studied here are likely to reflect a form of                
non-conscious, implicit learning of environmental statistics.” 

 

- p.29, l.630: one of the cited studies (ref. 86) employed a very different form of hierarchy                 
without an explicit representation of change points. This model (the HGF) is actually more              
similar to the non-hierarchical DC model used here, except that the leakiness (learning rate)              
is a function of a subjective estimate of volatility (i.e., continuous rate of change). 

Although it was the intention to distinguish between models that include or exclude some              
hierarchical representation of change-points and/or volatility in general, the reviewer’s point           
is well taken and in response we have exchanged referenced #86 with Behrens et al., 2007                
(doi:10.1038/nn1954) as an alternative example of an hierarchical learning model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REVIEWER #3 

Major points: 

Hierarchical model comparison approach: You have chosen to act against the “dilution of             
evidence” across many models by invoking a hierarchical model comparison scheme based            
on exceedance probabilities in a series of hierarchical comparisons. While there are other             
examples of such a hierarchical approach in the literature, this is, to my knowledge, not               
standard in family comparison of models, and I am not aware of any paper that suggests that                 
this procedure is correct for selecting the best model. Every model or family comparison is               
conditional on the model space that you put in. In the extreme case, your final set of three                  
models that you compare might not even include the best of all models. I would recommend                
running a model comparison over all models and running three family comparisons where             
you arrange your families to compare models along the three dimensions on your model              
space. Even if model comparison turns out to be inconclusive, this is an important              
information for the reader and the family comparisons should allow you to make some              
general statements about the different dimensions of your model space, which are of             
interest. In conclusion, I think that using the hierarchical scheme, you cannot safely conclude              
that “EEG signals were best described using a non-hierarchical Bayesian learner performing            
transition probability inference.” But, maybe the search for a single best model is not even               
the most important goal here if you can make more robust and solid statements about other                
dimensions, e.g. whether an HMM or DC is better, or which kind of Surprise explains the                
data best at what time point, irrespective of the precise formulation of the other aspects of                
the model. 

 

We thank the reviewer for the detailed consideration of our approach. We acknowledge that              
the description of our BMS procedure might have been confusing. First, we would like to               
clarify that the approach employed here is not a hierarchical Bayesian analysis per se but               
rather a step-wise procedure of dimensionality/data reduction, reminiscent of a strategy also            
applied in dynamic causal modeling. The order of our step-wise model comparison is             
motivated by the internal ‘hierarchy’ of our model space (further detailed below) and the              
concern for interpretability of the results. Specifically, in case of a non-hierarchical family             
comparison situations may arise where for specific EEG sensors and time points significant             
results are found for the surprise readout functions, but it is unclear what generative model               
underlied these computations. Vice versa, we considered it problematic to provide results of             
a certain generative model but not being able to comment on which computations this model               
appeared to perform. As such, we opted for a step-wise procedure that for a specific EEG                
sensor/timepoint allows for an interpretation of the model class (HMM or DC model), which              
sequence statistics this model tracked (stimulus, alternation, or transition probability), and           
finally which surprise computation is performed.  

We decided to additionally include an evaluation of the random effects analysis in the              
manuscript by reporting a simulation study to validate model recovery across the different             
levels of the hierarchical model comparison approach. The details of the simulation are             
described in our response to reviewer #2 above and are an addition to the methods section.                
Together with the replies to specific concerns below we hope to show that our approach is                
suited for selecting the model that best explains the observed EEG data. 

Nevertheless, we appreciate the reviewer’s interest in the outcome of an alternative            
approach to the applied hierarchical BMS steps and thus included results of the suggested              



non-hierarchical model comparison in the supplementary material (S5 Fig.). In order to get             
an idea of the best fitting model for the estimation of the sequence statistics, the               
non-hierarchical approach partitions the full Null, DC and HMM model-space into Null, SP,             
AP, TP1 and TP2 model families. The results indicate that the first order transition probability               
model is again the winning model across most electrodes and time points. However, one can               
observe that the effects are more pronounced for the later time points as a result of the                 
model dilution of TP1 and TP2 (CS) prior to 200ms. The issue of comparing TP1 and TP2                 
(relating also to a different question of the reviewer) is addressed separately below.             
Furthermore, the non-hierarchical comparison of surprise (resulting from partitioning the full           
model space into PS, BS and CS families) results in a highly similar pattern of results to the                  
reported hierarchical approach. The electrode topography shows the same clusters of CS            
and BS prior to 200ms as well as weaker later clusters of BS and PS (the latter observation                  
is also found in the hierarchical comparison and is further addressed below).  

