
Supplemental Materials 

A. Mathematical descriptions and definitions of the CT texture metrics  

Definitions: 

• Texture (material): Texture is a measure of the variation of a surface; a rough textured material would 

have a high rate of change in the high and low points of a surface compared to a smooth textured 

material.  

• Texture (imaging): If on an image of the surface, the global maximum point was assigned a grayscale 

value of 65536 (for a 16 bit image), the global minimum point was assigned a grayscale value of 0, and 

all the points in between had an intermediary value between 0 and 65536, scaled by the ratio of its 

height in comparison to the global maximum point, image of a rough textured material would have a 

high rate of change in the high and low points of a surface (grayscale value) compared to a smooth 

textured material. 

 

1. Histogram Analysis/Intensity (3D) (13 metrics): The histogram contains the first-order statistical 

information about the image (or its fragment). Dividing the values histogram by the total number of pixels in 

the image one obtains the approximate probability density of occurrence of the intensity (grayscale) levels. 

Here, eight metrics were used to describe the texture: 

a. Minimum: Minimum gray value of the pixels forming the region of interest (ROI). 

b. Maximum: Maximum grayscale value of the pixels forming the ROI. 

c. Mean: Average grayscale value of the pixels forming the ROI. 

d. Median: Median grayscale value of the pixels forming the ROI. It is more representative of the 

distribution, particularly if the distribution is biased. 

e. Variance: Variance is defined as the expectation of the squared deviation of a random variable from its 

mean. It is a measure of spread of the sample values from its mean. 

f. Standard deviation (SD): In statistics, the standard deviation is the usual way of measuring distance 

from the mean or median (it measures dispersion or variance). 

𝑆𝐷 = √
∑ ∑ (𝑃(𝑖, 𝑗) − 𝑀𝐸𝐴𝑁)2𝑁

𝑗=1
𝑀
𝑖=1

𝑀𝑁
  

where P(i, j) is a grayscale value at a pixel at location row i and column j of an image of size M × N (row × 

column). 

g. Quartile Range (QR): Whereas a range is a measure of where the beginning and end are in a 

distribution, an interquartile range is a measure of where the middle 50% of the distribution lie. 



𝑄𝑅 = 𝑄3 − 𝑄1 

 where Q3 and Q1 are the 3rd and 1st quartiles respectively. 

h. Skewness (SKEW): Skewness is a measure of the lack of symmetry in a distribution. A symmetric 

distribution has a skew of zero. A positive skewness indicates a positively skewed distribution and likewise a 

negative skewness indicates a negatively skewed distribution. 

𝑆𝐾𝐸𝑊 =
∑ ∑ [

(𝑃(𝑖, 𝑗) − 𝑀𝐸𝐴𝑁
𝑆𝐷 ]

3
𝑁
𝑗=1

𝑀
𝑖=1

𝑀𝑁
 

i. Kurtosis (KURT): Considered the fourth moment in statistics, kurtosis is indicative of the 

“peakedness” of the distribution. Technically, it is a measure of how close the values of the distribution are to 

the mean. A positive kurtosis indicates less outliers and more peaked, likewise a negative kurtosis indicates too 

many outliers and less peaked.  

𝐾𝑈𝑅𝑇 =
∑ ∑ [

(𝑃(𝑖, 𝑗) − 𝑀𝐸𝐴𝑁)
𝑆𝐷 ]

4

− 3𝑁
𝑗=1

𝑀
𝑖=1

𝑀𝑁
 

 Histogram analysis is completely based on the distribution of the grayscale values forming the ROI; it 

provides no information about the spatial relationship of the pixels to each other. Therefore, differentiating 2 

completely different texture patterns with the same number but different orientation of black and white pixels is 

not possible in histogram analysis. 

 In addition, 4 size-based metrics are calculated: number of voxel dimensions in x, y, and z directions and 

the volume. 

