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S1 Data Collection

S1.1 Case Data

We collected daily case data from 374 cities and metropolitan areas from 43 countries from all
inhabited continents. The data source for each country is listed in Table S1. However, data was
unavailable for cities in the arid Middle East and in colder parts of the world, e.g. northern Russia,
therefore our models represent a restricted part of the full climatic range of human inhabited regions.

To ensure a comparable level of infrastructure and population mixing in the locations of interest,
we only used cities that had a population of at least half a million people. We further excluded
cities that reported fewer than 50 cases up to 8 July 2020, to mitigate the influence of imported
cases compared to local transmission.

Collected daily case data was either in the form of interval data (new cases per day, also known
as daily incidence) or cumulative data (new cases per day are aggregated to previously reported
cases).

For our purposes, days with zero incidence (i.e. where no new cases are recorded) are not used for
model fitting. Days with zero incidence are unlikely especially once an epidemic is under way and
there is community spread. Instead, it is likely that cases on days with zero incidence were reported
at a later date. This is because collection of samples and lab-testing does not necessarily take place
on the same day. Some countries, like the UK, match a positive test to the sample collection
date. Other countries might not do this and would report after lab-testing. This possible difference
between cities/countries is not a problem as long as the reporting delay, the period between the
actual transmission and the reporting, is constant throughout the initial phase in each individual
city. We also assume that this delay is relatively short (only a few days), so that the extracted
climate variables approximately match the transmission period.

We make one final assumption: we assume that the testing rate, or rather the case detection
rate, is constant during the initial outbreak period. It does not matter if the testing rate differs
between cities and countries (which it will do) - our method will yield comparable basic reproduction
numbers as long as the testing rate is relatively constant in each individual city.
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Table S1: Case data and sources.

Country (# cities) Source Details
Argentina (1)
Belgium (1)
Canada (5)
China (86)
Ecuador (2)
India (75)
Japan (1)
Kazakhstan (1)
Niger (1)
Paraguay (1)
Russia (2)
Singapore (1)
UK (1)

1 Xu et al. [29]
https://github.com/beoutbreakprepared/nCoV2019/tree/
master/latest data

Australia (2) 2 New South Wales Government & State Government of Victoria
https://data.nsw.gov.au/data/dataset/
nsw-covid-19-cases-by-location-and-likely-source-of-infection/
resource/2776dbb8-f807-4fb2-b1ed-184a6fc2c8aa
https://www.dhhs.vic.gov.au/ncov-covid-cases-by-lga-source-csv

Belgium (1) 3 Belgian Institute for Health
https://epistat.wiv-isp.be/covid/

Brazil (36) 4 Ministry for Health Brazil
https://opendatasus.saude.gov.br/dataset/bd-srag-2020
https://s3-sa-east-1.amazonaws.com/ckan.saude.gov.br/SRAG/
2020/INFLUD-16-11-2020.csv

Burkina Faso (1) 5 Ministry of Health Burkina Faso
https://www.sante.gov.bf/corona-virus

Chile (1) 6 Ministry of Health, Chile
https://www.gob.cl/coronavirus/cifrasoficiales/

Colombia (8) National Institute of Health, Colombia
https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx

Congo, Republic of (2) Ministry of Health, Congo
http://sante.gouv.cg/
https://twitter.com/MSPPFIFD cg

1As data is incomplete, city-level data from a country is used if at least 50% of country-level cases had been
reported. For this, we compared daily numbers of Xu et al. with country-level numbers of the JHU CSSE database.
We discarded city-level data from day n, if country-level data dropped below 50% of official numbers on day n.

2Case data of Sydney, SE Sydney, SW Sydney, N Sydney, and W Sydney clustered for Sydney.
3We use the Brussles Arrondissement as approximate metropolitan area.
4Aggregated non-severe and sever cases, filtered for positive test result.
5Only updated until 22nd May.
6Individually published reports. Data on 16th June was manually adjusted by the Ministry of Health, so we only

used records up to this point.
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Côte d’Ivoire (1) 7 8 Ministry of Health and Public Hygiene
http://www.sante.gouv.ci/welcome/actualites/605..690

Djibouti (1) 9 Ministry of Health of Djibouti
https://covid19.gouv.dj/test

Ethiopia (1) 7 Ethiopian Public Health Institute
https://www.ephi.gov.et/index.php/public-health-emergency/
novel-corona-virus-update

Germany (15) Robert Koch Institute
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges
Coronavirus/Fallzahlen.html

Ghana (1) 7 Ministry of Health, Ghana
https://ghanahealthservice.org/covid19/archive.php
https://ghanahealthservice.org/covid19/
https://twitter.com/mohgovgh

India (1) Delhi Health Bulletins
https://delhifightscorona.in/health-bulletins/

Indonesia (2) Ministry of Health of the Republic of Indonesia
https://corona.jakarta.go.id/en/data-pemantauan

