Supporting Information for "Refining all-atom protein force fields for polar-rich, prion-like, low complexity intrinsically disordered proteins"

Wai Shing Tang,[†] Nicolas L. Fawzi,[¶] and Jeetain Mittal^{‡,*}

[†]Department of Physics, Brown University, Providence, RI 02912, USA

[¶]Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA

[‡]Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA

*E-mail: jem309@lehigh.edu

Tables

		Table S1: Protein sequences used in simulations
Protein	N	Sequence
FUS ₀₋₄₃ *	44	GMASNDYTQQATQSYGAYPTQPGQGYSQQSSQPYGQQSYSGYSQ
TDP43 ₃₁₀₋₃₅₀	41	GMNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPS
RNA Pol II1927-1970	44	SPTYSPTSPKGSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN
FUS ₄₁₋₈₄	44	YSQSTDTSGYGQSSYSSYGQSQNTGYGTQSTPQGYGSTGGYGSS
FUS ₇₇₋₁₂₀	44	STGGYGSSQSSQSSYGQQSSYPGYGQQPAPSSTSGSYGSSSQSS
FUS ₁₂₀₋₁₆₃	44	SSYGQPQSGSYSQQPSYGGQQQSYGQQQSYNPPQGYGQQNQYNS
FUS ₃₇₋₉₇	61	SYSGYSQSTDTSGYGQSSYSSYGQSQNTGYGTQSTPQGYGSTGGYGSSQSSQSSYGQQ SSY
hnRNPA2190-233	44	GRGGNFGFGDSRGGGGNFGPGPGSNFRGGSDGYGSGRGFGDGYN
hnRNPA2265-308	44	GNQGGGYGGGYDNYGGGNYGSGNYNDFGNYNQQPSNYGPMKSGN
		*a starting glycine is included in FUS ₀₋₄₃ as residue 0

Table S2: Summary of simulations performed using ff99SBws, where N is the number of
residues in given protein or peptide.

Protein	Ν	Enhanced Sampling	Total simulation time (ns/replica)	Simulation time analyzed (ns/replica)
TDP43 ₃₁₀₋₃₅₀	41	PT-WTE	200	150
FUS ₀₋₄₃	44	PT-WTE	200	150
FUS ₄₁₋₈₄	44	PT-WTE	200	150
FUS77-120	44	PT-WTE	200	150
FUS ₁₂₀₋₁₆₃	44	PT-WTE	200	150
FUS ₃₇₋₉₇	61	PT-WTE	200	150
hnRNPA2190-234	44	PT-WTE	200	150
hnRNPA2256-308	44	PT-WTE	200	150
RNA Pol II1927-1970	44	PT-WTE	200	150

Protein	Ν	Enhanced Sampling	Total simulation time* (ns/replica)	Simulation time analyzed* (ns/replica)
TDP43 ₃₁₀₋₃₅₀	41	PT-WTE	200	150
FUS ₀₋₄₃	44	PT-WTE	200	150
FUS ₄₁₋₈₄	44	PT-WTE	200	150
FUS ₇₇₋₁₂₀	44	PT-WTE	200	150
FUS ₁₂₀₋₁₆₃	44	PT-WTE	200	150
hnRNPA2190-234	44	PT-WTE	200	150
hnRNPA2256-308	44	PT-WTE	200	150
RNA Pol II ₁₉₂₇₋₁₉₇₀	44	PT-WTE	200	150

Table S3: Summary of simulations performed usin	ng ff03ws, where N is the number of	i residues
in given protein o	ı or peptide.	

Table S4: Summary of simulations performed using modified force fields. All simulations were performed for a total of 200 ns per replica, and analysis conducted on the last 150 ns.

	k_{ψ}	$k_{\psi,S}$	$k_{\psi,T}$	$k_{\psi,Q}$	Simulated peptides
	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	
ff99SBws	2.00	2.00	2.00	2.00	FUS0-43, TDP-43310-350, RNA Pol II1927-1970
ff99SBws-S	2.00	1.00	2.00	2.00	FUS ₀₋₄₃
ff99SBws-T	2.00	2.00	1.00	2.00	FUS ₀₋₄₃
ff99SBws-ST	2.00	1.00	1.00	2.00	FUS0-43, TDP-43310-350, RNA Pol II1927-1970
ff99SBws-TQ	2.00	2.00	1.00	1.00	FUS0-43, TDP-43310-350, RNA Pol II1927-1970
ff99SBws-STQ	2.00	1.00	1.00	1.00	FUS0-43, TDP-43310-350, RNA Pol II1927-1970

Table S5: Root-mean-squared deviation (RMSD) of simulated $\Delta\delta C_{\alpha}$, $\Delta\delta C_{\beta}$, $\Delta\delta C_{\alpha} - \Delta\delta C_{\beta}$ (in ppm) from NMR ¹³C chemical shifts of three IDPs for ff99SBws, modified ff99SBws variants (S,T,ST,TQ,STQ) (this study), and ff99SB-disp.