 

2. Two-dimensional and Three-dimensional Gray Level Co-occurrence Method (GLCM) and Gray Level 

Difference Method (GLDM) Analysis (20 metrics): These second-order statistical analysis of texture include 

2D-GLCM and GLDM analysis and take into account the both pixel intensities and their inter-relationships, 

thereby providing spatial information of the intensities (2nd order texture analysis) in various forms. For 

workflow implementation, the number of gray levels were reduced to 12-bit, which was determined to be 

sufficiently accurate for the study of texture (37). 20 different metrics were calculated: 13 based on the method 

by Haralick et al. (16) and seven additional metrics. 

a. Angular second moment (ASM): 

𝐴𝑆𝑀 = ∑ ∑[𝑃(𝑖, 𝑗)]2

𝑗𝑖

 

 ASM reaches its highest value when gray level distribution is constant or repetitive, indicative of a 

homogenous distribution. 

b. Uniformity: Defined as the square root of ASM. Therefore, as in the case of ASM, uniformity reaches 

its highest value when gray level distribution is constant or repetitive, indicative of a homogenous distribution. 

c. Contrast (CON): 

𝐶𝑂𝑁 = ∑ ∑ 𝑃

𝑗𝑖

(𝑖, 𝑗)(𝑖 − 𝑗)2 



 Also called sum of squares variance, CON weights pixels in the GLCM/GLDM map exponentially more 

as their distance from the diagonal increases. A larger value indicates greater variations in gray levels compared 

to their neighborhood. 

d. Dissimilarity (DIS): DIS is similar to contrast, except that the weighting scheme is linear compared to 

exponential. 

e. Homogeneity (HOM):  

𝐻𝑂𝑀 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

 HOM weights pixels in the GLCM/GLDM map exponentially less as their distance from the diagonal 

increases. A larger value indicates smaller variations in gray levels compared to their neighborhood. This is an 

inverse metric of CON. 

f. Inverse Difference Moment (IDM): IDM is similar to homogeneity, except that the weighting scheme 

is linear compared to exponential. 

𝐼𝐷𝑀 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

g. Inverse Difference Moment Normalized (IDMN): IDMN is similar to IDM, except that the weighting 

scheme is exponential, and it is a measure of the local homogeneity of an image. 

𝐼𝐷𝑀𝑁 = ∑
𝑃𝑖,𝑗

1 + [(𝑖 − 𝑗) (𝑁 − 1)⁄ ]2

𝑁−1

𝑖,𝑗=0

 

h. Entropy (ENT): ENT is a measure of randomness and have a higher value when the distribution is 

random, as opposed to orderly. 

𝐸𝑁𝑇 = − ∑ ∑ 𝑃(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

log 𝑃(𝑖, 𝑗) 

i. Correlation (CORR): CORR measures the linear dependency of gray levels on those of neighboring 

pixels. Technically, it has a value of 0 if uncorrelated, 1 if perfectly correlated. 

𝐶𝑂𝑅𝑅 = ∑ ∑
(𝑖, 𝑗)𝑃(𝑖, 𝑗) − 𝑀𝐸𝐴𝑁𝑅𝑂𝑊𝑀𝐸𝐴𝑁𝐶𝑂𝐿

𝑆𝐷𝑅𝑂𝑊𝑆𝐷𝐶𝑂𝐿

𝑁

𝑗=1

𝑀

𝑖=1

 

j. Information measure of correlation 1 (IMC1): IMC1 is based on the calculations of entropy values of 

Px and Py. For a uniform image (i.e. no pixel changes in that image), the IMC1 is zero. It produces negative 

values. 

𝐼𝑀𝐶1 =
− ∑ ∑ 𝑃(𝑖, 𝑗)𝑁

𝑗=1 log2 𝑃(𝑖, 𝑗)𝑀
𝑖=1 + ∑ ∑ 𝑃(𝑖, 𝑗) log2[𝑃𝑥(𝑖), 𝑃𝑦(𝑗)]𝑁

𝑗=1
𝑀
𝑖=1

𝑀𝐴𝑋{𝐸𝑁𝑇(𝑃𝑥), 𝐸𝑁𝑇(𝑃𝑦)}
 

k. Information measure of correlation 2 (IMC2): For a uniform image (i.e. no pixel changes in that 

image), the IMC2 is zero. It produces values in the range of 0 to 1. 



