
S1 Text: Mathematical derivations and proofs

1 Model and Notation

This appendix contains derivations and proofs of the results in the main text.
We begin with a technical review of our model and notation.

1.1 Graph

The population is structured as a weighted digraph, with the edge weight
from vertex i to vertex j denoted wij. Self-loops, represented by wii > 0,
are allowed. We require that the graph be strongly connected, meaning that
there is a path of directed edges with nonzero weight from any given vertex
to any other. Although our general results apply to directed graphs, we will
pay special attention to the undirected case, which is when wij = wji for
each pair of vertices i, j ∈ G.

The weighted out-degree of a vertex i ∈ G is defined as wi =
∑

j∈Gwij.
The random walk step probability from i to j is pij = wij/wi. The tem-
perature of vertex i is defined to be Ti =

∑
j∈G pji. Note that

∑
i∈G Ti =∑

i,j∈G pji = N .

1.2 Birth-death process

We let xi denote the type occupying vertex i ∈ G: xi = 1 if i is occupied
by a mutant, and xi = 0 if i is occupied by a resident. The types occupying
each vertex are collected into a state vector x = (xi)i∈G. We distinguish in
particular the all-mutant state 1 and the all-resident state 0. The frequency
of mutants in a given state x is denoted by x̄ = 1

N

∑
i∈G xi.

Mutants have fitness r = 1 + δ, while residents have fitness 1. So overall,
the fitness of the occupant of vertex i can be written as 1 + δxi.
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According to the Birth-death (Bd) process, first an individual is chosen to
reproduce proportionally to fitness, and then it displaces a neighbor chosen
proportionally to edge weight. The probability that the offspring of vertex i
replaces the occupant of j in state x in a single time-step is therefore

eij(x) =

(
1 + δxi

N + δ
∑

k∈G xk

)
pij

=

(
1 + δxi
1 + δx̄

)
pij
N
. (1)

1.3 Initialization

We consider an initial state in which a single vertex is occupied by a mutant,
and all other vertices are occupied by residents. The vertex containing the
initial mutant is chosen from a probability distribution µ = {µi}i∈G; we call
this distribution the initialization.

We focus on two cases: uniform initialization, in which the mutant is
equally likely to appear at each vertex, µi = 1/N for each i ∈ G, and temper-
ature initialization, in which mutants appear proportionally to temperature,
µi = Ti/N .

2 Weak-selection expansion of fixation prob-

ability

Here we derive the formulas for ρ◦ and ρ′, in the Taylor expansion ρ(1 + δ) =
ρ◦ + δρ′ +O(δ2), that are given in the main text.

2.1 Neutral drift

We begin with the netural drift term ρ◦. Neutral drift is the case r = 1
(equivalently, δ = 0), meaning that mutants and residents have the same
fitness. Quantities that pertain to neutral drift are identified with a ◦.

Under neutral drift, Eq. (1), for the probability that the offspring of i
replaces the occupant of j, reduces to

e◦ij =
pij
N

=
wij
Nwi

. (2)
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Importantly, the neutral replacement probabilities e◦ij are independent of the
population state x. From these replacement probabilities, we can calculate
the neutral birth and death rate of vertex i,

b◦i =
∑
j∈G

e◦ij =
1

N
, (3)

and

d◦i =
∑
j∈G

e◦ji =
1

N

∑
j∈G

pji =
1

N

∑
j∈G

wji
wj

=
Ti
N
. (4)

We now turn to fixation probability. Let πi denote the probability, under
neutral drift, that a mutant type arising at vertex i will reach fixation (i.e.
that the process reaches the all-mutant state 1 from an initial state with a
mutant in vertex i and residents elsewhere). We refer to πi as the reproductive
value (RV) of vertex i [1, 2, 3]. These reproductive values πi are determined
by the following system of equations [4, 5].

d◦iπi =
∑
j∈G

e◦ijπj (5a)∑
i∈G

πi = 1. (5b)

For Bd updating, Eq. (5a) becomes∑
j∈G

pjiπi =
∑
j∈G

pijπj, (6)

which is equivalent to Eq. (6a) of the main text.
In the case of an undirected graph (wji = wij for all i, j ∈ G), we can

solve Eq. (5) explicitly to obtain

πi =
w−1i
W̃

, where W̃ =
∑
j∈G

w−1j . (7)

In this case, each vertex has reproductive value inversely proportional to
its weighted degree. For directed graphs, there is no explicit solution, but
Eq. (5) can be solved using standard methods for systems of linear equations.
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We now consider an arbitrary initialization µ = {µi}i∈G. The overall
neutral fixation probability, ρ◦, is then given by

ρ◦ =
∑
i∈G

µiπi. (8)

For uniform initialization, µi = 1/N for each i, which implies that ρ◦ =
1
N

∑
i∈G πi = 1

N
, independently of the graph structure. For temperature

initialization, we have µi = d◦i = Ti/N , leading to

ρ◦ =
∑
i∈G

d◦iπi =
1

N

∑
i∈G

Tiπi. (9)

Allen et al. [4] proved that, if the neutral birth rate b◦i is uniform over vertices
(which is always true for Birth-death updating), then ρ◦ ≤ 1/N . Equality
occurs only when d◦i is also uniform over vertices, which for Bd updating
occurs only when the graph is isothermal.

In the case of an undirected graph, substituting Eq. (7) into Eq. (9) gives
the explicit formula

ρ◦ =
1

NW̃

∑
i,j∈G

wij
wiwj

. (10)

2.2 Weak selection

To compute the first-order term ρ′, which quantifies the effects of weak se-
lection, we employ a method developed by McAvoy and Allen [6].

2.2.1 Change due to selection

We begin by defining the RV-weighted frequency of mutants:

x̂ =
∑
i∈G

πixi. (11)

Let ∆̂sel(x) denote the expected change in the RV-weighted frequency x̂ from
a given state x, which can be expressed using Eq. (1) as

∆̂sel(x) =
∑
i,j∈G

eij(x) (xi − xj)πj

=
1

N

∑
i,j∈G

(
1 + δxi
1 + δx̄

)
pij(xi − xj)πj. (12)
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For the neutral case, setting δ = 0 yields

∆̂◦sel(x) =
1

N

∑
i,j∈G

pij(xi − xj)πj

=
1

N

∑
i∈G

xi

(∑
j∈G

pijπj −
∑
j∈G

pjiπi

)
= 0, (13)

by Eq. (5a). Turning to weak selection, we denote by ∆̂′sel(x) the derivative
of ∆̂sel(x) with respect to δ at δ = 0. Taking the derivative of Eq. (12) and
applying Eq. (13) and the fact that x2i = xi for each i, we obtain

∆̂′sel(x) =
d

dδ

∣∣∣∣
δ=0

∆̂sel(x)

=
1

N

∑
i,j∈G

(xi − x̄) pij(xi − xj)πj

=
1

N

∑
i,j∈G

xipij(xi − xj)πj −
x̄

N

∑
i,j

pij(xi − xj)πj

=
1

N

∑
i,j∈G

xipij(xi − xj)πj

=
1

N

∑
i,j∈G

pijxiπj −
1

N

∑
i,j∈G

pijxixjπj. (14)

Using Eq. (5a), we observe that the sum in first term can be rewritten as
follows: ∑

i,j∈G

pijxiπj =
∑
i∈G

xi
∑
j∈G

pijπj

=
∑
i∈G

xi
∑
j∈G

pjiπi

=
∑
i,j∈G

pjixiπi

=
∑
i,j∈G

pijxjπj.
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Thus, overall, we can rewrite Eq. (14) as

∆̂′sel(x) =
1

2N

∑
i,j∈G

pijxiπj +
1

2N

∑
i,j∈G

pijxjπj −
1

N

∑
i,j∈G

pijxixjπj

=
1

2N

∑
i,j

pijπj
(
xi(1− xj) + xj(1− xi)

)
=

1

2N

∑
i,j

pijπj χxi 6=xj(x). (15)

Above, χxi 6=xj(x) is an indicator function, equal to 1 if xi 6= xj in state x and

0 otherwise. We observe that ∆̂′sel is greatest when neighboring vertices have
different types.