Italy (11) Civil Protection
https://github.com/pcm-dpc/COVID-19/tree/master/
dati-province

Japan (7) 10 Ministry of Health Labour and Welfare
https://mhlw-gis.maps.arcgis.com/apps/opsdashboard/index.
html#/0c5d0502bbb54f9a8dddebca003631b8

Kenya (2) 7 Ministry of Health Kenya
https://www.health.go.ke/

Malaysia (1) Director-General of Health Malaysia
https://kpkesihatan.com/

Mexico (30) 11 Mexican Government
https://datos.gob.mx/busca/dataset/
informacion-referente-a-casos-covid-19-en-mexico

Netherlands (3) National Institute for Public Health and Environment
https://data.rivm.nl/covid-19/

Nigeria (2) 7 Nigeria Centre for Disease Control
https://ncdc.gov.ng/diseases/sitreps/?cat=14&name=An%
20update%20of%20COVID-19%20outbreak%20in%20Nigeria

Norway (1) Norwegian Institute of Public Health
https://www.fhi.no/en/id/infectious-diseases/coronavirus/
daily-reports/daily-reports-COVID19/

7Individually published reports.
8Country-level data but as of June 2020, 95% of the cases recorded are in Abidjan.
9Country-level data, but > 70% of population are living in Djibouti City.

10Only about 10000 out of 17000 cases were associated with a date and used here.
11Filtered for cases without recent travel history.

3

http://www.sante.gouv.ci/welcome/actualites/605 .. 690
https://covid19.gouv.dj/test
https://www.ephi.gov.et/index.php/public-health-emergency/novel-corona-virus-update
https://www.ephi.gov.et/index.php/public-health-emergency/novel-corona-virus-update
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html
https://ghanahealthservice.org/covid19/archive.php
https://ghanahealthservice.org/covid19/
https://twitter.com/mohgovgh
https://delhifightscorona.in/health-bulletins/
https://corona.jakarta.go.id/en/data-pemantauan
https://github.com/pcm-dpc/COVID-19/tree/master/dati-province
https://github.com/pcm-dpc/COVID-19/tree/master/dati-province
https://mhlw-gis.maps.arcgis.com/apps/opsdashboard/index.html#/0c5d0502bbb54f9a8dddebca003631b8
https://mhlw-gis.maps.arcgis.com/apps/opsdashboard/index.html#/0c5d0502bbb54f9a8dddebca003631b8
https://www.health.go.ke/
https://kpkesihatan.com/
https://datos.gob.mx/busca/dataset/informacion-referente-a-casos-covid-19-en-mexico
https://datos.gob.mx/busca/dataset/informacion-referente-a-casos-covid-19-en-mexico
https://data.rivm.nl/covid-19/
https://ncdc.gov.ng/diseases/sitreps/?cat=14&name=An%20update%20of%20COVID-19%20outbreak%20in%20Nigeria
https://ncdc.gov.ng/diseases/sitreps/?cat=14&name=An%20update%20of%20COVID-19%20outbreak%20in%20Nigeria
https://www.fhi.no/en/id/infectious-diseases/coronavirus/daily-reports/daily-reports-COVID19/
https://www.fhi.no/en/id/infectious-diseases/coronavirus/daily-reports/daily-reports-COVID19/


Pakistan (1) Government of Pakistan
http://covid.gov.pk/stats/ict

Peru (4) Ministry of Health, Peru
https://www.datosabiertos.gob.pe/dataset/
casos-positivos-por-covid-19-ministerio-de-salud-minsa

Philippines (8) Department of Health
https://ncovtracker.doh.gov.ph/
https://drive.google.com/drive/folders/164CQ
1lI6WZJovwULpC8zHDi9K0arkiz

Senegal (1) 7 Ministry of Health and Social Action of Senegal
http://www.sante.gouv.sn/activites
https://cartosantesen.maps.arcgis.com/apps/opsdashboard/
index.html#/d74c1c8960e1450d9ade59a8b5c9e9a7

Somalia (1) 7 Ministry of Health, Federal Republic of Somalia
https://twitter.com/MoH Somalia
https://www.facebook.com/MoHSomalia/
https://www.nomadilab.org/covid-19somalia/

South Africa (2) 7 Gauteng Department of Health & Western Cape Government
https://twitter.com/GautengHealth
https://coronavirus.westerncape.gov.za/covid-19-dashboard

South Korea (5) 7 Korea Centers for Disease Control and Prevention (KCDC)
https://www.cdc.go.kr/board/board.es?mid=a30402000000&
bid=0030

Spain (1) National Centre for Epidemiology, Spain
https://cnecovid.isciii.es/covid19/#documentaci%C3%
B3n-y-datos

Sudan (1) 7 Federal Ministry of Health, Sudan
https://twitter.com/FMOH SUDAN
http://www.fmoh.gov.sd/

Sweden (1) Public Health Agency of Sweden
https://www.folkhalsomyndigheten.se/smittskydd-beredskap/
utbrott/aktuella-utbrott/covid-19/bekraftade-fall-i-sverige/

Thailand (4) Department of Disease Control
https://data.go.th/en/dataset/covid-19-daily

UK (10) Government of the United Kingdom
https://coronavirus.data.gov.uk/

USA (27) 12 John Hopkins University CSSE COVID-19 Dataset
https://github.com/CSSEGISandData/COVID-19/tree/master/
csse covid 19 data

12We used the according county as city area.
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S1.2 Covariate Data

We assembled a set of predictor covariates that may potentially explain variation in R0 between
cities, covering five broad categories: climatic, geographic, demographic, socioeconomic and epi-
demic response at city- or country-level resolution, depending on data availability (Table S2).