𝐼𝑀𝐶2 = √1 − exp [−2 (∑ ∑ 𝑃𝑥(𝑖)𝑃𝑦(𝑗) log2[𝑃𝑥(𝑖), 𝑃𝑦(𝑗)]

𝑁−1

𝑗=0

𝑁−1

𝑖=0

+ ∑ ∑ 𝑃𝑖𝑗 log2 𝑃𝑖𝑗

𝑁−1

𝑗=0

𝑁−1

𝑖=0

)] 

l. Sum of average (SUMAVG): For an image of single color of no variation, the sum of average values 

for different angles are 2. Usually, for an image of varied pixel values, the sum of average is high in value. 

𝑆𝑈𝑀𝐴𝑉𝐺 = ∑ (𝑖)𝑃𝑥+𝑦(𝑖)

2𝑁−2

𝑖=0

where 𝑃𝑥+𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

  

m. Sum of entropy (SUMENT): As per the definition of entropy, this value goes higher for an image of 

more variations. 

𝑆𝑈𝑀𝐸𝑁𝑇 = ∑ 𝑃𝑥+𝑦

2𝑁−2

𝑖=0

(𝑖) log 𝑃𝑥+𝑦(𝑖) 

n. Sum of variance (SUMVAR): Usually for an image of varied pixel values, the sum of variance is high 

in value. 

𝑆𝑈𝑀𝑉𝐴𝑅 = ∑ 𝑃𝑥+𝑦

2𝑁−2

𝑖=0

(𝑖)(𝑖 − 𝑆𝑈𝑀𝐴𝑉𝐸𝑅)2 

o. Difference of average (DIFAVG) and difference of entropy (DIFENT) is calculated similarly to sum 

of average and entropy respectively, except, differences are calculated instead of summations. 

p. Standard deviation (SD) and mean are same as those calculated for histogram analysis, except run on 

GLCM/GLDM maps. 

q. Maximum correlation coefficient (MCC): 

𝑀𝐶𝐶 = √second largest eigenvalue of 𝑄 where 𝑄(𝑖, 𝑗) = ∑
𝑔(𝑖, 𝑘)𝑔(𝑗, 𝑘)

𝑔𝑥(𝑖)𝑔𝑦(𝑘)
𝑘

 

r. Maximum probability: This metric captures the occurrences of the most dominant pair of neighboring 

intensity values. 

s. Root mean square (RMS): RMS computes the root mean square value of each row or column of the 

input, along vectors of a specified dimension of the input, or of the entire input. 

𝑅𝑀𝑆 = √
∑ 𝑀𝐸𝐴𝑁(𝑖, 𝑗)2𝑀

𝑖=1

𝑀
 

 

3. Fast Fourier Transform (FFT) Analysis (3 metrics): Specifically, a 512-point FFT was applied to all 

tumor images. Using the built-in MATLAB implementation of the FFT algorithm (FFT2), we extracted the 

individual frequencies, amplitude (how much frequency of a given type is present), and phase (where in the 

image the frequency is present) of the original image. The resultant magnitude and phase of the FFT across all 

images were analyzed. Three metrics were defined. In all cases, the harmonics analysis was limited between 

15% and 95% of maximum spatial frequency within the tumor. These cutoffs were chosen to avoid inclusion of 



low-frequency content (i.e. tumor size effect and noise) and high-frequency noise. The selected band-pass 

frequencies correspond to the spatial frequencies within the tumor. 

a. Entropy of FFT magnitude (E_FFT_Mag): Diversity (Randomness) measure in the magnitude of FFT 

harmonics. 

𝐸_𝐹𝐹𝑇_𝑀𝑎𝑔 = − ∑ 𝑃𝑘 log2 𝑃𝑘 

𝑛

𝑘=0

 

where Pk is each harmonic from the FFT transformed (magnitude) tumor image. 

 The E_FFT_Mag of a homogenous texture should be smaller compared to that of a heterogeneous 

texture. 

b. Entropy of FFT phase (E_FFT_Phase): Diversity (Randomness) measure in the phase of FFT 

harmonics. 

𝐸_𝐹𝐹𝑇_𝑃ℎ𝑎𝑠𝑒 = − ∑ 𝑃𝑘 log2 𝑃𝑘 

𝑛

𝑘=0

 

where Pk is every harmonic from the FFT transformed (phase) tumor image. 