 

Changes in the revised manuscript (l. 420 and from l.438 onwards): 

The furnished model evidences were subsequently used for a random-effects analysis as            
implemented in SPM12 (Stephan et al., 2009) to determine the models’ relative performance             
in explaining the EEG data. In order to combat the phenomenon of model-dilution (Penny et               
al., 2010), a hierarchical approach to family model comparison was applied (for a graphical              
overview see S4 Fig.). ​This amounts to a step-wise procedure that leads to             
data-reduction at subsequent levels. Note that this procedure is performed for each            
peri-stimulus time bin independently. In a first step, the two model classes DC and HMM               
were compared against each other and the null-model in a family-wise BMS. A threshold of               
exceedance probabilities > 0.99 in favour of either the DC or HMM was applied, so that                 
only whenever there was very strong evidence in favour of one of the model classes the                
following analyses were applied. For timepoints with exceedance probabilities above this           
threshold, a family-wise comparison of TP1 and TP2 was performed in order to determine              
which order of transition probabilities would be used for the second level. Subsequently,             
either the TP1 or TP2 models were compared to the SP and AP models. Wherever > 0.95                  
for one of the inference type families, the third analysis level was called upon. On this final                 
level, surprise read-out functions were compared for the winning model class and            
corresponding inference type with a threshold of > 0.9. ​As such, this step-wise procedure               
allows spatio-temporal inference of the read-out functions for which there is strong evidence             
of the belonging model class and inference type​, facilitating the interpretation of the             
results. ​The hierarchical ordering thus moves from general to specific principles: the            
model class and inference type determine the probability estimates of the model,            
which are finally read out through surprise computation. As a control analysis and             
inspection of the effect of our hierarchical scheme, we performed a non-hierarchical            
family comparison analysis (S5 Fig). ​The same procedure was used for the EEG sensor              
and source data. 
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S5 Fig. Non-hierarchical family-wise comparison. Exceedance probabilities ( )        
resulting from the RFX family model comparison by investigating the full model space             
in each comparison. A) Family comparison of the first order transition probability            
(TP1), second order transition probability (TP2) alternation probability (AP; not shown           
as no electrode and time-point with >0.95) and stimulus probability (SP) models;            
thresholded at >0.95. B) Family comparison of surprise models, thresholded at           
>0.9 (prior to 200ms) and >0.7 (post 200ms): Large discrete topographies show the             
significant electrode clusters of predictive surprise (PS) in red, Bayesian surprise           
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(BS) in green and confidence-corrected surprise (CS) in blue. Small continuous           
topographies display the converged variational expectation parameter ( ). 

Addition to the text of the revised manuscript to report on non-hierarchical model comparison              
(Results l. 591): 

We note that the DC TP1 vs TP2 comparison in Fig 10. subplot B has few significant results                  
prior to 200ms. This appears to fit with the model recovery study indicating that the least                
recoverable families are DC TP1 and TP2 in case of CS and the observation that CS is a                  
winning surprise model for early time bins. In response, we conducted an additional family              
comparison between SP, AP, and TP encompassing both TP1 and TP2 (see supplementary             
figure S7 Fig). Clearly, more significant early results can be observed, suggesting that early              
effects are driven by TP inference but that for empirical data, we are unable to convincingly                
resolve TP1 and TP2 for CS computation. Although exceedance probabilities have been            
shown to be inflated (Rigoux et al., 2014), we here opt to report them to allow for a                  
consistent reporting of the same statistic across all levels. Nevertheless, we additionally            
show the protected exceedance probabilities where possible (as they are unavailable for            
family comparisons), and expected posterior probabilities otherwise, in S8 Fig. Despite these            
statistics being diminished, they yield highly similar conclusions, suggesting the results are            
not solely due to exceedance probability inflation. In a further control analysis, we             
performed non-hierarchical model comparison. This procedure grouped the entire         
model space in the respective families of interest without step-wise data reduction            
and broadly replicates the findings from the hierarchical approach across the levels            
(S5 Fig.).  