For climatic covariates, daily temperature and relative humidity data were downloaded together
with altitude data from Ogimet [20], using the R package ‘climate’ v0.9.5 [4], taking readings from
the nearest weather location according to the city’s latitude and longitude coordinates, extracted
from Geonames [8]13. Hourly downward UV radiation reaching the earth’s surface was extracted
from the Copernicus Climate Data Store [14], using city coordinates in the same way before aggre-
gating as daily measures.

Considering demographic and socioeconomic covariates, city population size and density were
firstly taken from Demographia [3]. GDP per capita, elderly dependency ratio, and mean population
air pollution exposure were obtained from the OECD Metropolitan Database [21], substituting
country-level average data from alternative sources where no city-level data were available (Table
S2). These data, most notably air pollution, are historical data intended to capture variability in
socioeconomic infrastructure and do not reflect economic or environmental changes resulting from
the pandemic (Table S2). Life expectancy was obtained from the WHO Global Health Observatory
[27] and prevalence of chronic respiratory disease was obtained from the Global Burden of Disease
Study [9]. Self-reported International Health Regulation (IHR) capacity was obtained from the
e-SPAR tool [26].

To capture epidemic responses, we extracted changes in population activity at various types
of location (e.g. retail and recreation, workplaces) from Google COVID-19 Community Mobility
Reports [10]. Data describing stringency of government response were then obtained from the
Oxford COVID-19 Government Response Tracker [13].

All covariates averaged or derived from daily time series source data (temperature, relative
humidity, UV radiation) were calculated for each city based on its respective start and/or end
dates of the data fitting window (see Section S2.2), except for changes in population activity and
stringency of government response, which were calculated starting two weeks prior to this period,
in order to account for potential lagged impact of disease control responses.

13The vast majority of weather stations were within city limits (median of 8 km distance to the city centre) and
320 of 374 weather stations were within 50 km distance of the city centre. 42 weather stations were between 50 km
and 100 km away from the city centre and the remaining 12 weather stations were within a 250 km range except for
Anyang in China (371 km), and Tijuana and Leon in Mexico (352 resp. 644 km).
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Table S2: Extracted city or country-level covariates for use in predic-
tive modelling of R0, along with category, source and respective date
described by data.

Covariate Definition (units) Category Resolution Source Date of
data

Population population size demographic city Cox [3] 2019

Population
Density

population density
(per km2)

demographic city Cox [3] 2019

Temperature mean daily
temperature (◦C)

climatic city OGIMET
[20],

Czernecki et
al. [4]

Fitting
Window14

Relative
Humidity

(RH)

mean daily relative
humidity (%)

climatic city OGIMET
[20],

Czernecki et
al. [4]

Fitting
Window14

Ultraviolet
(UV)

radiation

downward UV
radiation reaching
surface (kJ/m2)

climatic city Copernicus
Climate
Change

Service [14]

Fitting
Window14

Latitude latitude (degrees
north)

geographic city Geonames
[8]

-

Elevation elevation (meters
above sea level)

geographic city OGIMET
[20],

Czernecki et
al. [4]

-

Retail and
Recreation

Activity

activity at
restaurants, cafes,
shopping centers,

theme parks,
museums, libraries,
and movie theaters

(% change compared
to baseline)

epidemic
response

city,
otherwise ad-
ministrative

division,
otherwise
country

Google [10] Fitting
Window
with 2

weeks lag15

Grocery and
Pharmacy
Activity

activity at grocery
markets, food

warehouses, farmers
markets, specialty
food shops, drug

stores, and
pharmacies (%

change compared to
baseline)

epidemic
response

city,
otherwise ad-
ministrative

division,
otherwise
country

Google [10] Fitting
Window
with 2

weeks lag15

14City-specific data fitting window for initial part of epidemic (see Section S2.2 for details).
15Starting (ending) date 14 days prior to start (end) date of city-specific data fitting window for initial part of

epidemic.
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Park Activity activity at national
parks, public

beaches, marinas,
dog parks, plazas,
and public gardens

(% change compared
to baseline)

epidemic
response

city,
otherwise ad-
ministrative

division,
otherwise
country

Google [10] Fitting
Window
with 2

weeks lag15

Transit
Station
Activity

activity at public
transport hubs e.g.
subways, stations,
ports (% change

compared to
baseline)