 The E_FFT_Phase of a homogenous texture should be smaller compared to that of a heterogeneous 

texture. 

c. Complexity index (CI): Sum of the amplitude of all FFT harmonics 

𝐶𝐼 = ∑ 𝑃𝑘  

𝑛

𝑘=0

 

where Pk is every harmonic from the FFT transformed (amplitude) tumor image. 

 The CI of a homogenous texture should be a smaller value compared to the CI of a heterogeneous 

texture. 

 

4. Two-dimensional and Three-dimensional Gray Level Run-Length Matrix (GLRLM) (11 metrics): 

a. Gray Level Non-Uniformity (GLN) measures the distribution of runs over the gray values (39). A 

lower value indicates higher similarity in intensity values. 

𝐺𝐿𝑁 =
∑ [∑ 𝑃(𝑖, 𝑗)

𝑁𝑟
𝑗=1 ]

2𝑁𝑔

𝑖=1

𝑁𝑧
 

b. High Gray Level Run Emphasis (HGLRE) measures the gray-level analogue to long runs emphasis 

(i.e. high gray levels). 

𝐻𝐺𝐿𝑅𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑖2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

c. Long Run Emphasis (LRE) measures the distribution of long runs. Coarser textures have higher LRE 

value. 



𝐿𝑅𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑗2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

d. Low Gray Level Run Emphasis (LGLRE) 

𝐿𝐺𝐿𝑅𝐸 =
∑ ∑

𝑃(𝑖, 𝑗)
𝑖2

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

e. Long Run Low Gray Level Emphasis (LRLGLE) measures the runs in the upper right quadrant of the 

GLRLM. This is where long run lengths and low gray levels are located (40). 

𝐿𝑅𝐿𝐺𝐿𝐸 =
∑ ∑

𝑃(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

f. Long Run High Gray Level Emphasis (LRHGLE) measures the runs in the lower right quadrant of 

the GLRLM. This is where long run lengths and high gray levels are located (40). 

𝐿𝑅𝐻𝐺𝐿𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑖2𝑗2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

g. Run Length Non-Uniformity (RLN) measures the distribution of runs over the run lengths (Galloway, 

1975). Runs that are equally distributed along run lengths show small RLN. 

𝑅𝐿𝑁 =
∑ [∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1
]

2
𝑁𝑟
𝑖=1

𝑁𝑧
 

h. Run Percentage (RP) measures the ratio of the number of realized runs to the maximum number of 

potential runs. Strongly linear or highly uniform ROI volumes feature a low RP. 

𝑅𝑃 =
𝑁𝑧

𝑁𝑝
 

i. Short Run Low Gray Level Emphasis (SRLGLE) measures the runs in the upper left quadrant of the 

GLRLM. This is where short run lengths and low gray levels are located (40). 

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

j. Short Run High Gray Level Emphasis (SRHGLE) measures the runs in the lower left quadrant of the 

GLRLM. This is where short run lengths and high gray levels are located (40). 

𝑆𝑅𝐻𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)𝑖2

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

k. Short Run Emphasis (SRE) measures the distribution of short runs. Fine textures show higher SRE 

values. 

𝑆𝑅𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 



 

5. Two-dimensional and Three-dimensional Gray Level Size-Zone Matrix (GLSZM) (20 metrics): 

a. Small Area Emphasis (SAE) measures small zones. Fine textures show a higher SAE value. 

𝑆𝐴𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

b. Large Area Emphasis (LAE) measures large zones. Fine textures show a lower LAE value. 

𝐿𝐴𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑗2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

c. Gray Level Non-Uniformity (GLN) measures the distribution of zone counts over the gray values. 

Equally distributed zone counts along gray levels show low GLN. 

𝐺𝐿𝑁 =
∑ [∑ 𝑃(𝑖, 𝑗)

𝑁𝑠
𝑗=1 ]

2𝑁𝑔

𝑖=1

𝑁𝑧
 

d. Gray Level Non-Uniformity Normalized (GLNN) is a normalized version of the GLN. 

𝐺𝐿𝑁𝑁 =
∑ [∑ 𝑃(𝑖, 𝑗)

𝑁𝑠
𝑗=1 ]

2𝑁𝑔

𝑖=1

𝑁𝑧
2  

e. Size Zone Non-Uniformity (SZN) measures the distribution of zone counts over various zone sizes. 

