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S1 Appendix: Rate quantiles and operators

1 Piecewise linear approximation

In this article we introduced a linear piecewise approximation of the i-CDF (inverse cumu-
lative distribution function) to improve the computational performance of the quant pa-
rameterisation. Let F~'(R;) be the piecewise approximation of the i-CDF F~'(R;). The
approximation consists of n pieces (where n = 100 is fixed). Due to the nonlinear nature of
small and large quantiles in a log-normal distribution, the first and last pieces are not linear
approximations but rather equal to the underlying distribution itself.
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where v = ¢(n — 1) indexes quantile ¢ into piece number |v]. Values from the underlying
function F~! are cached, enabling rapid computation.

2 Tree operators for rate quantiles

Zhang and Drummond 2020 introduced several tree operators for the real parameterisation
— including ConstantDistance, SimpleDistance, and SmallPulley [1]. In this appendix,
these three operators are extended to the quant parameterisation. Following the notation
presented in the main article, let ¢; be the time of node 7, let 0 < ¢; < 1 be the rate quantile of
node i, and let r; = F~1(g;) be the real rate of node i where F'~! is the linear approximation
of the i-CDF.



Constant Distance

Let X be a uniformly-at-random sampled internal node on tree 7. Let £ and R be the left
and right child of X', respectively, and let P be the parent of X. Under the quant parame-
terisation, the ConstantDistance operator works as follows:

Step 1. Propose a new height for tx:

tX/ — ity + s (2)
where ¥ is drawn from a proposal transition distribution (Uniform or Bactrian), and s

is a tunable step size. Ensure that max{t;,tx} < t3’ < tp, and if the constraint is broken
then reject the proposal.

Step 2. Recalculate gy as:

tp — tx
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This ensures that the genetic distance between X and P remains constant after the
operation by enforcing the constraint:

7‘/\{<t7> — tx) = T,’\(/(tp — tX/). (4)
Step 3. Similarly, propose new rate quantiles for the two children C € {£, R}:
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Ensure that 0 < ¢;/ < 1 for all proposed nodes i € {X, L, R}, and if the constraint is
broken then reject the proposal. This constraint can only be broken from numerical issues.

Step 4. Finally, in order to calculate the Metropolis-Hastings-Green ratio, return the
determinant of the Jacobian matrix:
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As J is triangular, its determinant |J| is equal to the product of diagonal elements:
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The derivatives DE and DF-! are computed using numerical approximations for the

first and last pieces, or as the gradient of the linear approximation for internal pieces. As its
final step, the operator returns In |.J|.

Simple Distance

While ConstantDistance proposes internal node heights, SimpleDistance operates on the
root. Let X be the root node and let £ and R be its two children.

Step 1. Propose a new height for tx:

t)(, — ty + s2. (8)

Ensure that max{t;,tr} < tx’, and if the constraint is broken then reject the proposal.



Step 2. Propose new rate quantiles for the two children C € {£, R}:
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These proposals ensure that the genetic distance between X and its children C remain
constant after the operation by enforcing the constraint:

’I“c(lf/\/ — tc) = Tc/(t)(/ — tc). (10)

Ensure that 0 < g2’ < 1, and if the constraint is broken then reject the proposal.

Step 3. Finally, in order to calculate the Metropolis-Hastings-Green ratio, return the
determinant of the Jacobian matrix:
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As J is triangular, its determinant |J| is equal to the product of diagonal elements:
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As its final step, the operator returns In |.J|.
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Small Pulley

Just like the previous operator, SmallPulley operates on the root. Let X be the root node
and let £ and R be its two children. However, unlike SimpleDistance, this operator alters
the two genetic distances dp = rp(ty —te) = F~Yqe)(txy — tz) and dg = rr(ty — tr) =

~

F~1(qr)(tx — tr), while conserving their sum d, + dx.
Step 1. Propose new genetic distances for dy and dg:

dl:, < d/; + 5% (13)
dR/ < dR —sX (14)
Ensure that 0 < d’ < dg + dg, and if the constraint is broken then reject the proposal.