epidemic
response

city,
otherwise ad-
ministrative

division,
otherwise
country

Google [10] Fitting
Window
with 2

weeks lag15

Workplace
Activity

activity at
workplaces (%

change compared to
baseline)

epidemic
response

city,
otherwise ad-
ministrative

division,
otherwise
country

Google [10] Fitting
Window
with 2

weeks lag15

Residential
Activity

activity at places of
residence (% change

compared to
baseline)

epidemic
response

city,
otherwise ad-
ministrative

division,
otherwise
country

Google [10] Fitting
Window
with 2

weeks lag15

IHR Capacity mean self-reported
International Health
Regulations capacity

rating (%)

socioeconomic country WHO [26] 2019

GDP per
capita

GDP per capita
(USD, constant
prices, constant
PPP, base year

2015)

socioeconomic city,
otherwise
country

OECD [21],
World Bank

[25]

2018

Air Pollution mean population air
pollution exposure
to PM2.5 (µg/m3)

socioeconomic city,
otherwise
country

OECD [21],
GBD [9]

2017

Elder
Dependency

Ratio

ratio between
population 65+

years to population
15-64 years old (%)

demographic city,
otherwise
country

OECD [21],
CIA [2]

2018

Life
Expectancy

life expectancy at
birth (years)

demographic country WHO [27] 2016

CRD
Prevalence

prevalence of chronic
respiratory diseases
including COPD,
pneumoconiosis,

asthma (%)

socioeconomic country GBD [9] 2017
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Stringency of
Government

Response

mean government
response stringency
index aggregated
over 13 indicators

(scale from 0 - 100)

epidemic
response

city, derived
from adminis-

trative
division

(Brazil, UK,
USA),

otherwise
derived from

country

Hale et
al. [13]

Fitting
Window
with 2

weeks lag15

DayS Starting day of data
fitting window14

- city case data 2020

All covariate data was plotted within the range of the first and last decile, see figures below.
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S2 Methods: Determining the Exponential Growth

At least in the early stages, we observe that the majority of epidemics in large cities are typified by
a rapid growth phase followed by a period in which the outbreak is being brought under control.
We model this process by using the logistic equation

dNt/dt = rNt(1−Nt/K) (S2.1)

with solution

Nt =
ertN0

1 + (ert − 1)N0/K
(S2.2)

where Nt is the total number of cases at time t, N0 is the initial number of cases, r is the underlying
exponential growth rate and K is a parameter representing the total number of individuals that
would be infected at the end of an outbreak. This gives rise to an S-shaped curve, similar to that
which is observed in the first part of the majority of data for large cities. In using this model, we
are assuming that for a given city, the ratio of detected to actual cases remains constant throughout
the part of the epidemic we fit to.

In general t is continuous, i.e. t ∈ [0,∞). For our purposes t represents a particular day in
an outbreak and is considered to be discrete, i.e. t = 1, 2, . . ., such that t = 1 is the first day of
an outbreak. Let It denote the incidence (number of new cases) on day t, it represents the time
interval (t− 1, t]. Let Ct denote the cumulative total number of cases from day 1 to t, it represents
the time interval (0, t]. It is related to Ct as follows

Ct =

t∑
n=1

In. (S2.3)

We cannot fit the daily incidence or cumulative case data directly to the logistic equation, as
the data is incomplete. In particular, the total number of cases up to and including day t is given
by

Nt = N0 +

t∑
n=1

In = N0 + Ct, (S2.4)

where N0 is the number of cases prior to day 1, which have not been reported and are therefore
unknown. However, from equation (S2.4), we have that It is related to Nt by

It = Nt −Nt−1 (S2.5)

and Ct is related to Nt by

Ct = Nt −N0. (S2.6)

Using these relationships, we can fit one of the two following models:

• Model 1: Fit to daily incidence data. This approach is used by Ma et al. [18] and Ma
[17] where, using equation (S2.5), we obtain the following model where the fitted values of It,
denoted Ît, for t = 1, 2, . . . are given by

Ît =
er̂tN̂0

1 + (er̂t − 1)N̂0/K̂
− er̂(t−1)N̂0

1 + (er̂(t−1) − 1)N̂0/K̂
(S2.7)

where r̂, N̂0, K̂ are the fitted values of r,N0,K.
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• Model 2: Fit to cumulative data. Using equation (S2.6), the fitted values of Ct, denoted
Ĉt, for t = 1, 2, . . . are given by the model

Ĉt =
er̂tN̂0

1 + (er̂t − 1)N̂0/K̂
− N̂0 (S2.8)

where r̂, N̂0, K̂ are the fitted values of r,N0,K.

