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S1 Appendix: Rate quantiles and operators

1 Piecewise linear approximation

In this article we introduced a linear piecewise approximation of the i-CDF (inverse cumu-
lative distribution function) to improve the computational performance of the quant pa-
rameterisation. Let F̂−1(Ri) be the piecewise approximation of the i-CDF F−1(Ri). The
approximation consists of n pieces (where n = 100 is fixed). Due to the nonlinear nature of
small and large quantiles in a log-normal distribution, the first and last pieces are not linear
approximations but rather equal to the underlying distribution itself.

F̂−1(q) =

{
F−1(q) if q ≤ 1

n
or q ≥ n−1

n

F−1(bvc) +
(
F−1(bvc+ 1)− F−1(bvc)

)(
v − bvc

)
otherwise.

(1)

where v = q(n−1) indexes quantile q into piece number bvc. Values from the underlying
function F−1 are cached, enabling rapid computation.

2 Tree operators for rate quantiles

Zhang and Drummond 2020 introduced several tree operators for the real parameterisation
– including ConstantDistance, SimpleDistance, and SmallPulley [1]. In this appendix,
these three operators are extended to the quant parameterisation. Following the notation
presented in the main article, let ti be the time of node i, let 0 < qi < 1 be the rate quantile of
node i, and let ri = ˆF−1(qi) be the real rate of node i where ˆF−1 is the linear approximation
of the i-CDF.

1



Constant Distance

Let X be a uniformly-at-random sampled internal node on tree T . Let L and R be the left
and right child of X , respectively, and let P be the parent of X . Under the quant parame-
terisation, the ConstantDistance operator works as follows:

Step 1 . Propose a new height for tX :

tX
′ ← tX + sΣ (2)

where Σ is drawn from a proposal transition distribution (Uniform or Bactrian), and s
is a tunable step size. Ensure that max{tL, tR} < tX

′ < tP , and if the constraint is broken
then reject the proposal.

Step 2 . Recalculate qX as:

qX
′ ←F̂

(
rX
′
)

←F̂
( tP − tX
tP − tX ′

rX

)
←F̂

( tP − tX
tP − tX ′

ˆF−1(qX )
)
. (3)

This ensures that the genetic distance between X and P remains constant after the
operation by enforcing the constraint:

rX (tP − tX ) = rX
′(tP − tX ′). (4)

Step 3 . Similarly, propose new rate quantiles for the two children C ∈ {L,R}:

qC
′ ←F̂

(
rC
′
)

←F̂
( tX − tC
tX
′ − tC

× rC
)

←F̂
( tX − tC
tX
′ − tC

× ˆF−1(qC)
)
. (5)

Ensure that 0 < qi
′ < 1 for all proposed nodes i ∈ {X , L,R}, and if the constraint is

broken then reject the proposal. This constraint can only be broken from numerical issues.
Step 4 . Finally, in order to calculate the Metropolis-Hastings-Green ratio, return the

determinant of the Jacobian matrix:
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J =


∂tX

′

∂tX

∂tX
′

∂qX

∂tX
′

∂qL

∂tX
′

∂qR
∂qX

′

∂tX

∂qX
′

∂qX

∂qX
′

∂qL

∂qX
′

∂qR
∂qL

′

∂tX

∂qL
′

∂qX

∂qL
′

∂qL

∂qL
′

∂qR
∂qR

′

∂tX

∂qR
′

∂qX

∂qR
′

∂qL

∂qR
′

∂qR



=


∂tX

′

∂tX
0 0 0

∂qX
′

∂tX

∂qX
′

∂qX
0 0

∂qL
′

∂tX
0 ∂qL

′

∂qL
0

∂qR
′

∂tX
0 0 ∂qR

′

∂qR

 . (6)

As J is triangular, its determinant |J | is equal to the product of diagonal elements:

ln |J | = ln{∂tX
′

∂tX
× ∂qX

′

∂qX
× ∂qL

′

∂qL
× ∂qR

′

∂qR
}

= ln 1 + ln DF̂
( tP − tX
tP − tX ′

× ˆF−1(qX )
)

+ ln
∂

∂qX

tP − tX
tP − tX ′

ˆF−1
(
qX

)
+ ln DF̂

( tX − tL
tX
′ − tL

× ˆF−1(qL)
)

+ ln
∂

∂qL

tX − tL
tX
′ − tL

ˆF−1
(
qL

)
+ ln DF̂

( tX − tR
tX
′ − tR

× ˆF−1(qR)
)

+ ln
∂

∂qR

tX − tR
tX
′ − tR

ˆF−1
(
qR

)
= ln DF̂

( tP − tX
tP − tX ′

× ˆF−1(qX )
)

+ ln D ˆF−1
(
qX

)
+ ln

tP − tX
tP − tX ′

+ ln DF̂
( tX − tL
tX
′ − tL

× ˆF−1(qL)
)

+ ln D ˆF−1
(
qL

)
+ ln

tX − tL
tX
′ − tL

+ ln DF̂
( tX − tR
tX
′ − tR

× ˆF−1(qR)
)

+ ln D ˆF−1
(
qR

)
+ ln

tX − tR
tX
′ − tR

. (7)

The derivatives DF̂ and D ˆF−1 are computed using numerical approximations for the
first and last pieces, or as the gradient of the linear approximation for internal pieces. As its
final step, the operator returns ln |J |.