Step 2. Propose new rate quantiles for the two children £ and R:
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Step 3. Return the determinant of the Jacobian matrix:
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As J is triangular/diagonal, its determinant |.J| is equal to the product of diagonal

elements:
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Thus, as its final step, the operator returns In|J|.



3 CisScale operator

CisScale was originally introduced by Zhang and Drummond 2020 for the real parameterisa-
tion (therein named ucldstdevScaleOperator). Under the quant configuration, the CisScale
operator works as follows.

Step 1. Propose a new value for the relaxed clock standard deviation o

o' o x e (19)

Step 2. Recalculate all branch substitution rate quantiles ¢ such that their rates r remain
constant

let = F~(q|o) (20)
let ' =r (21)
¢ F(r'|o") = F(F7(glo)lo"). (22)

Step 3. Return the log Hastings-Green ratio of this proposal. If ¥ was drawn from a
symmetric proposal kernel (such as the Bactrian distribution), this is equal to:

S A A
_ s e -1 /
|J| = log(e )+log(5qF<F (q|a>|a)) (23)
= s + log DF(F~(¢|o)|0") + log DF~*(¢|o), (24)

where derivatives DF and DEF~! can be approximated using either the piecewise linear
model or standard numerical libraries.



4 Narrow exchange rates

The NarrowExchangeRate operator is also compatible with rate quantiles. This operator
behaves the same as presented in the main article however the Hastings-Green ratio requires
further augmentation due to changes in dimension throughout the proposal.

Step 1. Apply NarrowExchange to the current tree topology as described in the main
article. This will return a Hastings ratio H due to the asymmetry of this proposal.

Step 2. Compute the relevant branch rates r; for r € {A, B,C, D} of the current state
from their respective quantile parameters.

ri=F Y (q). (25)

Step 3. Propose new rates and node heights and compute the Hastings-Green ratio of
the real-space component of the proposal (e.g. Algorithms 1-2 of the main article).

(r's, 75, "o 'y Uy | Ji|) <= PROPOSAL(7r 4,75, 7c, 7D, tD)- (26)

Step 4. Transform the rates back into quantiles.

q; = F(r}). (27)

Step 5. Compute the log Hastings-Green ratio of the interconversion between rates and
quantiles.

log || = log F'(q) + log £-1(r"). (28)

Step 6. Return the total log Hastings-Green ratio of this proposal: log H + log|J,.| +
log |J].



5 Summary of proposal kernels

Operators whose proposal kernels are affected by the decision to use a Bactrian kernel, as
opposed to a uniform kernel, are specified below.

Operator(s) Proposal Parameter x
1 RandomWalk 2 x+sX R O
2 Scale ' — x x e R,o
1—x s%
3 Interval ‘Z,T_TLX ¢ R
y+1
4 ConstantDistancer’ < z + sX t
SimpleDistance
5 SmallPulley © x4 5% R
6 CisScale R o

Table 1: Proposal kernels ¢(z'|z) of clock model operators. In each operator, ¥ is drawn from
either a Bactrian(m) or uniform distribution. The scale size s is tunable. ConstantDistance
and SimpleDistance propose tree heights t. The Interval operator applies to rate quantiles
and respects its domain i.e. 0 < x, 2’ < 1.



6 Supplementary NER Algorithm

A second NER algorithm is presented below. This operator was rejected by the screening
protocol on simulated data.

Algorithm 1 The NER{Dp¢, Dcg} operator.

1: procedure PROPOSAL(t 4, tg, tc, tp, tg, A, TB, TCy D)
2
3 s+ getRandomWalkSize() > Random walk size is 0 unless this is NERw
4: th < tp + s > Propose new node height for D
5.
6 4 Ta > Propose new rates
(tp—t)+rp(tp—tp)+rp(te—tp)
7 T,B . relio=tp ?“DtlDE_tBD rD(tE—tp
rc(tp—te)—rp(tp—t)y)
8 Ty —E tC/th? 5=lp
9: Th < Tp
10:
11: || < (tp—tp)(tp—tc) > Calculate Jacobian determinant
(tp—tB)(tp—tc)
12: return (r'y,r's, e, r'p, th, |J])
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