This means that the fitted values of Nt, denoted N̂t, are given by

N̂t =
er̂tN̂0

1 + (er̂t − 1)N̂0/K̂
,

where r̂, N̂0, K̂ are the fitted values of r,N0,K obtained from either model 1 or 2. Fitting to the
logistic equation is numerically efficient in comparison to, for example, the SIR model, because
it avoids the need for repeatedly solving a differential equation system [17]. Data fits are carried
out in the R programming language using a function that implements the Levenberg-Marquardt
algorithm.

S2.1 Comparison between approaches

While it is more common to fit to daily incidence data (model 1), here we fit to cumulative data
(model 2). When fitting to cumulative data, errors in individual observations are correlated since
they contain all cases from previous observations [18]. This results in uncertainty being underes-
timated leading to overconfidence in the model fit [18, 15], and is particularly problematic when
trying to forecast the epidemic curve, which we are not doing. We, on the other hand, are estimat-
ing the exponential growth rate from the early phase of an outbreak. In this case, King et al. [15]
showed that fitting the deterministic susceptible–infected–recovered (SIR) model to incidence or
cumulative data (generated using a stochastic model) gives a fairly accurate estimate. To check
that this is indeed the case, we fit the logistic equation to data generated with noise as follows.

1. Generate perfect data using the logistic equation (S2.2) with parameters r,N0,K.

2. Generate incidence data with noise such that

it = max
(
0,N (µt, σ

2
t )
)

(S2.9)

where

µt = Nt −Nt−1 and σt = εµt, ε ≥ 0. (S2.10)

That is, it is normally distributed random variable with mean µt and variance σ2
t , but it is

truncated so that it ≥ 0. Note that ε controls the noise such that for ε = 0 there is no noise.
Calculate cumulative data using equation (S2.3), as follows

ct =

t∑
n=1

it.
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3. Fit models 1 and 2 up to the point of inflection, t∗, which is given by

t∗ =
ln(K/N0 − 1)

r
.

The models are fitted to data up to t∗ because, as seen later in section S2.2, we want to
estimate the growth rate from the early phase of an epidemic but stop at the point where
control behaviour starts to dominate over growth.

4. Store the fitted values N̂0, r̂, K̂ obtained from fitting models 1 and 2 to the data set.

5. Repeat steps 2–4 for as many realisations as required.

The results of our numerical experiment are shown in Figure S1. We see that the variance in
the fitted exponential growth rate when fitting to the incidence data (model 1) is larger than when
fitting to cumulative data (model 2). Furthermore, the mean has a slight upward bias in model
1 when the noise parameter (ε) is increased. This bias is also found to persist when the normally
distributed noise (equation (S2.9)) is symmetrically truncated to be in [0, 2µt].
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Figure S1: Comparison between fitting to incidence data (model 1) and cumulative data (model
2). Parameters used to generate the logistic growth curve are r = 0.2, N0 = 100,K = 10000. Plots
shown are the 5th percentile, mean and 95th percentile of the fitted exponential growth rate for 104

incidence curves with noise.

S2.2 Finding initial exponential growth rate:

We are interested in obtaining the underlying exponential growth rate r as a measure of the intrinsic
rate of spread of the epidemic in the absence of control. The logistic equation can be seen to be
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piecewise linear when plotted on the logarithmic scale (see Figure S2); that is, there are two segments
consisting of an initial upward sloping line followed by a horizontal line. This is typically the case
in the cumulative case curve when there is a single peak of high incidence caused by one wave of
infections.

In the presence of multiple waves, the second segment would be upward sloping instead of
horizontal. However, the slope of the second segment could be lower than that of the first due to
control measures put in place.

For our purposes, the first segment is considered to be the first wave of an epidemic and,
therefore, fitting to this part of the curve allows us to obtain the underlying exponential growth
rate r we require. To find the first segment, we ensure that we crop the end point of the data before
it gets too far into the control phase by determining the point of inflection when control behaviour
starts to dominate over growth. Note that this is consistent with the experiment we carried out
earlier where we fit to the point of inflection. We do this by using the following algorithm:

1. Let T be the last point of this interval so that I1, . . . , IT is the incidence data and C1, . . . , CT

is the cumulative data. Use the correct data to fit either model 1 or 2.

2. Fit model to the data window t ∈Wm = {1, 2, . . . ,m}. For our fits we have set the minimum
value of m to 5. For t ∈Wm we define

N̂t(m) =
er̂(m)tN̂0(m)

1 + (er̂(m)t − 1)N̂0(m)/K̂(m)
(S2.11)

where N̂t(m), r̂(m), N̂0(m), K̂(m) are the fitted values of Nt, r,N0,K respectively when fitting
to the first m data points. Calculate the slope at point m as follows

Ṅm(m) = r̂(m)N̂m(m)
[
K̂(m)− N̂m(m)

]
/K̂(m). (S2.12)

3. Repeat the previous step for all data windows with length greater than m, i.e. Wm+1, . . . ,WT .

4. Choose the data window WM such that the slope is largest at time point M ; that is,

ṄM (M) =
T

max
n=m

{
Ṅn(n)

}
. (S2.13)