Simple Distance

While ConstantDistance proposes internal node heights, SimpleDistance operates on the
root. Let X be the root node and let L and R be its two children.

Step 1 . Propose a new height for tX :

tX
′ ← tX + sΣ. (8)

Ensure that max{tL, tR} < tX
′, and if the constraint is broken then reject the proposal.

3



Step 2 . Propose new rate quantiles for the two children C ∈ {L,R}:

qC
′ ←F̂

(
rC
′
)

←F̂
( tX − tC
tX
′ − tC

× rC
)

←F̂
( tX − tC
tX
′ − tC

× ˆF−1(qC)
)
. (9)

These proposals ensure that the genetic distance between X and its children C remain
constant after the operation by enforcing the constraint:

rC(tX − tC) = rC
′(tX

′ − tC). (10)

Ensure that 0 < qC
′ < 1, and if the constraint is broken then reject the proposal.

Step 3 . Finally, in order to calculate the Metropolis-Hastings-Green ratio, return the
determinant of the Jacobian matrix:

J =


∂tX

′

∂tX

∂tX
′

∂qL

∂tX
′

∂qR
∂qL

′

∂tX

∂qL
′

∂qL

∂qL
′

∂qR
∂qR

′

∂tX

∂qR
′

∂qL

∂qR
′

∂qR


=


∂tX

′

∂tX
0 0

∂qL
′

∂tX

∂qL
′

∂qL
0

∂qR
′

∂tX
0 ∂qR

′

∂qR

 . (11)

As J is triangular, its determinant |J | is equal to the product of diagonal elements:

ln |J | = ln{∂tX
′

∂tX
× ∂qL

′

∂qL
× ∂qR

′

∂qR
}

= ln
∂tX

′

∂tX
+ ln

∂qL
′

∂qL
+ ln

∂qR
′

∂qR
= ln 1

+ ln DF̂
( tX − tL
tX
′ − tL

× ˆF−1(qL)
)

+ ln
∂

∂qL

tX − tL
tX
′ − tL

ˆF−1
(
qL

)
+ ln DF̂

( tX − tR
tX
′ − tR

× ˆF−1(qR)
)

+ ln
∂

∂qR

tX − tR
tX
′ − tR

ˆF−1
(
qR

)
= ln DF̂

( tX − tL
tX
′ − tL

× ˆF−1(qL)
)

+ ln D ˆF−1
(
qL

)
+ ln

tX − tL
tX
′ − tL

+ ln DF̂
( tX − tR
tX
′ − tR

× ˆF−1(qR)
)

+ ln D ˆF−1
(
qR

)
+ ln

tX − tR
tX
′ − tR

. (12)

As its final step, the operator returns ln |J |.
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Small Pulley

Just like the previous operator, SmallPulley operates on the root. Let X be the root node
and let L and R be its two children. However, unlike SimpleDistance, this operator alters
the two genetic distances dL = rL(tX − tL) = ˆF−1(qL)(tX − tL) and dR = rR(tX − tR) =

ˆF−1(qR)(tX − tR), while conserving their sum dL + dR.
Step 1 . Propose new genetic distances for dL and dR:

dL
′ ← dL + sΣ (13)

dR
′ ← dR − sΣ (14)

Ensure that 0 < dL
′ < dL + dR, and if the constraint is broken then reject the proposal.

Step 2 . Propose new rate quantiles for the two children L and R:

qL
′ ← F̂

( dL
′

tX − tL
)

← F̂
( ˆF−1(qL)(tX − tL) + Σ

tX − tL
)

(15)

qR
′ ← F̂

( dR
′

tX − tR
)

← F̂
( ˆF−1(qR)(tX − tR)− Σ

tX − tR
)
. (16)

Step 3 . Return the determinant of the Jacobian matrix:

J =

[
∂qL

′

∂qL

∂qL
′

∂qR
∂qR

′

∂qL

∂qR
′

∂qR

]

=

[
∂qL

′

∂qL
0

0 ∂qR
′

∂qR

]
. (17)

As J is triangular/diagonal, its determinant |J | is equal to the product of diagonal
elements:
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ln |J | = ln{∂qL
′

∂qL
× ∂qR

′

∂qR
}

= ln
∂qL

′

∂qL
+ ln

∂qR
′

∂qR

= ln DF̂
( ˆF−1(qL)(tX − tL) + Σ

tX − tL
)