Equally distributed zone counts along zone sizes are associated with low SZN. 

𝑆𝑍𝑁 =
∑ [∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
]

2
𝑁𝑠
𝑗=1

𝑁𝑧
 

f. Size Zone Non-Uniformity Normalized (SZNN) is a normalized version of SZN. 

𝑆𝑍𝑁𝑁 =
∑ [∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
]

2
𝑁𝑠
𝑗=1

𝑁𝑧
2  

g. Zone Percentage (ZP) measures the ratio of the number of realized zones to the maximum number of 

potential zones. Highly uniform ROIs produce a low ZP. 

𝑍𝑃 =
𝑁𝑧

𝑁𝑝
 

h. Low Gray Level Zone Emphasis (LGLZE) is a measure of gray-level analogue to small zone 

emphasis. Here, low gray levels are measured, instead of small zone sizes. 

𝐿𝐺𝐿𝑍𝐸 =
∑ ∑

𝑃(𝑖, 𝑗)
𝑖2

𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

i. High Gray Level Zone Emphasis (HGLZE) is a measure of gray-level analogue to large zone 

emphasis. The feature emphasizes high gray levels. 



𝐻𝐺𝐿𝑍𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑖2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

j. Small Area Low Gray Level Emphasis (SALGLE) measures zone counts within the upper left 

quadrant of the GLSZM. This is where small zone sizes and low gray levels are located. 

𝑆𝐴𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

k. Small Area High Gray Level Emphasis (SAHGLE) measures zone counts in the lower left quadrant 

of the GLSZM. This is where small zone sizes and high gray levels are located. 

𝑆𝐴𝐻𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗)𝑖2

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

l. Large Area Low Gray Level Emphasis (LALGLE) measures zone counts in the upper right quadrant 

of the GLSZM. This is where large zone sizes and low gray levels are located. 

𝐿𝐴𝐿𝐺𝐿𝐸 =
∑ ∑

𝑃(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

m. Large Area High Gray Level Emphasis (LAHGLE) measures zone counts in the lower right quadrant 

of the GLSZM. This is where large zone sizes and high gray levels are located. 

𝐿𝐴𝐻𝐺𝐿𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗)𝑖2𝑗2𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

n. Gray Level Variance measures the variance in zone counts for the gray levels. 

∑ ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

where 𝜇 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

o. Size Zone Variance measures the variance in zone counts across different zone sizes. 

∑ ∑ 𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

where 𝜇 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑗

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

p. Ng: Total number of gray levels in the image.  

q. Ns: Total number of zone sizes in the image. 

r. Np: Total number of voxels in the image.  

s. Nz: Number of zones in the image.  

t. μ: Mean 

𝜇 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 



 

6. Laws’ texture energy analysis: Laws developed a texture-energy approach that measures the amount of 

variation within a fixed size window (41). A set of 5 × 5 convolution masks are used to compute texture energy. 

The masks are defined as follows: 

a. L5 (Level) = [1 4 6 4 1] 

b. E5 (Edge) = [−1 −2 0 2 1] 

c. S5 (Spot) = [−1 0 2 0 −1] 

d. R5 (Ripple) = [1 −4 6 −4 1] 

e. W5 (Wave) = [−1 2 0 −2 1] 

 25 unique combinations for 2D analysis (e.g. L5E5, L5L5, L5S5, L5R5, L5W5, etc.). 109 unique 

combinations for 3D analysis (e.g. L5E5S5, L5E5R5, L5E5W5, etc.). 

 

7. Neighboring Gray Tone Difference Matrix (NGTDM) (6 metrics): An NGTDM quantifies the difference 

between a gray value and the average gray value of its neighbors within distance δ. 

a. Coarseness:  

1

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔

𝑖=1

 

b. Contrast: 

(
1

𝑁𝑔,𝑝(𝑁𝑔,𝑝 − 1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

) (
1

𝑁𝑣,𝑝
∑ 𝑠𝑖

𝑁𝑔

𝑖=1

) where 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

c. Busyness: 

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔
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∑ ∑ |𝑖𝑝𝑖 − 𝑗𝑝𝑗|
𝑁𝑔