The fit to WM is used to give the exponential growth rate of the epidemic; that is,

r = r̂(M). (S2.14)

S2.3 Calculation of the basic reproduction number

The basic reproduction number (R0
16) is calculated following the approximation by Wallinga &

Lipsitch [24] as

R0 = 1 + rT (S2.15)

16It is important to note that this is not the R0 in the complete absence of control. People’s behaviour is determined
by factors that include government interventions and people’s natural avoidance of infection. We are determining
R0 for the system under study; that is, the number of secondary cases per primary in an uninfected population and
the behaviour of that uninfected population is a key factor in this quantity.
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Figure S2: Logistic equation with N0 = 1, r = 0.35,K = 1000 plotted on the logarithmic scale.
The slope and inflection point (where slope is maximum) are also shown.

where the serial interval, T , is estimated to be 4.7 days [19]. Earlier estimates of T were in the range
of 7-8 days [16, 28], resulting in higher R0 values. More recent studies give lower serial intervals
between 3.95 for China to 5.2 for Singapore [7, 5].
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S2.4 R0 values

Table S3: Descriptive statistics for values of R0 over exponential
growth period for 359 world cities with at least half a million in-
habitants, stratified by region. IQR = interquartile range.

Continent Number of cities Min Median Max IQR
China 85 1.28 2.21 4.42 0.85

Australia 2 1.63 1.68 1.73 0.05
Asia (exc. China) 103 1.07 1.56 4.38 0.67

Europe 46 1.20 1.49 2.63 0.20
South America 52 1.16 1.45 4.93 0.31
North America 56 1.15 1.43 3.55 0.41

Africa 15 1.03 1.34 2.68 0.58
World 359 1.03 1.58 4.93 0.70

A total of 15 cities were excluded due to the following reasons:

1. The fitting algorithm did not work due to too few data points, jumps or local maxima in the
cumulative data (8 cities: Beijing, Richmond, Houston, Virginia Beach, Wichita, Amsterdam,
Yogjakarta, Des Moines).

2. There were too few data points within the first 60 days (5 cities: Aracaju, Thrissur, Aguas-
calientes, General Santos City, Udon Thani).

3. The start of the outbreak was not recorded (2 cities: Accra, Johannesburg).
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S3 Statistical analysis

All data handling and analysis was conducted using R v3.6.1 [22]. Supporting data and code is
available at https://github.com/lbrierley/metelmann covid19 climate.

S3.1 Data handling

To avoid inflated error estimates in predictive models, we firstly examined correlation between all
potential covariates (Figure S3) and retained a subset without multicollinearity for model inclusion,
defined as all variance inflation factors (VIF) < 5), calculated using R package ‘car’, v3.0-7 [6].
When determining which covariates to retain, we preferentially retained the covariate(s) with higher
resolution (i.e. data at city- or administrative division-resolution over country-resolution) and fewer
missing data values. We therefore retained UV radiation while excluding temperature; stringency
of government responses while excluding population activity covariates; and GDP per capita and
exposure to air pollution while excluding population life expectancy, IHR capacity, and prevalence
of chronic respiratory disease.

Missing values in city-level air pollution (n = 237: all cities within Argentina, Brazil, Burk-
ina Faso, China, Congo, Cote d’Ivoire, Djibouti, Ecuador, Ethiopia, India, Indonesia, Kazakhstan,
Kenya, Malaysia, Niger, Nigeria, Pakistan, Paraguay, Peru, Philippines, Russia, Senegal, Singapore,
Somalia, South Africa, Sudan, Thailand; plus Honolulu, USA) and elder dependency ratio (n = 237:
as for air pollution), and GDP per capita (n = 282: as for air pollution, plus all cities within Canada,
Colombia, Japan; Bergamo, Italy; and Acapulco, Cancun, Chihuahua, Ciudad Juarez, Culiacan,
Durango, Hermosillo, Leon, Mexicali, Morelia, Oaxaca, Puebla, Reynosa, Saltillo, San Luis Potosi,
Tampico, Tijuana, Toluca, Torreon, Tuxtla Gutierrez, Veracruz, Villahermosa, and Xalapa, Mex-
ico) were substituted with country-level data. Missing values in temperature (n = 5: Medellin,
Colombia; Djibouti, Djibouti; Erode, India; Arequipa, Peru; Khartoum, Sudan), relative humidity
(n = 3: Erode, India; Arequipa, Peru; Khartoum, Sudan), and stringency of government response
(n = 1: Belem, Brazil) were imputed based on other covariates before modelling following a ran-
dom forest-based procedure using R package ‘missForest’ v1.4 [23]. No other covariates selected for
model inclusion had missing values. Covariates exhibiting overdispersion (population, population
density, elevation, GDP per capita) were subject to a log10(x) transformation prior to modelling,
adjusting log10(elevation) = 0 for cities below sea level (Amsterdam and Rotterdam, Netherlands).