$\Delta\delta C_{\alpha} - \Delta\delta C_{\beta}$	FUS ₀₋₄₃	TDP-43310-350	RNA Pol II1927-1970
ff99SBws	0.90 ± 0.11	0.64 ± 0.09	0.68 ± 0.11
ff99SB-disp	0.90 ± 0.11	0.78 ± 0.07	0.74 ± 0.11
ff99SBws-S	0.86 ± 0.10		
ff99SBws-T	0.98 ± 0.13		
ff99SBws-ST	0.64 ± 0.07	0.71 ± 0.08	0.74 ± 0.08
ff99SBws-TQ	0.62 ± 0.08	0.66 ± 0.06	0.71 ± 0.10
ff99SBws-STQ	0.54 ± 0.07	0.51 ± 0.04	0.74 ± 0.08
ΔδCα	FUS ₀₋₄₃	TDP-43310-350	RNA Pol II ₁₉₂₇₋₁₉₇₀
ff99SBws	0.58 ± 0.07	0.43 ± 0.06	0.67 ± 0.11
ff99SB-disp	0.59 ± 0.07	0.54 ± 0.05	0.62 ± 0.09
ff99SBws-S	0.51 ± 0.06		
ff99SBws-T	0.61 ± 0.08		
ff99SBws-ST	0.41 ± 0.04	0.41 ± 0.04	0.62 ± 0.08
ff99SBws-TQ	0.36 ± 0.05	0.40 ± 0.04	0.64 ± 0.09
ff99SBws-STQ	0.37 ± 0.04	0.36 ± 0.03	0.62 ± 0.08
ΔδCβ	FUS ₀₋₄₃	TDP-43310-350	RNA Pol II ₁₉₂₇₋₁₉₇₀
ff99SBws	0.43 ± 0.05	0.42 ± 0.05	0.51 ± 0.06
ff99SB-disp	0.39 ± 0.05	0.39 ± 0.06	0.44 ± 0.11
ff99SBws-S	0.45 ± 0.06		
ff99SBws-T	0.44 ± 0.05		
ff99SBws-ST	0.37 ± 0.04	0.44 ± 0.05	0.47 ± 0.10
ff99SBws-TQ	0.40 ± 0.05	0.41 ± 0.06	0.42 ± 0.11
ff99SBws-STQ	0.34 ± 0.04	0.34 ± 0.06	0.47 ± 0.10

Protein sequences used in NMR experiments

FUS Low Complexity domain FUS₁₋₁₆₃ (BMRB 26672)¹

MASNDYTQQATQSYGAYPTQ PGQGYSQQSSQPYGQQSYSG YSQSTDTSGYGQSSYSSYGQ SQNTGYGTQSTPQGYGSTGG YGSSQSSQSSYGQQSSYPGY GQQPAPSSTSGSYGSSSQSS SYGQPQSGSYSQQPSYGGQQ QSYGQQQSYNPPQGYGQQNQ YNS (163 residues)

TDP-43 Wild Type Low Complexity C-terminal domain TDP43₂₆₇₋₄₁₄ (BMRB 26823)²

GHMNRQLERSGRFGGNPGGF GNQGGFGNSRGGGAGLGNNQ GSNMGGGMNFGAFSINPAMM AAAQAALQSSWGMMGMLASQ QNQSGPSGNNQNQGNMQREP NQAFGSGNNSYSGSNSGAAI GWGSASNAGSGSGFNGGFGS SMDSKSSGWGM (151 residues)