Exceedance probabilities: You use exceedance probabilities for all comparisons. These are           
known to be inflated and should whenever possible be replaced by protected exceedance             
probabilities (Rigoux et al, Neuroimage, 2014, !). I think it would be good if you showed plots                 
of the expected probabilities for all comparisons if you cannot use protected exceedance             
probabilities which unfortunately are not available for family comparisons. Seeing the           
expected probabilities will give the reader an idea of the probabilities of individual models              
and families. 

We thank the reviewer for the comment. As mentioned, since protected exceedance            
probabilities (EPs) are not available for family comparisons we intended a consistent            
presentation of the results using the same statistic (EPs) across all steps of the hierarchical               
model comparison. However, we do also appreciate the reviewer’s interest in alternative            
statistics such as the expected posterior probabilities and protected EPs which we are now              
providing in the supplementary material (S8 Fig.). As pointed out by the reviewer, the              
protected EPs for the surprise comparison are lower due to their robustness against inflation.              
The pattern of the results prior to 200ms does not change and the electrode topography               
shows the same clusters of winning models as reported in the manuscript with protected              
EPs ( ) above 0.8. After 200ms the surprise models are less clearly distinguished which              
becomes apparent by protected EPs of above 0.5.  

Furthermore, we noticed that we failed to report this reduced model differentiability in the              
later time window for the manuscript results. Specifically, at a threshold of ​>0.9, no clusters               
are found after 200ms, and thus a lower threshold of >0.7 was applied for the late clusters                 
in the manuscript, which was erroneously reported as >0.9. We are grateful to the reviewer               
for his request allowing us to detect this unfortunate error. We have adjusted its reporting in                
figure (Fig. 10) and the results text accordingly. 
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Changes in the revised manuscript: 

 

S8 Fig. Alternative statistics of modeling results: Expected posterior probabilities ([r])           
and protected exceedance probabilities ( ). A) Dirichlet-Categorical (DC) model,         
Hidden Markov Model (HMM) and Null model family comparison, thresholded at           
[r]>0.75. B) Family comparison within the winning DC family, thresholded at [r]>0.7:            
first and second order transition probability models (TP1, TP2). C) Family comparison            
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within the winning DC family, thresholded at [r]>0.7: first order transition probability            
(TP1), alternation probability (AP) and stimulus probability (SP) models. D) Family 

comparison of surprise models within the winning DC TP1 family, without threshold            
(depicted by >0.33​)​: Large discrete topographies show the electrode clusters of           
Predictive surprise (PS) in red, Bayesian surprise (BS) in green and           
confidence-corrected surprise (CS) in blue. Small continuous topographies display         
the converged variational expectation parameter ( ). 

Methods edit to correct reporting of threshold (l. 435): 

The furnished model evidences were subsequently used for a random-effects analysis as            
implemented in SPM12 [61] to determine the models’ relative performance in explaining the             
EEG data. In order to combat the phenomenon of model-dilution [65], a hierarchical             
approach to family model comparison was applied (for a graphical overview see S4 Fig).              
Note that this procedure is performed for each peri-stimulus time bin independently. In a first               
step, the two model classes DC and HMM were compared against each other and the               
null-model in a family-wise BMS. A threshold of exceedance probabilities >0.99 in favour of              
either the DC or HMM was applied, so that only whenever there was very strong evidence in                 
favour of one of the model classes the following analyses were applied. For timepoints with               
exceedance probabilities above this threshold, a family-wise comparison of TP1 and TP2            
was performed in order to determine which order of transition probabilities would be used for               
the second level. Subsequently, either the TP1 or TP2 models were compared to the SP and                
AP models. Wherever >0.95 for one of the inference type families, the third analysis level               
was called upon. On this final level, surprise read-out functions were compared for the              
winning model class and corresponding inference type with a threshold of >0.9. ​As no              
significant effects were observed after 200ms, the threshold was lowered to >0.7 for             
that time window only. As such, this step-wise procedure allows spatio-temporal inference            
of the read-out functions for which there is strong evidence of the belonging model class and                
inference type. The same procedure was used for the EEG sensor and source data. 