+ ln
∂qL

′

∂qL

ˆF−1(qL)(tX − tL) + Σ

tX − tL

+ ln DF̂
( ˆF−1(qR)(tX − tR)− Σ

tX − tR
)

+ ln
∂qR

′

∂qR

ˆF−1(qR)(tX − tR)− Σ

tX − tR

= ln DF̂
( ˆF−1(qL)(tX − tL) + Σ

tX − tL
)

+ ln D ˆF−1(qL)

+ ln DF̂
( ˆF−1(qR)(tX − tR)− Σ

tX − tR
)

+ ln D ˆF−1(qR). (18)

Thus, as its final step, the operator returns ln |J |.
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3 CisScale operator

CisScale was originally introduced by Zhang and Drummond 2020 for the real parameterisa-
tion (therein named ucldstdevScaleOperator). Under the quant configuration, the CisScale

operator works as follows.

Step 1 . Propose a new value for the relaxed clock standard deviation σ

σ′ ← σ × esΣ. (19)

Step 2 . Recalculate all branch substitution rate quantiles q such that their rates r remain
constant

let r = F̂−1(q|σ) (20)

let r′ = r (21)

q′ ← F̂ (r′|σ′) = F̂ (F̂−1(q|σ)|σ′). (22)

Step 3 . Return the log Hastings-Green ratio of this proposal. If Σ was drawn from a
symmetric proposal kernel (such as the Bactrian distribution), this is equal to:

|J | = log(esΣ) + log
( δ
δq
F̂ (F̂−1(q|σ)|σ′)

)
(23)

= sΣ + logDF̂ (F̂−1(q|σ)|σ′) + logDF̂−1(q|σ), (24)

where derivatives DF̂ and DF̂−1 can be approximated using either the piecewise linear
model or standard numerical libraries.
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4 Narrow exchange rates

The NarrowExchangeRate operator is also compatible with rate quantiles. This operator
behaves the same as presented in the main article however the Hastings-Green ratio requires
further augmentation due to changes in dimension throughout the proposal.

Step 1 . Apply NarrowExchange to the current tree topology as described in the main
article. This will return a Hastings ratio H due to the asymmetry of this proposal.

Step 2 . Compute the relevant branch rates ri for r ∈ {A,B,C,D} of the current state
from their respective quantile parameters.

ri = F̂−1(qi). (25)

Step 3 . Propose new rates and node heights and compute the Hastings-Green ratio of
the real-space component of the proposal (e.g. Algorithms 1-2 of the main article).

(r′A, r
′
B, r

′
C , r

′
D, t

′
D, |Jr|)← PROPOSAL(rA, rB, rC , rD, tD). (26)

Step 4 . Transform the rates back into quantiles.

q′i = F̂ (r′i). (27)

Step 5 . Compute the log Hastings-Green ratio of the interconversion between rates and
quantiles.

log |Jq| = log F̂ (q) + log F̂−1(r′). (28)

Step 6 . Return the total log Hastings-Green ratio of this proposal: logH + log |Jr| +
log |Jq|.
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5 Summary of proposal kernels

Operators whose proposal kernels are affected by the decision to use a Bactrian kernel, as
opposed to a uniform kernel, are specified below.

Operator(s) Proposal Parameter x

1 RandomWalk x′ ← x+ sΣ ~R , σ
2 Scale x′ ← x× esΣ ~R , σ

3 Interval
y ← 1−x

x
× esΣ

x′ ← y
y+1

~R

4 ConstantDistance

SimpleDistance

x′ ← x+ sΣ t

5 SmallPulley x′ ← x+ sΣ ~R
6 CisScale x′ ← x× esΣ σ

Table 1: Proposal kernels q(x′|x) of clock model operators. In each operator, Σ is drawn from
either a Bactrian(m) or uniform distribution. The scale size s is tunable. ConstantDistance
and SimpleDistance propose tree heights t. The Interval operator applies to rate quantiles
and respects its domain i.e. 0 < x, x′ < 1.
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6 Supplementary NER Algorithm

A second NER algorithm is presented below. This operator was rejected by the screening
protocol on simulated data.

Algorithm 1 The NER{DBC ,DCE} operator.

1: procedure proposal(tA, tB, tC , tD, tE, rA, rB, rC , rD)
2:

3: sΣ← getRandomWalkSize() . Random walk size is 0 unless this is NERw
4: t′D ← tD + sΣ . Propose new node height for D
5:

6: r′A ← rA . Propose new rates

7: r′B ←
rB(tD−tB)+rD(tE−tD)+rD(tE−t′D)

t′D−tB

8: r′C ←
rC(tE−tC)−rD(tE−t′D)

t′D−tC
9: r′D ← rD
10:

11: |J | ← (tD−tB)(tE−tC)
(t′D−tB)(t′D−tC)

. Calculate Jacobian determinant

12: return (r′A, r
′
B, r

′
C , r

′
D, t

′
D, |J |)
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