2.2.2 Fixation probability

Let the random vector X(t) = (Xi(t))i∈G represent the state of the process
at time t. Let X̂(t) =

∑
i∈G πiXi represent the RV-weighted frequency at

time t. Let Eµ,r denote an expectation of a random variable, given that the
mutant fitness is r and the vertex containing the intial mutation is sampled
from the probability distribution µ = {µi}i∈G.

Noting that the RV-weighted frequency x̂ is 1 for x = 1 and 0 for x = 0,
we have

ρ(r) = lim
t→∞

Eµ,r[X̂(t)]

= Eµ,r[X̂(0)] +
∞∑
t=0

Eµ,r[X̂(t+ 1)− X̂(t)]

= ρ◦ +
∞∑
t=0

Eµ,r[∆̂sel(X(t))], (16)

using Eq. (8).
We now turn to weak selection by setting r = 1 + δ with |δ| � 1. We let

E◦µ = Eµ,1 denote expectations for the neutral case (r = 1, or equivalently,

δ = 0). Since ∆̂◦sel(x) = 0 for each state x, we have

Eµ,1+δ[∆̂sel(X(t))] = δ E◦µ[∆̂′sel(X(t))] +O(δ2). (17)
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Let us introduce the operator 〈 〉◦µ on state functions φ(x) by

〈φ〉◦µ =
∞∑
t=0

E◦µ [φ(X(t))] . (18)

McAvoy and Allen [6, Corollary 1] prove that sum on the right-hand side
converges absolutely for any function φ(x) satisfying φ(1) = φ(0) = 0.

Substituting Eq. (17) into (16) and interchanging sums and derivatives
(which is justified by uniform convergence), we obtain the expansion

ρ(1 + δ) = ρ◦ + δ
〈

∆̂′sel

〉◦
µ

+O
(
δ2
)
. (19)

The validity of Eq. (19) is proven formally by McAvoy and Allen [6, Theorem
1]. Combining with Eq. (15) have the following expression for the weak-
selection (first-order) coefficient ρ′:

ρ′ =
〈

∆̂′sel

〉◦
µ

=
1

2N

∑
i,j∈G

pijπj
〈
χxi 6=xj

〉◦
µ
. (20)

Defining τij =
〈
χxi 6=xj

〉◦
µ
, we have

ρ′ =
1

2N

∑
i,j∈G

pijπjτij. (21)

In the undirected case, substituting pij = wij/wi and πj = wj/W̃ , as per
Eq. (7), gives

ρ′ =
1

2NW̃

∑
i,j∈G

wijτij
wiwj

. (22)

2.2.3 Recurrence relation for coalescence lengths

In the previous section we defined the coalescence lengths τij by

τij =
〈
χxi 6=xj

〉◦
µ

=
∞∑
t=0

P◦µ [Xi(t) 6= Xj(t)] , (23)

It remains to derive the recurrence relation for τij. It is clear from Eq. (23)
that τii = 0 and τij = τji for each i, j ∈ G. For i 6= j, we expand Eq. (23) as

τij = P◦µ [Xi(0) 6= Xj(0)] +
∞∑
t=0

P◦µ [Xi(t+ 1) 6= Xj(t+ 1)] . (24)
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We note that Xi(0) 6= Xj(0) only if the initial mutant appears at either i or
j, so the first term on the right-hand side reduces to

P◦µ [Xi(0) 6= Xj(0)] = µi + µj. (25)

For the second term, considering all the ways the occupants of i or j could
be replaced, under neutral drift, from time t to time t+ 1, we have

P◦µ [Xi(t+ 1) 6= Xj(t+ 1)]

=
∑
k∈G

(
e◦ki P

◦
µ [Xk(t) 6= Xj(t)] + e◦kj P

◦
µ [Xi(t) 6= Xk(t)]

)
+

(
1−

∑
k∈G

(e◦ki + e◦kj)

)
P◦µ [Xi(t) 6= Xj(t)] . (26)

Substituting Eqs. (26) and (25) into (24), and invoking Eq. (23), e◦ij = pij/N ,
and Ti =

∑
k∈G pki, we have

τij = µi + µj +
1

N

∑
k∈G

(pkiτkj + pkjτik) +

(
1− Ti + Tj

N

)
τij. (27)

Solving for τij, and combining with the i = j case, we have the recurrence
relation

τij =


N(µi + µj) +

∑
k∈G (pkiτkj + pkjτik)

Ti + Tj
i 6= j

0 i = j.

(28)

In particular, for temperature initialization, µi = Ti/N , we have

τij =

1 +

∑
k∈G(pkiτkj + pkjτik)

Ti + Tj
i 6= j,

0 i = j.

(29)

For uniform initialization, µi = 1/N , we have

τij =


2 +

∑
k∈G (pkiτkj + pkjτik)

Ti + Tj
i 6= j

0 i = j.

(30)

These recurrence relations hold for both directed and undirected weighted
graphs.
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3 Genetic algorithm

Here we describe the genetic algorithm developed by Möller et al. [7] to search
for simple graphs with the largest ρ′ and smallest ρ′/ρ◦ under temperature
initialization, and smallest ρ′ under uniform initialization.

We begin the process withm randomly generated connected simple graphs
(unweighted, undirected, with no self-loops). We then assign k of those
graphs as parents of the next generation by choosing graphs that optimize
the desired property, such as the largest ρ′. Next, we recombine two of those
parents into a new “child” graph. At this stage, we also mutate a small num-
ber of the child’s edges through the inclusion of b mutations per individual
per time step. This introduces enough randomness in the approach to make
it less likely to get stuck in a local extremum.

The algorithm can be summarized as follows [7]:

1. Generate m connected Erdös-Rényi random graphs, with link proba-
bility p, to form the initial generation.

2. For each graph, calculate the property to be optimized (e.g. ρ′ or
ρ′/ρ◦), and select the k most optimal graphs as parents for the next
generation.

3. Generate m new “offspring” graphs, each created independently by the
following procedure:

(i) Sample two (not necessarily distinct) parents uniformly at ran-
dom.

(ii) For each (unordered) pair of vertices i and j, let the offspring
inherit the edge weight wij ∈ {0, 1} (i.e., absent or present) from
one parent or the other, with equal probability.

(iii) Randomly introduce mutations with fixed probability per edge,
such that there are b mutations expected per offspring. Here, a
mutation means that an edge is either eliminated or created.

(iv) If a resulting graph is disconnected, repeat steps (i)–(iii), until a
connected graph is obtained.