Addition to the text of the revised manuscript to report on the alternative-statistic analysis              
(Results l. 585) 

We note that the DC TP1 vs TP2 comparison in Fig 10B has few significant results prior to                  
200ms. This appears to fit with the model recovery study indicating that the least recoverable               
families are DC TP1 and TP2 in case of CS and the observation that CS is a winning                  
surprise model for early time bins. In response, we conducted an additional family             
comparison between SP, AP, and TP encompassing both TP1 and TP2 (see supplementary             
figure S7). Clearly more significant early results can be observed, suggesting that early             
effects are driven by TP inference but that for empirical data, we are unable to convincingly                
resolve TP1 and TP2 for CS computation. ​Although exceedance probabilities have been            
shown to be inflated (Rigoux et al., 2014), we here opt to report them to allow for a                  
consistent reporting of the same statistic across all levels. Nevertheless, we           
additionally show the protected exceedance probabilities where possible (as they are           
unavailable for family comparisons), and expected posterior probabilities otherwise,         
in S8 Fig. Despite these statistics being diminished, they yield highly similar            
conclusions, suggesting the results are not solely due to exceedance probability           
inflation. ​In a further control analysis, we performed non-hierarchical model comparison.           
This procedure grouped the entire model space in the respective families of interest without              
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step-wise data reduction and broadly replicates the findings from the hierarchical approach            
across the levels (S5 Fig.).  

Fitting of tau and model evidence correction: In order to correct for the fitting of tau (the                 
forgetting in the DC models), you subtract “the degree to which tau optimization on average               
inflated model evidences”. First, I do not fully understand the procedure. Average over             
subjects, over voxel-timepoints? Second, I am not sure this heuristic properly accounts for             
the additional complexity introduced by tau. Do you have a reference that shows that this               
heuristic properly controls for complexity? You might be correcting too little or even too              
much, in which case, your results would become even clearer. In favor of your selection of                
DC as the winning model class you state in the discussion that the HMM did never win,                 
when tau=0. Does that mean that the DC still clearly won in all these cases? I think you                  
should show the same map as in Figure 12A also for the case of tau=0. This would help to                   
understand the impact of fitting tau. Ideally, the fitting of tau (including defining a prior)               
should be part of the model inversion, but this might be a larger effort going beyond the                 
scope of this paper. However, I think you should mention this option in the discussion. 

This section indeed benefits from a more detailed account of the procedure and we would               
like to thank the reviewer for this suggestion. As such, we have included this in the main text                  
(please see the correction below). We also now provide the same plot as Figure 10A also for                 
the case of tau=0 as part of S7 Fig which we reproduce below. We acknowledge that the                 
penalization is heuristic and not based on literature reference. However, the case of tau=0              
without penalization and the fitting of tau with penalization leads to similar results, with              
potentially a minor reduction in significant results due to the penalization. This possibly             
conservative approach was considered to suffice for the scope of this experimental work.             
Nevertheless, we now make the option of including the fitting of tau in the model inversion                
explicit to the reader. 

Changes in the revised manuscript (l. 411): 

Before modeling single subject, single peri-stimulus time bin data (y) as described above,             
the single-trial regressors of all non-null models as well as the data underwent z-score              
normalization to allow for the use of the same model estimation procedure for both sensor               
and source data. For single subjects, data and regressors corresponding to the five             
experimental runs were concatenated prior to fitting. To allow for the possibility that the brain               
estimates statistics computed across multiple timescales of integration [9, 63, 64], the            
forgetting-parameter of the DC model was optimized for each subject, model, and            
peri-stimulus time-bin. To this end, DC model regressors were fitted for a logarithmically             
spaced vector of 101-values on the interval of 0 to 1 and the value of tau that resulted in the                    
highest model evidence was chosen. To penalize the DC model for having one of its               
parameters optimized, the degree to which tau optimization on average inflated model            
evidences was subtracted prior to the BMS procedure. ​Specifically, the difference in            
model evidence between its average for all parameter-values and the optimized value            
was computed and subsequently averaged across post-stimulus timebins, sensors,         
and subjects. The optimization of the forgetting parameter may also have been            
included in the model inversion itself, although this extends beyond the scope of the              
current work.  

Reproduction of the new supplementary figure S7A Fig as provided above. This subplot             
shows that the DC model without forgetting (i.e. tau=0) and no penalization also convincingly              
wins over the HMM. 