S3.2 Regression modelling

To test whether our hypothesised covariates predicted R0 values, linear OLS regression models
were initially constructed featuring all covariates, before reducing down to a final selected model by
stepwise removal and retaining the model with the minimal AIC score. To minimise the influence
of cities for which R0 estimates may have greater uncertainty, all regression models weighted cities
proportionally to the number of data points with non-zero incidence in their data fitting window
(WM , see Section S2.2). As unexplained residual variation may be correlated within-country, we
then tested whether adding country-level random intercepts in a mixed-effects approach significantly
improved model fits using likelihood ratio tests. Mixed-effects regression models were fitted using R
package ‘lme4’ v.1.1-23 [1]. All model fits were examined by plotting residuals against fitted values
and theoretical quantiles, and by examining Cook’s distance plots.
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Figure S3: Cross correlation matrices, colour code indicates Spearman’s correlation coefficient.
Crossed out cells indicate no statistical significance (p > 0.05). Left: covariate data for cities
outside China. Activity indices show a strong correlation with each other, so do socioeconomic
indices. Right: covariate data for cities inside China for which activity and socioeconomic data was
not available on city level.

Significance of covariates was determined in finalised models through likelihood ratio tests
(LRTs). To additionally quantify the relative overall importance of climatic covariates, we also
calculated total contribution to R2 for each covariate type using proportional marginal variance
decomposition [12] using R package ‘relaimpo’ v2.2-3 [11].

Before constructing the models for cities in China (n = 83, excluding Xinyang and Yichun based
on excessive influence over model fits determined by Cook’s distance), we discarded the following
covariates with either country-level substituted data (i.e. constant values) or multicollinearity:
latitude, elder ratio, GDP per capita, air pollution and change in retail and recreation (see Tables
S6 and S7). In the minimal OLS model, R0 was associated with only three covariates representing
climate and epidemic response which collectively explained 34.5% (adjusted measure: 32.0%) of
variation. Lower rates of transmission were observed for warmer climates within China, with R0

decreasing by an average of 0.46 for every 10◦C increase (Figure S6A). We also observe evidence
for lower R0 in cities with more stringent government responses two weeks prior (Figure S6C).

Finally, we repeated all regression modelling procedures without weighting cities by available
incidence data, and confirmed similar resulting model effects and coefficients for the global analysis
of all cities and excluding China (see Tables S8 and S9), and the model for cities in China only
(Table S10).
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Table S4: Outputs from initial saturated OLS regression model
predicting R0 within global cities (n = 359). CI: confidence in-
terval, ∆AIC: change in Akaike Information Criterion when term
excluded, LRT: Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Relative Humidity (%) −0.004 (−0.008, 0) 1.493 0.062

Surface UV radiation (kJ/m
2
) −0.005 (−0.007,−0.002) 9.229 0.001

Calendar day 0.001 (−0.003, 0.005) −1.624 0.54
Latitude −0.003 (−0.005,−0.001) 4.14 0.013

log(Elevation (m)) −0.065 (−0.116,−0.013) 4.129 0.013
log(Population) −0.124 (−0.215,−0.033) 5.283 0.007

log(Population Density per km2) 0.137 (−0.044, 0.319) 0.282 0.131
log(GDP per capita (USD)) 0.079 (−0.128, 0.287) −1.413 0.443

Air Pollution (µg/m3) 0.008 (0.005, 0.01) 44.766 < 0.001
Elder Dependency Ratio (%) 0 (−0.007, 0.008) −1.991 0.925

Stringency of government response −0.01 (−0.013,−0.007) 43.075 < 0.001

Table S5: Outputs from initial saturated OLS regression model
predicting R0 within global cities excluding China (n = 274). CI:
confidence interval, ∆AIC: change in Akaike Information Criterion
when term excluded, LRT: Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Relative Humidity (%) −0.003 (−0.007, 0.001) −0.24 0.185

Surface UV radiation (kJ/m
2
) −0.002 (−0.005, 0.001) 0.765 0.096

Calendar day 0.004 (0, 0.008) 1.157 0.076
Latitude −0.003 (−0.005,−0.001) 5.346 0.007

log(Elevation (m)) −0.055 (−0.107,−0.003) 2.472 0.034
log(Population) −0.08 (−0.177, 0.018) 0.712 0.1

log(Population Density per km2) 0.166(−0.017, 0.349) 1.334 0.068
log(GDP per capita (USD)) 0.13 (−0.075, 0.334) −0.376 0.203

Air Pollution (µg/m3) 0.006 (0.004, 0.009) 26.247 < 0.001
Elder Dependency Ratio (%) 0.004 (−0.003, 0.012) −0.79 0.271

Stringency of government response −0.01 (−0.013,−0.007) 40.54 < 0.001
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Table S6: Outputs from initial saturated OLS regression model
predicting R0 within cities in China (n = 83). CI: confidence in-
terval, ∆AIC: change in Akaike Information Criterion when term
excluded, LRT: Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Temperature (◦C) −0.047 (−0.081,−0.012) 5.917 0.005