4. Repeat steps 2 and 3, n times.

The parameter values we used are given in Table 1.
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Table 1: Parameters used in the genetic algorithm.
Parameter Description Value

m number of random graphs per generation 400
p Erdös-Rényi link probability 0.2
k number of parents per generation 10
b number of mutations per individual per time step 1
n number of iterations 5000

4 Minimal absolute amplifier

In this and the following sections, we derive analytical results for particular
graph families. We begin with the minimal absolute amplifier for temper-
ature intialization, i.e. the “Bowtie” graph of Figure 12 of the main text.
Computing ρ◦ and ρ′ for this graph according to Eqs. (10), (22), and (29),
we obtain the weak-selection expansion

ρG(1 + δ) =
23

144
+

367

864
δ +O(δ2). (31)

To obtain the fixation probability for arbitrary mutant fitness r, we em-
ployed an algorithm of Cuesta et al. [8, 9], adapted for temperature initial-
ization. This algorithm obtains a closed-form rational expression for ρG(r)
by evaluating this function at sufficiently many points. The necessary num-
ber of points is bounded by the number of distinct states of the evolutionary
process (equivalently, the number of distinct 2-colorings of the graph), up to
symmetry. This method yielded the expression ρG(r) = num/denom, where

num = 49674643200r17 + 443672724240r16 + 1893000544452r15

+ 5116448030706r14 + 9775218670398r13 + 13919892588853r12

+ 15150505540668r11 + 12695464424106r10 + 8125168939102r9

+3871299178035r8 +1302413549640r7 +277482979600r6 +28278432000r5,
(32a)
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denom = 49674643200r17 + 496107069840r16 + 2413909415772r15

+ 7621969451652r14 + 17556513099030r13 + 31515614840412r12

+ 46228915602810r11 + 57756165107886r10 + 63782585449398r9

+ 63782585449398r8 + 57756165107886r7 + 46228915602810r6

+ 31515614840412r5 + 17556513099030r4 + 7621969451652r3

+ 2413909415772r2 + 496107069840r + 49674643200. (32b)

Taylor expansion of ρG(r) about r = 1 agrees with Eq. (31).

5 Star and complete bipartite graphs

We now turn to the complete bipartite graph KnA,nB
, which includes the Star

as a special case. In this graph, the vertices are partitioned into two sets A
and B, of respective sizes nA and nB. A given pair of vertices are joined
by an edge if and only if they belong to different sets. The Star, Sn, is the
special case nA = n, nB = 1 (or equivalently, nA = 1, nB = n).

For KnA,nB
, each vertex in set A has weighted degree wA = nB, while each

vertex in set B has weighted degree wB = nA. The total inverse weighted
degree is

W̃ =
nA
nB

+
nB
nA

=
n2
A + n2

B

nAnB
. (33)

The step probabilities are pAB = 1/nB and pBA = 1/nA. Each A-vertex
has temperature TA = nB/nA, while each B-vertex has temperature TB =
nA/nB. We observe that in the case nA = nB, the graph is isothermal.

5.1 Temperature initialization

For temperature initialization, the neutral fixation probability, from Eq. (10),
becomes

ρ◦ =
1

NW̃

(
2nAnB
wAwB

)
=

2nAnB
(nA + nB) (n2

A + n2
B)
. (34)

Turning to the weak selection term ρ′, there are three coalescence times
to solve for: τAA′ for distinct vertices in set A, τBB′ for distinct vertices in set
B, and τAB for vertices in different sets. The recurrence relation, Eq. (29),
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becomes

τAB = 1 +

(
nB−1
nA

)
τBB′ +

(
nA−1
nB

)
τAA′

nB

nA
+ nA

nB

τAA′ = 1 + τAB

τBB′ = 1 + τAB.

Substituting the second and third equations into the first, and solving for
τAB, yields

τAB =
2(n2

A + n2
B)− (nA + nB)

nA + nB
. (35)

Substituting in Eq. (22) yields the first-order coefficient for fixation proba-
bility:

ρ′ =
1

2NW̃

(
2nAnBτAB
wAwB

)
=
nAnB

(
2(n2

A + n2
B)− (nA + nB)

)
(nA + nB)2 (n2

A + n2
B)

. (36)

Setting nA = n, nB = 1 in Eqs. (34) and (36) yields the results for the Star
Sn, for temperature initialization, reported in the main text.

We can compare to previous results [10, 11] for fixation probabilities on
the bipartite graph with arbitrary mutant fitness, r. Following the solution
of Monk et. al [11], we define the function

fa,b(r) = r−(a+b)
(
nA + rnB
rnA + nB

)a−b
. (37)

The fixation probability from a single mutant in set A or B, respectively, can
then be written as [11]

ρA(r) =
f1,0(r)− 1

fnA,nB
(r)− 1

, ρB(r) =
f0,1(r)− 1

fnA,nB
(r)− 1

. (38)

For the overall probability for temperature initialization, noting that nATA =
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nB and nBTB = nA, we obtain

ρKnA,nB
(r) =

nB ρA(r) + nA ρB(r)

nA + nB

=
nBf1,0(r) + nAf0,1(r)− (nA + nB)

(nA + nB) (fnA,nB
(r)− 1)

=

nB(nA+rnB)
r(rnA+nB)

+ nA(rnA+nB)
r(nA+rnB)

− (nA + nB)

(nA + nB)

(
r−(nA+nB)

(
nA+rnB

rnA+nB

)nA−nB

− 1

) .
Taylor expansion gives

ρKnA,nB
(r) =

2nAnB
(nA + nB) (n2

A + n2
B)

+
nAnB

(
2(n2

A + n2
B)− (nA + nB)

)
(nA + nB)2 (n2

A + n2
B)

δ +O(δ2), (39)

which agrees with Eqs. (34) and (36).
Comparing to a well-mixed population of size N = nA + nB, we find

ρ′ − N − 1

2N
= −

(nA − nB)2
(
n2
A + n2

B − (nA + nB)
)

2(nA + nB)2(n2
A + n2

B)
(40)

ρ′

ρ◦
− N − 1

2
=

(nA − nB)2

2(nA + nB)
. (41)

For nA 6= nB, we observe that ρ′ < (N − 1)/(2N) while ρ′/ρ◦ > (N − 1)/2.
We conclude that for temperature initialization, the complete bipartite graph
KnA,nB

, with nA 6= nB, is an absolute suppressor and relative amplifier of
weak selection.
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5.2 Uniform initialization

For uniform initialization, the neutral fixation probability is ρ◦ = 1/N , as on
any graph. The recurrence relation for the τij, Eq. (30), becomes

τAB =
2 +

(
nB−1
nA

)
τBB′ +

(
nA−1
nB

)
τAA′

nB

nA
+ nA

nB

τAA′ =
nA
nB

+ τAB

τBB′ =
nB
nA

+ τAB.

Substituting the second two equations into the first and solving for τAB yields

τAB =
(n2

A + n2
B)2 − (n3

A + n3
B)

nA + nB
. (42)

Substituting in Eq. (22) yields the first-order term for fixation probability:

ρ′ =
1

2NW̃

(
2nAnBτAB
wAwB

)
=

(n2
A + n2

B)2 − (n3
A + n3

B)

(nA + nB)2 (n2
A + n2

B)
. (43)

Setting nA = n, nB = 1 in Eq. (43) yields the result for the Star Sn, for
uniform initialization, reported in the main text.

To compare to previous results [10, 11], we express the overall fixation
probability for uniform initialization, via Eq. (38), as

ρKnA,nB
(r) =

nA ρA(r) + nB ρB(r)

nA + nB

=

nA(nA+rnB)
r(rnA+nB)

+ nB(rnA+nB)
r(nA+rnB)

− (nA + nB)

(nA + nB)

(
r−(nA+nB)

(
nA+rnB

rnA+nB

)nA−nB

− 1

) .
Taylor expansion gives

ρKnA,nB
(1 + δ) =

1

nA + nB
+

(n2
A + n2

B)2 − (n3
A + n3

B)

(nA + nB)2 (n2
A + n2

B)
δ +O(δ2), (44)

which agrees with Eq.(43).
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Comparing to the well-mixed population of size N = nA + nB, we find

ρ′ − N − 1

2N
=

(nA − nB)2
(
n2
A + n2

B − (nA + nB)
)

2(nA + nB)2(n2
A + nB)2

. (45)

For nA 6= nB, we observe that ρ′ > (N − 1)/(2N), meaning that for uniform
initialization, KnA,nB

is an amplifier of weak selection as long as nA 6= nB.
Curiously, comparing Eqs. (41) and (45), we find that the difference ρ′ −

(N − 1)/(2N) for uniform and temperature initialization are opposites of
each other. While this result is intriguing, its significance is unclear.