 

 

Conclusion of Bayesian learning: You conclude that “early somatosensory cortex seems to            
reflect Bayesian perceptual learning” (lines 733/734). From your analysis, it is difficult to             
make a statement about the Bayesian part. All learning models that you tested are Bayesian               
in nature (except for the null model), hence it could well be that a non-Bayesian model could                 
also provide a good explanation of the data. We simply do not know. 

This is a valid point and we thank the reviewer for commenting on it. In order to make a more                    
appropriate claim, we changed the sentence (l. 860) to: 

In conclusion, we report evidence that signals of early somatosensory processing can            
be accounted for by (surprise) signatures of Bayesian perceptual learning. 

 

Inconsistencies in hierarchical scheme: There are a couple of questions to your hierarchical             
scheme. These are however only relevant, if you would like to stick to it. I just mention them                  
here, and I think you would have to answer them convincingly, if you stick to this scheme. 

1.) Why are the thresholds changing for every level? 

The thresholds are gradually lowered across the steps of the hierarchical random effects             
analysis such that the first comparison against the null-model is conservative (strict threshold             
of > 0.99) in order to avoid carrying false positives over to the subsequent tests. Since                 
multiple comparisons are conducted on the same electrode and time-bin we allowed for             
lower thresholds in subsequent analysis steps on remaining data that has already been             
thresholded. We now clarify this in the Methods. 

Changes in the revised manuscript (l.433): 

On this final level, surprise read-out functions were compared for the winning model class              
and corresponding inference type with a threshold of > 0.9. We allowed for lower                
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thresholds for these second and third analysis steps on remaining data given a             
threshold had already been applied. 

 

2.) What is the rational for splitting up the comparison over TP1, TP2, SP and AP into two? I                   
think this should be one single model comparison. (In fact, this leads to a misinterpretation of                
results when you say “Our results show that the TP model family clearly outperformed the               
SP and AP families.” What you show is that TP1 outperforms these other families.) Why are                
you reevaluating in places/at timepoints where TP1 does not win? This deviates from the              
general strategy. 

Given that SP, AP, and TP are different sequence statistics while TP1 and TP2 refer to                
different orders of the same sort of statistic this was considered to be a conceptually sound                
distinction, in addition to consequent concerns over possible model dilution between the TP             
variants in case of an SP, AP, TP1, TP2 comparison. The addition of the model recovery                
study sheds light on this issue, as it appears to be specifically for the case of confidence                 
corrected surprise that TP1 and TP2 are difficult to recover. This can be seen in the                
experimental results in Fig 10B as well, with only few significant results prior to 200ms,               
which is precisely where we end up finding CS as the winning surprise model (a finding that                 
is replicated in the non-hierarchical model comparison). We concluded that a comparison of             
TP1 and TP2 should precede the comparison with SP and AP in order to include only the                 
overall more likely TP model in the hierarchical model comparison. Likewise, TP2 was not              
used for further thresholding of the surprise results in addition to TP1.  

An additional comparison was performed with TP1 and TP2 grouped into one TP family              
when compared to SP and AP (see supplementary figure S7 Fig. C), which replicates the               
TP-effects prior to 200ms, indicating a TP-based computation also for CS. Importantly, with             
the help of the results of the model recovery study, we have edited the text to reflect the                  
lower confidence in the order of TP inference underlying CS computation.  
 

Addition to the text of the revised manuscript to report on TP1 vs TP2 family comparison                
(Results l. 578) 

We note that the DC TP1 vs TP2 comparison in Fig 10. subplot B has few significant                 
results prior to 200ms. This appears to fit with the model recovery study indicating              
that the least recoverable families are DC TP1 and TP2 in case of CS and the                
observation that CS is a winning surprise model for early time bins. In response, we               
conducted an additional family comparison between SP, AP, and TP encompassing           
both TP1 and TP2 (see supplementary figure S7). Clearly more significant early            
results can be observed, suggesting that early effects are driven by TP inference but              
that for empirical data, we are unable to convincingly resolve TP1 and TP2 for CS               
computation. Although exceedance probabilities have been shown to be inflated (Rigoux et            
al., 2014), we here opt to report them to allow for a consistent reporting of the same statistic                  
across all levels. Nevertheless, we additionally show the protected exceedance probabilities           
where possible (as they are unavailable for family comparisons), and expected posterior            
probabilities otherwise, in S8 Fig. Despite these statistics being diminished, they yield highly             
similar conclusions, suggesting the results are not solely due to exceedance probability            
inflation. In a further control analysis, we performed non-hierarchical model comparison.           
This procedure grouped the entire model space in the respective families of interest without              



step-wise data reduction and broadly replicates the findings from the hierarchical approach            
across the levels (S5 Fig.).  