𝑗=1

𝑁𝑔
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where 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

d. Complexity: 

1
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e. Strength: 
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𝑗=1

𝑁𝑔

𝑖=1

∑ 𝑠𝑖
𝑁𝑔

𝑖=1

where 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

 



8. Discrete Cosine Transform (DCT) (64 metrics): DCT decomposes an image into discrete cosine waves at 

various resolutions (levels). Wavelets in general provide good frequency resolution for low frequency and good 

temporal resolution for high frequency. Here, we perform 2D analysis. 

a. 4 levels: 1, 2, 3, and 4 

b. 4 directions: vertical (v), horizontal (h), diagonal1(d1), and diagonal2 (d2) 

c. 4 metrics: kurtosis, mean, skewness, and variance (see section on histogram analysis) 

  



B. Figures 

 

Figure 1: Heatmap of radiomic metrics robustness, showing the interclass correlation 2-way mixed with absolute 

agreement (ICC3.1) of each of the radiomic metrics, within the Siemens Sensation 10 scanner. Results of the 

study are presented as a heatmap with values ranging from 0 (red) to 1 (blue) i.e., poor ICC to high ICC. The 

texture panel comprised of 365 features belonging to 15 subgroups of texture extraction methods (e.g. GLCM), 

shown on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons across 

scanners. 

  



 

 

Figure 2: Heatmap of radiomic metrics robustness, showing the interclass correlation 2-way mixed with absolute 

agreement (ICC3.1) of each of the radiomic metrics, within the Philips Brilliance 64 scanner. Results of the study 

are presented as a heatmap with values ranging from 0 (red) to 1 (blue) i.e., poor ICC to high ICC. The texture 

panel comprised of 365 features belonging to 15 subgroups of texture extraction methods (e.g. GLCM), shown 

on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons across scanners.  



 

Figure 3: Heatmap of radiomic metrics robustness, showing the interclass correlation 2-way mixed with absolute 

agreement (ICC3.1) of each of the radiomic metrics, within the Canon Aquilion Prime 160 scanner. Results of 

the study are presented as a heatmap with values ranging from 0 (red) to 1 (blue) i.e., poor ICC to high ICC. The 

texture panel comprised of 365 features belonging to 15 subgroups of texture extraction methods (e.g. GLCM), 

shown on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons across 

scanners.  



 

Figure 4: Heatmap of radiomic metrics robustness, showing the interclass correlation 2-way mixed with absolute 

agreement (ICC3.1) of each of the radiomic metrics, within the GE 16 Lightspeed scanner. Results of the study 

are presented as a heatmap with values ranging from 0 (red) to 1 (blue) i.e., poor ICC to high ICC. The texture 

panel comprised of 365 features belonging to 15 subgroups of texture extraction methods (e.g. GLCM), shown 

on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons across scanners.  



 

Figure 5: Heatmap showing the beta (slope) value of each of the radiomic metrics within the Siemens Sensation 

10 scanner. Results of the study are presented a heatmap with values ranging from -1 (red) to 1 (blue) i.e., 

negative linear correlation to positive linear correlation. The texture panel comprised of 387 features belonging 

to 15 subgroups of texture extraction methods (e.g. GLCM), shown on the y-axis. 12 unique image settings were 

tested (e.g. FOV125), shown on the x-axis.  



 

Figure 6: Heatmap showing the beta (slope) value of each of the radiomic metrics within the Philips Brilliance 

64 scanner. Results of the study are presented a heatmap with values ranging from -1 (red) to 1 (blue) i.e., 

negative linear correlation to positive linear correlation. The texture panel comprised of 387 features belonging 

to 15 subgroups of texture extraction methods (e.g. GLCM), shown on the y-axis. 12 unique image settings were 

tested (e.g. FOV125), shown on the x-axis. 

  



 

Figure 7: Heatmap showing the beta (slope) value of each of the radiomic metrics within the Canon Aquilion 

Prime 160 scanner. Results of the study are presented a heatmap with values ranging from -1 (red) to 1 (blue) 

i.e., negative linear correlation to positive linear correlation. The texture panel comprised of 387 features 

belonging to 15 subgroups of texture extraction methods (e.g. GLCM), shown on the y-axis. 12 unique image 

settings were tested (e.g. FOV125), shown on the x-axis. 