6 Fan

The Fan graph (Fig 12 of the main text) consists of a hub vertex attached
to n blades. Each blade is comprised of m vertices. Within a given blade,
each vertex is connected to every other vertex with weight 1; in symbols,
wBB′ = 1. The hub is connected to every vertex in the blades with an edge
weight of ε; in symbols, wHB = ε. There are no connections between different
blades. The total population size is N = mn+ 1.

6.1 Temperature initialization

6.1.1 Weighted Degrees and Step Probabilities

The weighted degrees are wH = mnε for the hub and wB = m − 1 + ε for
each blade vertex. The step probabilities are

• pHB = 1
mn

from the hub to any given blade vertex,

• pBH = ε
m−1+ε from any given blade vertex to the hub,

• pBB′ = 1
m−1+ε from one vertex to any other given vertex in the same

blade.

The total inverse weighted degree is

W̃ = w−1H +mnw−1B =
1

mnε
+

mn

(m− 1) + ε
. (46)
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The temperatures are

TH = mnpBH =
mnε

m− 1 + ε
. (47)

for the hub, and

TB = pHB + (m− 1)pBB‘ =
1

mn
+

m− 1

m− 1 + ε
. (48)

for each blade vertex.

6.1.2 Fixation probability

For temperature initialization, applying Eq. (10) gives a neutral fixation
probability of

ρ◦ =
1

NW̃

(
2mn

wBH
wBwH

+mn(m− 1)
wBB‘

w2
B

)
=

1

(mn+ 1)
(

1
mnε

+ mn
(m−1+ε)

) ( 2mnε

(mnε)(m− 1 + ε)
+

mn(m− 1)

(m− 1 + ε)2

)

=
mnε(m− 1 + 2ε)(mn+ 2)

(m− 1 + ε)(mn+ 1)(m− 1 + ε(m2n2 + 1))
. (49)

To find the first-order term, ρ′, we must compute three coalescence times:
τHB for the hub and a blade vertex, τBB′ for two distinct vertices on the same
blade, and τBB′′ for two vertices on different blades. These are determined
by the following system of equations:

τHB = 1 +
(m− 1)pBHτBB′ +m(n− 1)pBHτBB′′ + (m− 1)pBB′τHB

TH + TB
(50a)

τBB′ = 1 +
pHBτHB + (m− 2)pBB′τBB′

TB
(50b)

τBB′′ = 1 +
pHBτHB + (m− 1)pBB′τBB′′

TB
. (50c)

Solving this system and substituting in Eq. (22), we obtain the first-order
term, ρ′

ρ′ =
1

2NW̃

(
2mn

wBH
wBwH

τHB +mn(m− 1)
wBB‘

w2
B

τBB′

)
=

num

denom
, (51)
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where

num = mnε
(
2(m− 1 + ε)3 + 2mn(m− 1 + ε)2(2m− 1− ε)

+ 2m2n2(m− 1 + ε)(2ε2 − ε+m2 −m)

+ 2m4n3ε(m+ 2ε− 1 + nm2 − n))
)
. (52)

denom = 2(m− 1 + ε)(mn+ 1)(m− 1 + ε(m2n2 + 1))((m− 1 + ε)2

+mn(1 + ε)(m− 1 + ε) +m3n2ε). (53)

6.1.3 Behavior in terms of ε

We now analyze how ρ and ρ′ vary with ε. As ε→ 0, we have the following
limits:

lim
ε→0

ρ◦ = lim
ε→0

ρ′ = 0, (54)

lim
ε→0

ρ′

ρ◦
=

(mn+ 1) (m2n+m− 1)

(mn+ 2)(mn+m− 1)
. (55)

As ε→∞, we have

lim
ε→∞

ρ◦ =
2mn

(1 +mn)(1 + (mn)2)
, (56)

lim
ε→∞

ρ′ =
mn(1−mn+ 2(mn)2)

(1 +mn)2(1 + (mn)2)
. (57)

These limiting ρ◦ and ρ′ values are the same as for the star with mn leaves,
Smn. This makes sense, because in the ε → ∞ limit, the blade-to-blade
weights are negligible in comparison to the hub-to-blade weights, making the
Fan equivalent to a Star.

We now show that the Fan displays all three classifications of behavior,
depending on the value of ε.

Theorem 1. The Fan Fn,m is

(a) An absolute and relative suppressor for 0 < ε < (m− 1)/(mn− 1),

(b) An absolute and relative amplifier for (m−1)/(mn−1) < ε < ε∗, where
ε∗ is a particular cubic root (depending on m and n), and
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(c) A relative amplifier and absolute suppressor for ε > ε∗.

Proof. We first prove the statements about absolute amplification and sup-
pression, by examining the bevavior of ρ′. From Eqs. (55) and (57), we have
that ρ′ < (N − 1)/(2N) for all sufficiently small or sufficiently large ε. To
determine the behavior between these limits, we set ρ′ = (N − 1)/(2N) =
(mn)/(2mn + 2). Upon substituting and factoring with the aid of Mathe-
matica, we find that this equation is equivalent to(

(mn− 1)− (m− 1)ε
)
p(ε) = 0, (58)

where p(ε) is the cubic

p(ε) = ε3(mn− 1)2 + ε2
(
mn(mn− 1)

(
m2n− 1

)
+m− 1

)
− ε(m− 1)

(
m3n3 − 2m2n+ 2mn+m− 1

)
− (m− 1)2(mn+m− 1). (59)

By Descartes’ Rule of Signs, p(ε) has exactly one positive root (counting
multiplicity); call it ε∗. Therefore, the left-hand side of Eq. (58) has single
roots at ε = (m − 1)/(mn − 1) and ε = ε∗. We also observe that p(0) < 0,
and

p

(
m− 1

mn− 1

)
= −m

4(m− 1)2n3(n− 1)

(mn− 1)2
< 0. (60)

Since p(ε) has no positive roots aside from ε∗, we must have ε∗ > (m −
1)/(mn− 1). It follows that ρ′ > (N − 1)/(2N) only for (m− 1)/(mn− 1) <
ε < ε∗. We conclude that the Fan is an absolute suppressor for 0 < ε <
(m− 1)/(mn− 1), an absolute amplifier for (m− 1)/(mn− 1) < ε < ε∗, and
an absolute suppressor again for ε > ε∗.

We now turn to the claims regarding relative amplification and suppres-
sion, by examining the behavior of ρ′/ρ◦. Comparing the ε→ 0 limit to the
well-mixed value of (N − 1)/2 = nm/2, we find (after some algebra)

lim
ε→0

ρ′

ρ◦
− mn

2
= −m

2n(n− 2)(mn+ 1) +m (m2n2 − 2) + 2

2(mn+ 2)(mn+m− 1)
. (61)

Recalling that m,n ≥ 2, we see that the right-hand side above is negative;
thus ρ′/ρ◦ < (N − 1)/2 for all sufficiently small ε. Since the ε → ∞ limit
recovers the results for the Star, we have that ρ′/ρ◦ > (N − 1)/2 for all
sufficiently large ε. To determine the behavior between these limits, we set
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ρ′/ρ◦ = mn/2. Upon substituting and factoring with the aid of Mathematica,
this equation becomes equivalent to(

(mn− 1)ε− (m− 1)
)
q(ε) = 0, (62)

where q(ε) is the quadratic

q(ε) = 2ε2 (mn− 1) + ε
(
m(mn− 2)(mn+ n+ 2) + 4

)
+ (m− 1)

(
m2(n− 2)(mn2 +mn+ 2m+n) + 2(m− 1)(2m2 + 2m+ 1) + 4

)
.