RNA Pol II C-terminal Domain 27-52 RNA Pol II₁₇₇₀₋₁₉₇₀ (BMRB 27063)³

GHMSPNYTPTSPNYSPTSPS YSPTSPSYSPTSPSYSPSSP RYTPQSPTYTPSSPSYSPSS PSYSPASPKYTPTSPSYSPS SPEYTPTSPKYSPTSPKYSP TSPKYSPTSPTYSPTYSPTTPKYS PTSPTYSPTSPVYTPTSPKY SPTSPTYSPTSPKYSPTSPT YSPTSPKGSTYSPTSPGYSP TSPTYSLTSPAISPDDSDEE N (201 residues)

hnRNPA2 low complexity domain 190-341 hnRNPA2₁₉₀₋₃₄₁ (BMRB 27123)⁴

*GHM*GRGGNFGFGDSRGGGGN FGPGPGSNFRGGSDGYGSGR GFGDGYNGYGGGPGGGNFGG SPGYGGGRGGYGGGGPGYGN QGGGYGGGYDNYGGGNYGSG NYNDFGNYNQQPSNYGPMKS GNFGGSRNMGGPYGGGNYGP GGSGGSGGYGGRSRY (155 residues)

The residues in *italics* correspond to TEV-cleavage and cloning "scar" residues not present in the native sequences.

Figure S1. (*a*) α -helix propensities and (*b*) Chemical shifts $\Delta\delta C_{\alpha} - \Delta\delta C_{\beta}$ of TDP-43₃₁₀₋₃₅₀ and FUS₀₋₄₃ using all-atom force fields ff99SBws, ff03ws, and ff99SB-disp, compared to experimental results. Chemical shifts are calculated from protein structure using SPARTA+ algorithm. Secondary structures are assigned by DSSP. Experimental values of secondary structure propensities are calculated from NMR chemical shifts using the δ 2D program.

Figure S2. (*a*) Comparison of Root-mean-squared deviation (RMSD) of simulated $\delta C_{\alpha} - \delta C_{\beta}$ (in ppm) from NMR ¹³C chemical shifts (RMSD) of simulated sequences and (*b-d*) chemical shift deviation from the experiment $\Delta(\Delta\delta C_{\alpha} - \Delta\delta C_{\beta})$ with ff99SBws and modified force fields (see legend).

Figure S3. Secondary structure propensities of FUS₀₋₄₃, TDP-43₃₁₀₋₃₅₀, and RNA Pol II₁₉₂₇₋₁₉₇₀ with ff99SBws, ff99SBws-STQ (this study) and ff99SB-disp, compared to δ 2D secondary structure propensities calculated from experimental NMR chemical shifts.

Figure S4. Intrachain residue-to-residue contact propensities in FUS_{0-43} and $TDP-43_{310-350}$ with ff99SBws and ff99SBws-STQ (this study). Two residues are considered in contact when any heavy atoms from each of the residue are within 6 Angstrom in simulation. Contact propensities are the proportion of frames in simulation where two residues are in contact, with contact propensity = 1 being always in contact.

Figure S5. Change in Intrachain residue-to-residue contact propensities in $FUS_{0.43}$ and $TDP-43_{310-350}$ from ff99SBws to ff99SBws-STQ (this study) Two residues are considered in contact when any heavy atoms from each of the residue are within 6 Angstrom in simulation. Contact propensities are the proportion of frames in simulation where two residues are in contact, with contact propensity = 1 being always in contact.

Figure S6. Average radius of gyration (Rg) in FUS₀₋₄₃, TDP-43₃₁₀₋₃₅₀ and RNA Pol II₁₉₂₇₋₁₉₇₀ with ff99SBws and ff99SBws-STQ (this study).

Figure S7. DSSP secondary structure as a function of simulation time for each demultiplexed replica moving through the temperature space of FUS₀₋₄₃ with ff99SBws-STQ (this study).

Figure S8. DSSP secondary structure as a function of simulation time for each demultiplexed replica moving through the temperature space of TDP-43₃₁₀₋₃₅₀ with ff99SBws-STQ (this study).

Figure S9. Fraction Helix of (AAQAA)₃ with ff99SBws and ff99SBws-STQ (this study) compared to NMR experimental data⁵.

References

- 1. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. *Mol. Cell* **60**, 231–241 (2015).
- Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. *Structure* 24, 1537–1549 (2016).
- 3. Janke, A. M. *et al.* Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment. *Biochemistry* **57**, 2549–2563 (2018).
- 4. Ryan, V. H. *et al.* Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. *Mol. Cell* **69**, 465-479.e7 (2018).
- 5. Shalongo, W., Dugad, L. & Stellwagen, E. Distribution of Helicity within the Model Peptide Acetyl(AAQAA)3amide. *J. Am. Chem. Soc.* **116**, 8288–8293 (1994).