 

  



 

Figure 8: Heatmap showing the beta (slope) value of each of the radiomic metrics within the GE 16 Lightspeed 

scanner. Results of the study are presented a heatmap with values ranging from -1 (red) to 1 (blue) i.e., negative 

linear correlation to positive linear correlation. The texture panel comprised of 387 features belonging to 15 

subgroups of texture extraction methods (e.g. GLCM), shown on the y-axis. 12 unique image settings were tested 

(e.g. FOV125), shown on the x-axis. 

  



 

Figure 9: Heatmap of radiomic metrics robustness, showing the lower-limit of the interclass correlation 2-way 

mixed with absolute agreement (ICC3.1) of each of the radiomic metrics, within the Siemens Sensation 10 

scanner. We have calculated the 95% confidence interval for each ICC value.  Therefore, if an ICC value from a 

different feature is below the lower limit of 95% CI, we can claim these two features have different ICC and the 

feature with lower ICC is statistically lower than the feature with higher ICC. We can also use the 95% CI for 

each feature to compare with the critical value. Results of the study are presented as a heatmap with values 

ranging from 0 (red) to 1 (blue) showing the features significantly higher than each of the critical value e.g. 0.9, 

0.8, 0.7 etc. The texture panel comprised of 365 features belonging to 15 subgroups of texture extraction methods 

(e.g. GLCM), shown on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons 

across scanners. 

  



 

Figure 10: Heatmap of radiomic metrics robustness, showing the lower-limit of the interclass correlation 2-way 

mixed with absolute agreement (ICC3.1) of each of the radiomic metrics, within the Philips Brilliance 64 scanner. 

We have calculated the 95% confidence interval for each ICC value.  Therefore, if an ICC value from a different 

feature is below the lower limit of 95% CI, we can claim these two features have different ICC and the feature 

with lower ICC is statistically lower than the feature with higher ICC. We can also use the 95% CI for each 

feature to compare with the critical value. Results of the study are presented as a heatmap with values ranging 

from 0 (red) to 1 (blue) showing the features significantly higher than each of the critical value e.g. 0.9, 0.8, 0.7 

etc. The texture panel comprised of 365 features belonging to 15 subgroups of texture extraction methods (e.g. 

GLCM), shown on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons 

across scanners. 

  



 

Figure 11: Heatmap of radiomic metrics robustness, showing the lower-limit of the interclass correlation 2-way 

mixed with absolute agreement (ICC3.1) of each of the radiomic metrics, within the Canon Aquilion Prime 160 

scanner. We have calculated the 95% confidence interval for each ICC value.  Therefore, if an ICC value from a 

different feature is below the lower limit of 95% CI, we can claim these two features have different ICC and the 

feature with lower ICC is statistically lower than the feature with higher ICC. We can also use the 95% CI for 

each feature to compare with the critical value. Results of the study are presented as a heatmap with values 

ranging from 0 (red) to 1 (blue) showing the features significantly higher than each of the critical value e.g. 0.9, 

0.8, 0.7 etc. The texture panel comprised of 365 features belonging to 15 subgroups of texture extraction methods 

(e.g. GLCM), shown on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons 

across scanners. 

  



 

Figure 12: Heatmap of radiomic metrics robustness, showing the lower-limit of the interclass correlation 2-way 

mixed with absolute agreement (ICC3.1) of each of the radiomic metrics, within the GE 16 Lightspeed scanner. 

We have calculated the 95% confidence interval for each ICC value.  Therefore, if an ICC value from a different 

feature is below the lower limit of 95% CI, we can claim these two features have different ICC and the feature 

with lower ICC is statistically lower than the feature with higher ICC. We can also use the 95% CI for each 

feature to compare with the critical value. Results of the study are presented as a heatmap with values ranging 

from 0 (red) to 1 (blue) showing the features significantly higher than each of the critical value e.g. 0.9, 0.8, 0.7 

etc. The texture panel comprised of 365 features belonging to 15 subgroups of texture extraction methods (e.g. 

GLCM), shown on the y-axis. The heatmap shows 12 unique image settings (e.g. FOV125), for comparisons 

across scanners. 

 