(63)

All coefficients of q(ε) are positive, so it has no positive roots. This shows that
ρ′/ρ◦ −mn/2 changes sign at most once. Combining with our information
about the ε→ 0 and ε→∞ limits shows that the Fn,m is a relative suppressor
for 0 < ε < (m−1)/(mn−1) and a relative amplifier for ε > (m−1)/(mn−1).
This completes the proof.

6.1.4 Asymptotic behavior as n→∞

Here we examine the behavior of ρ′ and Nρ◦ in the n → ∞ limit. We note
that this limit is taken after the weak-selection limit; thus this is a wN -
limit in the sense of Ref. [12]. In this limit, a graph is an absolute amplifier
(respectively, absolute suppressor) if the limiting value of ρ′ is greater than
(respectively, less than) 1/2; a graph is a relative amplifier (respectively, rela-
tive suppressor) if the limiting value of ρ′/(Nρ◦) is greater than (respectively,
less than) 1/2.

We consider three possible ways that ε could scale with n. First, if ε is
constant with respect to n, we obtain

lim
n→∞

ρ′ =
m2 − 1

2m(m− 1 + ε)
(64a)

lim
n→∞

Nρ◦ =
m− 1

m− 1 + ε
(64b)

lim
n→∞

ρ′

Nρ◦
=
m+ 1

2m
. (64c)

We observe that limn→∞ ρ
′ > 1/2 when ε < (m−1)/m, and limn→∞ ρ

′ < 1/2
when ε > (m − 1)/m. On the other hand, limn→∞ ρ

′/(Nρ◦) is independent
of ε and is always greater than 1/2.
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Second, we suppose that ε scales inversely with n, by setting ε = kn−1.
This gives

lim
n→∞

ρ′ =
km(m+ 1)

2 (km2 +m− 1)
(65a)

lim
n→∞

Nρ◦ = 1 (65b)

lim
n→∞

ρ′

Nρ◦
=

km(m+ 1)

2 (km2 +m− 1)
. (65c)

With this scaling, limn→∞ ρ
′ and limn→∞ ρ

′/(Nρ◦) are both greater than 1/2
when k > (m− 1)/m, or equivalently ε > (m− 1)/(mn); the opposite is true
when ε < (m− 1)/(mn).

Finally, we consider the inverse square scaling ε = kn−2, which gives

lim
n→∞

ρ′ = 0 (66a)

lim
n→∞

Nρ◦ =
km2

km2 +m− 1
(66b)

lim
n→∞

ρ′

Nρ◦
= 0. (66c)

Putting these results together, we conclude that, asymptotically as n →
∞, the Fan is an absolute and relative suppressor for 0 < ε < (m− 1)/(mn),
an absolute and relative amplifier for (m − 1)/(mn) < ε < (m − 1)/m, and
a relative amplifier and absolute suppressor for ε > (m− 1)/m.

6.1.5 Maximizing ρ′

Eqs. (64a) and (65a) suggest that ρ′ is maximized for a scaling of ε that
is between n0 and n−1, as n → ∞. To determine the precise scaling that
maximizes ρ′, we take the derivative of ρ′ with respect to ε. The numerator
of dρ′/dε can be written as

(m− 1)m8n8ε2
(
−m2(m+ 1)nε2 − 2(m+ 1)ε3

−(m− 1)ε2 + (m− 1)2(m+ 1)
)

+O(n7) (n→∞). (67)

Since the maximizing ε should scale between n0 and n−1, we suppose that
limn→∞ ε = 0 and limn→∞(nε) = ∞. Applying these limits to Eq. (67), we
find that, asymptotically as n→∞, dρ′/dε = 0 reduces to

−m2(m+ 1)nε2 + (m− 1)2(m+ 1) = 0. (68)
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Figure S1: Maximizing ρ′ for the Fan. The values of ε that maximize ρ′

for the Fan graphs Fn,2 and Fn,3, calculated numerically in Mathematica, are
plotted (dots) against the number of blades n. Curves show the approximated
maximand ε = (m− 1)/(m

√
n), which is asymptotically exact in the n→∞

limit.

Solving for ε, we obtain

ε =
m− 1

m
√
n
. (69)

Thus the ε that maximizes ρ′ is asymptotically ε = (m−1)/(m
√
n) as n→∞.

With this scaling of ε with respect to n, we obtain

lim
n→∞

ρ′ =
m+ 1

2m
(70)

lim
n→∞

Nρ◦ = 1. (71)

Figure S1 shows that (m − 1)/(m
√
n) accurately estimates the maximizing

values of ε for finite n.
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6.2 Uniform initialization

6.2.1 Derivation of ρ′

We now consider the Fan with uniform initialization. Eq. (30) gives us the
system of equations

τHB =
2 + (m− 1)pBHτBB′ +m(n− 1)pBHτBB′′ + (m− 1)pBB′τHB

TH + TB
(72a)

τBB′ =
1 + pHBτHB + (m− 2)pBB′τBB′

TB
(72b)

τBB′′ =
1 + pHBτHB + (m− 1)pBB′τBB′′

TB
. (72c)

Solving and substituting in Eq. (22), we obtain

ρ′unif =
num

denom
, (73a)

with

num = m2n2ε
(
m3(m+ 1)n3ε+ 2m2n2(ε− 1)ε

+mn(3m− 2ε+ 1)(m+ ε− 1) + 4(m+ ε− 1)2
)

(73b)

denom = 2(mn+ 1)
(
m2n2ε+m+ ε− 1

)
×
(
m3n2ε+mn(ε+ 1)(m+ ε− 1) + (m+ ε− 1)2

)
. (73c)

6.2.2 Behavior in terms of ε

We observe that limε→0 ρ
′ = 0. This indicates that the Fan with uniform

initialization is a suppressor of weak selection for all sufficiently small ε. As
ε → ∞, the ρ′ value approaches that of the Star Smn, which is an amplifier
of weak selection. Therefore the Fan in an amplifier of weak selection for all
sufficiently large ε.

To determine the behavior between these limits, we set ρ′ = (N−1)/(2N) =
(mn)/(2(mn+ 1)). Upon substituting and factoring with the aid of Mathe-
matica, this equation becomes equivalent to(

(mn− 1)ε− (m− 1)
)
q(ε) = 0, (74)
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where q(ε) is the quadratic

q(ε) = ε2(mn− 1)2

+ε
(
mn

(
(m− 1)2(n− 1)n+ (m− 1)(n− 2)(2n+ 1) + (n− 1)2

)
+ 2(m− 1)

)
+ (m− 1)(mn+m− 1). (75)

All coefficients in q(ε) are positive, so there are no positive roots. Therefore,
ρ′ = (N −1)/(2N) only in the case ε = (m−1)/(mn−1), at which value the
Fan is isothermal. We conclude that the Fan with uniform initialization is a
suppressor of weak selection for 0 < ε < (m− 1)/(mn− 1), and an amplifier
of weak selection for ε > (m− 1)/(mn− 1).

7 Cartwheel

The Cartwheel graph CWn,m,h (Fig 9 of the main text) consists of a hub
with h vertices, and n ≤ h islands with m vertices each. One vertex in each
island, and n vertices in the hub, are designated as “connectors”. We use
the following vertex labels: H for non-connector hub, H̃ for connector hub,
I for non-connector island, and Ĩ for connector island.

Within the hub, all edge weights are 1; that is, wHH = wHH̃ = wH̃H̃ = 1.
Within an island, all edge weights are 1 as well: wII = wIĨ = 1. Each hub
connector is connected to a single island connector by an edge of weight ε:
wH̃Ĩ = ε.

The step probabilities are as follows:

• One non-connector hub to another: pHH′ = 1
h−1 .

• Non-connector hub to connector hub: pHH̃ = 1
h−1 .