 

Discussion (l.742): 

In order to investigate which statistics are estimated by the brain during the learning of               
categorical sequential inputs, we compared three models within the DC model family that             
use different sequence properties to perform inference on future observations: stimulus           
probability (SP), alternation probability (AP), and transition probability (TP) inference. The TP            
model subsumes SP and AP models and is thus more general by maintaining a larger               
hypothesis space. Our results show that the TP model family clearly outperformed the SP              
and AP families, thereby suggesting that the brain captures sequence dependencies by            
tracking transitions between types of observations for future inference. We thereby provide            
further evidence for an implementation of a minimal transition probability model in the brain              
as recently concluded from the analysis of several perceptual learning studies [90],            
extending it to include somesthesis. Additionally, we expand upon previous studies by            
comparing a first order TP model (TP1), capturing transitions between stimuli conditional            
only on the previous observation, with a second order TP model (TP2), which tracks              
transitions conditional on the past two observations. Our results suggest that the additional             
complexity of the second order dependencies contained in our stimulus sequence were not             
captured by the brain, ​although we were not able to convincingly show this for early CS                
computation. ​Nevertheless, ​the brain may resort to alternative, more compressed          
representations [91]. 

 

S7 Fig. Additional random effects family comparisons. D) Comparison of the model            
families within the DC model: Stimulus probability model (SP), alternation probability           
model (AP) and transition probability model family (TP) subsuming first and second            
order TP models in one family. 

 

 



 

3.) Why did you choose this exact order of hierarchy? What would a different ordering yield? 

The hierarchical order of our analysis was intended to develop from general to more specific               
principles. On the broadest level, our models are two different classes of model architectures              
for Bayesian inference (HMM and DC models). Each of these model classes may be              
specified to track different sequence statistics: stimulus, alternation, and transition          
probabilities. Finally, these statistics may be used to perform surprise computations, which            
can be interpreted as the readout functions of the models, which are naturally dependent on               
both the model class as well as which sequence statistic is tracked. Specifically, the model               
class and sequence statistic determine the probability estimates of the models, while the             
surprise computation is only a readout of this estimate. As such it appeared to us to be the                  
most conceptually sound ordering that yields interpretable results also at the intermediate            
levels.  

As suggested by the reviewer, we also inspected the non-hierarchical family comparison as             
a reasonable alternative approach. This procedure groups the entirely model space in the             
respective families of interest without step-wise data reduction. The results of both            
approaches are highly similar, suggesting that our results are generally robust against            
changes in the exact strategy of model comparison. 

 

4.) Even if you stick to the hierarchical scheme, which I do not recommend, I think you would                  
have to show the expected model probabilities for all models and family comparisons. The              
reader should be able to appreciate that the final decision for a single model, although it                
might be clear in the final step, is only performed within a probably small fraction of the entire                  
mass of your model space. It is probably not feasible to show this for all voxel-timepoints, but                 
you could select a couple of representative examples. 

As described in the reply above we now provide the expected posterior probabilities and              
protected exceedance probabilities (where they apply) in a supplementary figure (S8 Fig.) in             
order for the reader to inspect the effects in light of these alternative statistics. As we                
previously showed that similar conclusions result from a hierarchical and non-hierarchical           
scheme, we hope this current analysis further justifies the reporting of the results of the               
hierarchical scheme by showing that they are not significantly dependent on the choice of              
statistic. With the additional argumentation added to the text as outlined above, we hope to               
make it clear to the reader that the approach performs model comparison on a fraction of                
EEG sensors, time points, and models as one moves through its levels. 

 

5.) How can you assure that your statements about the best model hold? 

We submitted the model comparison to a simulation study which is described in the reply               
above as well as in an addition to the methods section of the manuscript . No false positives                  
were observed in the simulation under a relevant signal-to-noise level. Additionally, as            
mentioned above with regards to the non-hierarchical model comparison, the presented           
pattern of results does not seem to be dependent on the exact model comparison procedure               
which is in favour of the claimed statements about the best model. 