Relative Humidity (%) −0.004 (−0.027, 0.018) −1.827 0.677

Surface UV radiation (kJ/m
2
) 0.006 (−0.017, 0.028) −1.736 0.607

Calendar day 0.049 (−0.032, 0.131) −0.384 0.204
log(Elevation (m)) −0.039 (−0.29, 0.212) −1.892 0.742

log(Population) 0.049 (−0.348, 0.446) −1.932 0.794

log(Population Density per km2) 0.091 (−0.782, 0.965) −1.951 0.825
Stringency of government response −0.039 (−0.056,−0.022) 18.516 < 0.001

Table S7: Outputs from selected OLS regression model predicting
R0 within cities in China (n = 83) based on stepwise reduction
from saturated model using AIC. CI: confidence interval, ∆AIC:
change in Akaike Information Criterion when term excluded, LRT:
Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Temperature (◦C) −0.046 (−0.070,−0.022) 12.1 < 0.001

Calendar day 0.051 (−0.012, 0.113) 0.68 0.101
Stringency of government response −0.040 (−0.056,−0.024) 20.5 < 0.001

Table S8: Outputs from selected unweighted OLS regression model
predicting R0 within global cities (n = 359) based on stepwise
reduction from saturated model using AIC. CI: confidence inter-
val, ∆AIC: change in Akaike Information Criterion when term ex-
cluded, LRT: Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Relative Humidity (%) −0.007 (−0.014,−0.001) 4.05 0.014

Surface UV radiation (kJ/m
2
) −0.007 (−0.011,−0.004) 11.871 0

Calendar day 0.005 (0, 0.01) 2.362 0.037
Latitude −0.004 (−0.008, 0) 2.793 0.029

log(Elevation (m)) −0.085 (−0.164,−0.006) 2.573 0.032
log(Population) −0.118 (−0.258, 0.022) 0.826 0.093

log(Population Density per km2) 0.205 (−0.061, 0.471) 0.348 0.125
Air Pollution (µg/m3) 0.009 (0.006, 0.012) 36.146 < 0.001

Stringency of government response −0.014 (−0.018,−0.01) 46.68 < 0.001
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Table S9: Outputs from selected unweighted OLS regression model
predicting R0 within global cities excluding China (n = 274) based
on stepwise reduction from saturated model using AIC. CI: confi-
dence interval, ∆AIC: change in Akaike Information Criterion when
term excluded, LRT: Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Relative Humidity (%) −0.005(−0.011, 0.001) 0.929 0.087

Surface UV radiation (kJ/m
2
) −0.005 (−0.009,−0.001) 3.006 0.025

Calendar day 0.007 (0.002, 0.013) 4.62 0.01
Latitude −0.005 (−0.009,−0.001) 5.45 0.006

log(Elevation (m)) −0.071 (−0.149, 0.006) 1.424 0.064
log(Population) −0.125 (−0.277, 0.027) 0.736 0.098

log(Population Density per km2) 0.317 (0.031, 0.603) 2.921 0.027
log(GDP per capita (USD)) 0.266 (−0.01, 0.542) 1.737 0.053

Air Pollution (µg/m3) 0.008 (0.005, 0.011) 21.106 < 0.001
Stringency of government response −0.015 (−0.019,−0.011) 52.015 < 0.001

Table S10: Outputs from selected OLS unweighted regression
model predicting R0 within cities in China (n = 83) based on
stepwise reduction from saturated model using AIC. CI: confidence
interval, ∆AIC: change in Akaike Information Criterion when term
excluded, LRT: Likelihood ratio test.

Covariate Coefficient (95% CI) ∆AIC P(LRT)
Temperature (◦C) −0.049 (−0.074,−0.023) 11.9 < 0.001

Calendar day 0.047 (−0.019, 0.112) 0.069 0.150
Stringency of government response −0.040 (−0.058,−0.022) 16.3 < 0.001
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Figure S4: Plotted model performance for selected OLS regression model predicting R0 in global
cities (n = 359) based on climate, demographic and epidemic response covariates. Size of points is
proportional to weighting in model, determined as number of observed available days of incidence.
Cities above diagonal have under-estimated R0, while those below have over-estimated R0.
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Figure S5: Plotted model performance for selected mixed-effects regression model predicting R0 in
global cities excluding China (n = 274) based on demographic and epidemic response covariates.
Size of points is proportional to weighting in model, determined as number of observed available
days of incidence. Cities above diagonal have under-estimated R0, while those below have over-
estimated R0.
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Figure S6: Plotted covariates from selected regression model predicting R0 within cities in China
(n = 83), showing effect of A) mean daily temperature, B) calendar day of start of fitting window,
and C) index measuring stringency of government response two weeks before epidemic growth
period. Lines denote fits, calculated as estimated marginal means holding all other model variables
constant. Shaded areas denote 95% confidence interval.
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S4 City data and fits
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S4.6 Asia w/o China
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