• Connector hub to non-connector hub: pH̃H = 1
h−1+ε .

• One connector hub to another pH̃H̃′ = 1
h−1+ε .

• Distinct non-connector island vertices in the same island: pII′ = 1
m−1 .

• Non-connector island vertex to connector vertex in the same island:
pIĨ = 1

m−1 .

• Connector island vertex to non-connector vertex in the same island:
pĨI = 1

m−1+ε .
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• Connector hub vertex to corresponding connector island vertex: pH̃Ĩ =
ε

h−1+ε .

• Connector island vertex to corresponding connector hub vertex: pĨH̃ =
ε

m−1+ε .

The temperatures of the vertices are as follows:

TH = (n− h− 1)pHH′ + npH̃H =
h− n− 1

h− 1
+

n

h− 1 + ε
(76a)

TH̃ = (n− 1)pH̃H̃′ + (h− n)pHH̃ + pĨH̃

=
n− 1

h− 1 + ε
+
h− n
h− 1

+
ε

m− 1 + ε
(76b)

TI = (m− 2)pII′ + pĨI =
m− 2

m− 1
+

1

m− 1 + ε
(76c)

TĨ = (m− 1)pIĨ + pH̃Ĩ = 1 +
ε

h− 1 + ε
. (76d)

7.1 Neutral fixation probability

To obtain the neutral fixation probability, ρ◦, we first compute the sum of
inverse weighted degrees:

W̃ =
(m− 1)n

wI
+

n

wĨ
+
h− n
wH

+
n

wH̃
(77)

= n+
n

m− 1 + ε
+
h− n
h− 1

+
n

m− 1 + ε
. (78)

We then find ρ◦ from Eq. (10):

ρ◦ =
1

NW̃

(
2nε

wĨwH̃
+

2n(m− 1)

wĨwI
+

2n(h− n)

wH̃wH

+
(h− n)(h− n− 1)

w2
H

+
(m− 1)(m− 2)n

w2
I

+
n(n− 1)

w2
H̃

)
(79)

=

2εn
(ε+h−1)(ε+m−1) + 2n(h−n)

(h−1)(ε+h−1) + (n−1)n
(ε+h−1)2 + 2n

ε+m−1 + (h−n−1)(h−n)
(h−1)2 + (m−2)n

m−1

(h+mn)
(

n
ε+h−1 + n

ε+m−1 + h−n
h−1 + n

) .

(80)
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7.2 Weak selection

We now obtain the first-order term, ρ′, giving the effect of weak selection.
For this, we must solve for the pairwise coalescence times τij according to Eq.
(29). There are fourteen distinct coalescence times to consider. We explicate
the recurrence equations for the first two of these; the rest are constructed
similarly.

• Two distinct non-connector hub vertices:

τHH′ = 1 +
(h− n− 2)pHHτHH′ + npH̃HτHH̃

TH
. (81a)

The first term in the numerator corresponds to the h−n−2 other hub
non-connector vertices that could replace the one of the two in question,
with step probability pHH′ for each. The second term in the numerator
corresponds to the n connector hub vertices that could replace either
of the non-connector hub vertices in question, with step probability
pH̃H for each. Since the two vertices in question are equivalent to each
other, a factor of two cancels out in the numerator and denominator.

• Non-connector hub vertex and connector hub vertex:

τHH̃ = 1 +
1

TH + TH̃

(
(h− n− 1)pHH′τHH̃ + (n− 1)pH̃HτH̃H̃′

+ (n− 1)pH̃H̃τHH̃ + (h− n− 1)pHH̃τHH′ + pĨH̃τĨH
)
. (81b)

The first two terms in parentheses correspond to the non-connector
hub vertex being replaced by, respectively, a distinct non-connector hub
vertex and a distinct connector hub vertex. The next three correspond
to the connector hub vertex being replaced by, respectively, a distinct
connector hub vertex, a distinct non-connector hub vertex, and the
corresponding connector island vertex.

• Two distinct connector hub vertices:

τH̃H̃′ = 1 +
(n− 2)pH̃H̃′τH̃H̃′ + pĨH̃τĨH̃′ + (h− n)pHH̃τHH̃

TH̃
. (81c)

• Connector island vertex and non-connector hub vertex:

τĨH = 1 +
1

TĨ + TH

(
pH̃ĨτHH̃ + (m− 1)pIĨτIH

+ (n− 1)pH̃HτĨH̃′ + pH̃HτĨH̃ + (h− n− 1)pHH′τĨH
)
. (81d)
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• Connector island vertex and corresponding connector hub vertex:

τĨH̃ = 1+
(m− 1)pIĨτIH̃ + (n− 1)pH̃H̃′τĨH̃′ + (h− n)pHH̃τĨH

TĨ + TH̃
. (81e)

• Connector island vertex and corresponding connector hub vertex:

τĨH̃′ = 1 +
1

TĨ + TH̃

(
(m− 1)pIĨτIH̃′ + pH̃ĨτH̃H̃′ + pĨH̃τĨ Ĩ′

+ (n− 2)pH̃H̃′τĨH̃′ + pH̃H̃′τĨH̃ + (h− n)pHH̃τĨH
)
. (81f)

• Two distinct non-connector island vertices on the same island:

τII′ = 1 +
pĨIτIĨ + (m− 3)pII′τII′

TI
. (81g)

• Connector and non-connector vertices on the same island:

τIĨ = 1 +
pH̃ĨτIH̃ + (m− 2)pIĨτII′ + (m− 2)pII′τIĨ

TI + TĨ
. (81h)

• Two non-connector island vertices on different islands:

τII′′ = 1 +
pĨIτIĨ′ + (m− 2)pII′τII′′

TI
. (81i)

• Non-connector vertex on one island and connector vertex on a different
island:

τIĨ′ = 1 +
(m− 2)pII′τIĨ′ + pĨIτĨ Ĩ′ + pH̃ĨτIH̃′ + (m− 1)pIĨτII′′

TI + TĨ
(81j)

• Two connector island vertices on different islands:

τĨ Ĩ′ = 1 +
pH̃ĨτĨH̃′ + (m− 1)pIĨτIĨ′

TĨ
. (81k)

• Non-connector island and hub vertices

τIH = 1 +
1

TI + TH

(
pĨIτĨH + (m− 2)pII′τIH + (n− 1)pH̃HτIH̃′

+ pH̃HτIH̃ + (h− n− 1)pHH′τIH
)
. (81l)
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• Non-connector island vertex and corresponding hub connector vertex:

τIH̃ = 1 +
1

TI + TH̃

(
pĨIτĨH̃ + (m− 2)pII′τIH̃ + pĨH̃τIĨ

+ (n− 1)pH̃H̃′τIH̃′ + (h− n)pHH̃τIH
)
. (81m)

• Non-connector island vertex and non-corresponding hub connector ver-
tex:

τIH̃′ = 1 +
1

TI + TH̃

(
pĨIτĨH̃′ + (m− 2)pII′τIH̃′ + pĨH̃τIĨ′

+ (n− 2)pH̃H̃′τIH̃′ + pH̃H̃′τIH̃ + (h− n)pHH̃τIH
)
. (81n)

Some amendments to these equations are required in special cases. For ex-
ample, in the case m = 2, there are no pairs II ′, thus the equation for τII′ is
eliminated, as are all terms involving τII′ . Likewise, if n = h, then there are
no non-connector vertices (H), and so the equations for τHH′ , τHH̃ , τIH , and
τĨH are eliminated, as are any terms involving these quantities.