 

Minor points: 

Multiple comparison for Bayesian Model Selection: Doing model or family comparison for            
every single voxel-timepoint means that you are conducting many model comparison tests. I             
am not sure there is a solution for this problem, but it might be worth mentioning this. I do not                    
think this invalidates any findings at particular levels, but it might be good to remind the                
reader that the voxel-timepoints with preference for a particular family are just few of many               
that were tested. 

We thank the reviewer for their comment on the issue of multiple comparison correction for               
Bayesian Model Selection and reproduce our reply to reviewer #2:. 

In Bayesian model comparison there is no conventional way to correct for multiple             
comparisons and it has been established that Bayesian methods provide inherent           
adjustments of sensitivity and specificity to deal with false positive rates (Friston 2002,             
Neuroimage, doi:10.1006/nimg.2002.109 and Friston 2002, Neuroimage,      
doi:10.1006/nimg.2002.109). However, in line with a comment of reviewer #3 (below) we            
added information on the number of comparisons in the text.  

 

Line 189: How was train length entered in the GLM? As a parametric modulator, or as                
several modulators each coding for one length? 

The train length was entered as five modulators each coding for one train length, which we                
now more clearly document in the manuscript. The inspection of the respective section             
brought to our attention an unfortunate misreporting in the GLM description. While we write              
to have included regime in the GLM we report on, we in fact ran a separate GLM in order to                    
test for regime effects. We opted for this approach as balancing the number of standards               
and deviants between the regimes lead to considerably less total trials. This balanced GLM              
showed no main effect of regime or interaction of regime and stimulus type. We now               
accurately report this in the description of the GLM analysis (l.169): 

On the first level, the single-trial data of each participant was subject to a multiple regression                
approach ​with several regressors each coding for a level of an experimental variable:             
stimulus type (levels: standard and deviant), train length (levels: 2, 3, 4, 5, >6 stimuli)               
and a factor of experimental block as nuisance regressors (levels: block 1-5). An             
additional GLM with a balanced number of standard and deviant trials for the regimes              
(levels: fast and slow switching regime) showed no effect of regime or interaction of              
regime and stimulus type. 

Line 255: I think there is a typo in the right hand side of the equation. One of the j indexing                     
s_t and s_t-1 should be an i. 

Thank you for bringing the typo to our attention, we have corrected it and the respective part                 
of the equation in line 255 now reads: 
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Fig. 5: The x-axis label is probably trial number and not time in ms. 

We thank the reviewer for pointing out this unfortunate mistake and have changed the x-axis               
label to trial number. 

 

Fig 8: Reference to panel E is missing in caption. 

We thank the reviewer for pointing out the missing reference to panel E in the caption and                 
added it.  

 

Fig 9: Please remind the reader of the coloring of deviants and standards (bottom row). I                
assume this is the same coloring as in Figure 1. 

We thank the reviewer for pointing out the missing legend in Fig. 9. The coloring indeed                
resembles Fig. 1 and we added the color reference in the caption. 

 

Fig. 10: Are the values for rS2 and lS2 correct. Shouldn’t the “Moment Posterior” be               
symmetric as well? 

We thank the reviewer for this observation. Even though we used a symmetric pair for the                
equivalent current dipole fitting procedure in SPM (VB-ECD), the method uses “soft”            
symmetry constraints (as described in Fastenrath, Friston & Kiebel 2009, Neuroimage, doi:            
10.1016/j.neuroimage.2008.07.041) which, in our case, results in slightly different         
orientations of left and right S2 dipoles to best account for the data. 

 

Changes in the revised manuscript (l.530): 

The distributed source reconstruction resulted in significant clusters at the locations of            
primary and secondary somatosensory cortex (Figure 8A, with details specified in the            
corresponding table). The resulting anatomical locations were subsequently used as priors           
to fit four equivalent current dipoles (Figure 8B, with details specified in corresponding table).              
Two dipoles were used to model S1 activity at time points around the N20 and the P50                 
components while an additional symmetric pair captured bilateral S2 activity around the            
N140 component. ​The moment posteriors of the S2 dipoles end up not strictly             
symmetric due to the soft symmetry constraints used by the SPM procedure            
(Fastenrath, Friston & Kiebel 2009).  

 