We have solved the above system of equations analytically using Mathe-
matica. The final weak-selection coefficient ρ′ for the Cartwheel CWn,m,h is
then obtained from Eq. (22) as

ρ′ =
1

2NW̃

(
2nε

wĨwH̃
τĨH̃ +

2n(m− 1)

wĨwI
τIĨ +

2n(h− n)

wH̃wH
τH̃H

+
(h− n)(h− n− 1)

w2
H

τHH′ +
(m− 1)(m− 2)n

w2
I

τII′ +
n(n− 1)

w2
H̃

τH̃H̃′

)
. (82)

The full expression for ρ′ in terms of n, m, h, and ε is too lengthy to include
here. However, it can be evaluated in Mathematica and we have used it to
create plots in the main text.

7.3 Full selection with ε→ 0

Here we derive the fixation probability on the Cartwheel graph for arbitrary
mutant fitness r, in the limit as the hub-to-island weight ε goes to zero. This
limit induces a separation of timescales. Fixation of one type or the other
within the hub or within an island occurs on the fast timescale. Changes
in which subpopulations (hub or islands) are fixed for residents or mutants
occur on the slow timescale.
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7.3.1 Derivation of fixation probability

To calculate fixation probability in the ε→ 0 limit, we employ an approach
developed by Allen et al. [13] for a different graph structure and update rule,
building on a method that Hadjichrisanthou et al. [14] employed for the Star
graph.

This method relies on a separation of timescales [15], in the Markov chain
representing the death-Birth process on the Cartwheel, as ε→ 0. To achieve
this timescale separation, we rescale time by a factor of 1/ε, and then take the
limit as ε→ 0. The result is a continuous-time Markov chain in which some
transitions occur instantaneously. Specifically, let px→y denote the transi-
tion probability from state x to state y in the original Markov chain. If
limε→0+ px→y > 0, then the transition x → y occurs instantaneously in the
time-rescaled Markov chain, with probability equal to limε→0+ px→y. Other-
wise, the transition x → y occurs at rate qx→y = limε→0+

px→y

ε
. Informally,

we say that instantaneous transitions occur “on the fast timescale”, while
transitions with finite rates occur “on the slow timescale”.

With this rescaling, fixation within the hub or within each island oc-
curs instantaneously (i.e. on the fast timescale). Thus the only states with
nonzero holding times are those for which each subpopulation (hub or is-
land) contains only one type. These states can be denoted as (M,k) or
(R, k), where the first entry is the type of the hub, and the second is the
number k of islands that are fixed for mutants, 0 ≤ k ≤ n. We can therefore
reduce the state space of the time-rescaled Markov chain to states of the form
(M,k) or (R, k), 0 ≤ k ≤ n.

We now identify the rates of transition between these states, starting with
the rate Q(M,k)→(M,k+1) from (M,k) to (M,k+1). This transition involves the
mutant type taking over an island previously controlled by residents, given
that the hub is already fixed for mutants. Two steps are required for this
transition. First, a mutant at a connector hub vertex must reproduce onto
an island that is fixed for residents. Noting that there are n − k resident
islands—and thus n−k mutants that are positioned to reproduce onto these
islands—the probability of this event occurring in the original Markov chain
is (

(n− k)r

(h+ km)r + (n− k)m

)(
ε

ε+ h− 1

)
.
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Therefore, in the time-rescaled Markov chain, this event occurs at rate

lim
ε→0+

[(
1

ε

)(
(n− k)r

(h+ km)r + (n− k)m

)(
ε

ε+ h− 1

)]
=

(
n− k

(h+ km)r + (n− k)m

)(
1

h− 1

)
.

Second, to complete the transition to state (M,k+1), the mutant type must
reach fixation on the island in question. This occurs instantaneously (on
the fast timescale), and has probability (1 − r−1)/(1 − r−m). Putting these
together, we conclude that the transition from (M,k) to (M,k + 1) occurs
at rate

Q(M,k)→(M,k+1) =

(
(n− k)r

(h+ km)r + (n− k)m

)(
1

h− 1

)(
1− r−1

1− r−m

)
. (83a)

Three other transitions are possible in the time-rescaled Markov chain, and
their respective rates are obtained similarly:

Q(M,k)→(R,k) =

(
n− k

(h+ km)r + (n− k)m

)(
1

m− 1

)(
1− r
1− rh

)
(83b)

Q(R,k)→(R,k−1) =

(
k

kmr + h+ (n− k)m

)(
1

h− 1

)(
1− r

1− rm

)
(83c)

Q(R,k)→(M,k) =

(
kr

kmr + h+ (n− k)m

)(
1

m− 1

)(
1− r−1

1− r−h

)
. (83d)

In order to apply previous results of Hadjichrysanthou et al. [14], we
must discretize the time-rescaled Markov chain. To do this, we compute the
conditional probabilities of transition between each pair of states, conditioned
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on leaving the current state:

P(M,k)→(M,k+1) =
Q(M,k)→(M,k+1)

Q(M,k)→(M,k+1) +Q(M,k)→(R,k)

=

(
1−r−h

h−1

)
(

1−r−h

h−1

)
+ r−h

(
1−r−m

m−1

)
(84a)

P(M,k)→(R,k) =
Q(M,k)→(R,k)

Q(M,k)→(M,k+1) +Q(M,k)→(R,k)

=
r−h

(
1−r−m

m−1

)
(

1−r−h

h−1

)
+ r−h

(
1−r−m

m−1

)
(84b)

P(R,k)→(R,k−1) =
Q(R,k)→(R,k−1)

Q(R,k)→(R,k−1) +Q(R,k)→(M,k)

=

(
1−r−h

h−1

)
(

1−r−h

h−1

)
+ rm

(
1−r−m

m−1

)
(84c)

P(R,k)→(M,k) =
Q(R,k)→(M,k)

Q(R,k)→(R,k−1) +Q(R,k)→(M,k)

=
rm
(

1−r−m

m−1

)
(

1−r−h

h−1

)
+ rm

(
1−r−m

m−1

) .
(84d)

For a Markov chain with this structure, the fixation probability from
states (M, 0) and (R, 1), respectively, was derived by Hadjichrysanthou et
al. [14]:

ρ(M,0) =
P(M,k)→(M,k+1)

1 + xn−x
x−1 P(M,k)→(R,k)

(85a)

ρ(R,1) =
P(R,k)→(M,k)

1 + xn−x
x−1 P(M,k)→(R,k)

, (85b)

with the quantity x is defined as

x =
P(R,k)→(R,k−1)

P(M,k)→(M,k+1)

. (86)

Substituting from Eqs. (84a) and (84c), we have

x =

(
1−r−h

h−1

)
+ r−h

(
1−r−m

m−1

)
(

1−r−h

h−1

)
+ rm

(
1−r−m

m−1

) . (87)
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To simplify the denominator in Eq. (85), we first compute from Eq. (87)
that

1

x− 1
=

(
1−r−h

h−1

)
+ rm

(
1−r−m

m−1

)
(r−h − rm)

(
1−r−m

m−1

) . (88)

Substituting from Eqs. (84b), (87), and (88) and simplifying, the denomina-
tor in Eq. (85) becomes

1 +
xn − x
x− 1

P(M,k)→(R,k) = 1 + (xn−1 − 1)x

(
1

x− 1

)
P(M,k)→(R,k)

= 1 + (xn−1 − 1)


(

1−r−h

h−1

)
+ r−h

(
1−r−m

m−1

)
(

1−r−h

h−1

)
+ rm

(
1−r−m

m−1

)


×


(

1−r−h

h−1

)
+ rm

(
1−r−m

m−1

)
(r−h − rm)

(
1−r−m

m−1

)


×

 r−h
(

1−r−m

m−1

)
(

1−r−h

h−1

)
+ r−h

(
1−r−m

m−1

)


= 1 + (xn−1 − 1)
r−h

r−h − rm

= 1 +
xn−1 − 1

1− rm+h

=
xn−1 − rm+h

1− rm+h
.

To compute the overall fixation probability, we must consider the various
locations the initial mutant may appear. We observe that, as ε → 0, the
temperatures of all vertices converge to 1; thus the mutant type is equally
likely to appear at any vertex. With probability nm/(nm + h) it appears
at an island vertex (connected or not). The mutation takes over the island
with probability (1 − r−1)/(1 − r−m), at which point we are in state (R, 1)
of the slow timescale. With probability h/(nm + h) the mutation arises at
a hub vertex; at which point it has probability (1 − r−1)/(1 − r−h) to take
over the hub, resulting in state (M, 0). Putting this all together, we obtain
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the overall fixation probability on the Cartwheel graph in the ε→ 0 limit:

ρCWn,m,h
(r) =

(
nm

nm+ h

)(
1− r−1

1− r−m

)
ρ(R,1) +

(
h

nm+ h

)(
1− r−1

1− r−h

)
ρ(M,0)

=
1− r−1

nm+ h

(
nmρ(R,1)
1− r−m

+
hρ(M,0)

1− r−h

)
=

1− r−1

nm+ h

(
nmP(R,k)→(M,k)

1− r−m
+
hP(M,k)→(M,k+1)

1− r−h

)(
1− rm+h

xn−1 − rm+h

)
=

(1− r−1)
(
rm+h − 1

)
(nm+ h) (rm+h − xn−1)

×

 (
nm
m−1

)
r−m

(
1−r−h

h−1

)
+
(
1−r−m

m−1

) +

(
h
h−1

)(
1−r−h

h−1

)
+ r−h

(
1−r−m

m−1

)
 .

(89)

Note that, when n = 1, this expression is symmetric with regard to m and
h. This makes sense because, if there is only one island, the hub and island
are interchangeable.

7.3.2 Case m = h

In the case m = h, Eq. (87) simplifies to x = r−m, and we have

ρCWn,m,m(r) =
(1− r−1) (r2m − 1)

(nm+m) (r2m − r−m(n−1))

( (
nm+m
m−1

)
(1 + r−m)

(
1−r−m

m−1

))

=
(1− r−1) (r2m − 1)

(r2m − r−m(n−1)) (1 + r−m) (1− r−m)

=
(1− r−1) (r2m − 1)

(r2m − r−m(n−1)) (1− r−2m)

=
1− r−1

(r2m − r−m(n−1)) r−2m

=
1− r−1

1− r−(mn+m)
.

This is equal to the fixation probability ρKmn+m(r) for the complete graph
Kmn+m. Thus, for h = m and ε → 0, the Cartwheel has the same fixation
probability as a well-mixed population of the same size.
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7.3.3 Weak selection with ε→ 0

With the aid of Mathematica, we compute the Taylor expansion of Eq. (89):

ρCWn,m,h
(1 + δ) =

1

nm+ h
+ δρ′ +O(δ2), (90)

with

ρ′ =
N − 1

2N
+

mnh(h−m)
(
m(n− 2)(h− 1) + h(m− 1)

)
2
(
h(m− 1) +m(h− 1)

)
(mn+ h)

(
mn(h− 1) + h(m− 1)

) .
(91)

We observe that, for the Cartwheel CWn,m,h in the ε → 0 limit, the neutral
fixation probability, ρ◦ = 1/(nm + h) = 1/N , is the same as a well-mixed
population. Meanwhile, the second term of ρ′ has the sign of h − m. We
conclude that the Cartwheel CWn,m,h (in the ε → 0 limit) is an amplifier
(both uniform and relative) of weak selection for h > m, and a suppressor
(uniform and relative) of weak selection for h < m. For h = m, CWn,m,h has
the same fixation probability as the complete graph, Kmn+h, in the ε → 0
limit, as was shown in the previous subsection,

Eq. (91) shows numerical agreement with our solution for ρ′ in Eq. (82)
when evaluated for small ε. Thus the ordering of the ε→ 0 limit and the δ-
derivative appears not to matter; however, we have not proven this formally.

In the case m = 2 and h = n, Eq. (91) becomes

ρ′ =
(n− 1)(2n+ 1) (2n2 + n+ 2)

6n(2n− 1)(3n− 2)
. (92)

As n → ∞ (noting that N = 3n for h = n, m = 2), we have ρ′ ∼ N/27
and ρ′/(Nρ◦) ∼ N/27. Since the Star Sn has ρ′/(Nρ◦) → 1 in the n → ∞
limit, the Cartwheel graph CWn,2,n (with sufficiently small ε) must eventually
surpass the Star in as a relative amplifier of weak selection (i.e., the Cartwheel
must eventually have a greater ρ′/(Nρ◦) ratio than the Star). Numerical
computation shows that this first happens for size N = 21.

7.3.4 Limit of many islands

The formula for ρ(r), Eq. (89), simplifies greatly in the limit of many islands
(n → ∞). Since each island is connected to a separate hub vertex, the
number of hub vertices must also increase n. We therefore set h = kn for
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arbitrary k ≥ 1, so that the number of hub vertices scales linearly with the
number of islands.

First we consider the case r < 1. Rewriting x from Eq. (87) as

x =
r−h

(
1 + (h− 1)

(
1−r−m

m−1

))
− 1

r−h
(
1 + (h− 1)rh+m

(
1−r−m

m−1

))
− 1

, (93)

we can see that x behaves asymptotically as r−(h+m) as h→∞, in the sense
that

lim
h→∞

x

r−(h+m)
= 1. (94)

Substituting r−(h+m) for x in Eq. (89), letting h = kn, and taking n → ∞,
we have (still in the r < 1 case),

lim
n→∞

ρCWn,m,h
(r) = lim

n→∞

(1− r−1)
(
rm+kn − 1

)
(n(m+ k)) (rm+kn − r−(m+kn)(n−1))

×

 (
nm
m−1

)
r−m

(
1−r−kn

kn−1

)
+
(
1−r−m

m−1

) +

(
kn
kn−1

)(
1−r−kn

kn−1

)
+ r−kn

(
1−r−m

m−1

)


= 0.

Thus, for a deleterious mutation, the probability of fixation vanishes in the
limit of many islands.

For r > 1, we have from Eq. (87) that limh→∞ x = 0. Substituting 0 for
x, letting h = kn, and taking n→∞, we obtain

lim
n→∞

ρCWn,m,h
(r) = lim

n→∞

(1− r−1)
(
rm+kn − 1

)
n(m+ k)rm+kn

×

 (
nm
m−1

)
r−m

(
1−r−kn

kn−1

)
+
(
1−r−m

m−1

) +

(
kn
kn−1

)(
1−r−kn

kn−1

)
+ r−kn

(
1−r−m

m−1

)


=
1− r−1

m+ k

(
m

1− r−m
+ k

)
=

(
m+ k(1− r−m)

m+ k

)
1− r−1

1− r−m
.
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Putting these cases together, we have the following result for fixation
probability on the Cartwheel graph when first ε→ 0 and then n→∞:

lim
n→∞

ρCWn,m,h
(r) =

0 r ≤ 1(
m+ k(1− r−m)

m+ k

)
1− r−1

1− r−m
r > 1.

(95)

This limiting fixation probability is discontinuous at r = 1. Indeed, if we
take the limit as r approaches 1 from the positive side, we have

lim
r→1+

lim
n→∞

ρCWn,m,h
(r) =

1

k +m
. (96)

Thus, the fixation probability jumps from 0 to 1/(k+m) as r increases past
1.

The largest fixation probability in Eq. (95) arises for k = 1 (meaning
h = n) and m = 2. This corresponds to a “spider” structure (Fig 9B of the
main text). In this case, we have

lim
n→∞

ρCWn,m,h
(r) =

0 r ≤ 1
1− r−2/3
1 + r−1

r > 1.
(97)
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