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Supplementary Information Text
MATERIALS AND METHODS
Experimental RPD calculation
A table of XYZ localizations was used to calculate the 
experimental RPD for a field of view (FOV) using PERPL 
software (relative_positions.py, Suppl. Software, Fig. 1). 
Distances between localizations in the chosen directions 
were output as a histogram using 1-nm bins to compare with 
model relative position distributions (RPDs) generated as 
described below.
   In cases where the signal to noise ratio (SNR) was low 
(Figs. S6, S7), we used a kernel density estimate (KDE) of 
the RPD. The criteria for applying this smoothing was the 
incorrect fitting of high frequency bin-to-bin noise in the 
raw histogram as peaks corresponding to characteristic 
distances in a macromolecular structure. The fitting 
algorithm sometimes detected this noise confidently as 
narrow peaks in the RPD, but the width of the fitted peak 
was less than the precision of the SMLM experiment. 
Therefore, we rejected these fits as spurious and used a 
KDE of the RPD to obtain less biased results.
   In single molecule localization data, each localized 
molecule has a position uncertainty, or localization 
precision, σloc. The smoothing kernel was the distribution 
of distances between two Gaussian localization 
distributions1, calculated from an estimate of σloc. Thus, 
the KDE is equivalent to a sum of distance distributions 
that reflects σloc. However, a KDE step should not be 
included if SNR is sufficiently high (such that bin-to-bin 
noise does not obviously bias the fit).

In silico model structures
A variety of information can be used to construct in 
silico candidate model structures. The appearance of the 
reconstructed image typically provides information about 
the symmetry of the structure, for example the rotational 
symmetry of structures such as nuclear pores. The 
appearance of peaks and their positions in the experimental 
RPD plot suggest components of the underlying structure and 
length scales for these. For example, the minor peak at 
~40nm and a major peak at ~95nm in the experimental RPD for 
the nuclear pore (Fig. 2B). Finally, other data including 
published structures (e.g. from electron microscopy) for 
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related molecules or structures can be used to help choose 
candidate models.
   To construct the model, typically, the coordinates of 
proteins in a candidate model for a complex were calculated 
in a function, using structural parameters (e.g. diameter, 
height) that can be varied by the fitting algorithm (see 
below). For instance, in the rotationally symmetric models 
of Figs. 1 and 2, the vertices vi of the model structure 
with symmetry order N have coordinates

𝐯𝒊 = [𝑥𝑖
𝑦𝑖] =

𝐷
2 ∙ [cos (2𝜋𝑖

𝑁 )
sin (2𝜋𝑖

𝑁 )]
where i = (0, 1, …, N − 1) and D is the diameter of the 
model.

In silico model RPD construction
3D (or 2D) model RPDs were calculated from the XYZ (XY) 
candidate models. First, relative positions (RPs) were 
calculated between relative positions in the candidate 
model. For instance, in the rotationally symmetric model of 
Figs. 1 and 2, 2D RPs were obtained as follows:

RP0= v1― v0
RP1= v2― v0
RP2= v3― v0
…

until 2D RPs were obtained between all pairs of vertices. 
The RPD can be visualized and processed with its full 
dimensionality or converted to distances for the analyses 
shown here.
   To analyze distance distributions in the RPD, the 
distances were obtained over the desired X, Y and Z 
components of the RPs, e.g. ΔXY or ΔZ. For example, 
distances ΔXY in the rotationally symmetric model of Figs 
1&2 were:

   The 1D, 2D or 3D distances between target molecule 
coordinates in the in silico model were then broadened, 
assuming Gaussian distributions for localizations at those 
points1, to give a realistic, parametric distribution of 
relative positions. A multiplying parameter for the 
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amplitude of the distance contributions is also included so 
that the model can fit to the scale of the distance 
distribution in the experimental data.  For instance, for 
the contribution of a distance over a 2D plane in an in
silico model, the discrete distance ΔXY0 becomes a 
distribution of  distances:∆𝑋𝑌

𝑓(∆𝑋𝑌) = 𝐴(∆𝑋𝑌
𝜎2 )exp( ―

Δ𝑋𝑌0
2 + Δ𝑋𝑌2

2𝜎2 )𝐼0(Δ𝑋𝑌. Δ𝑋𝑌0 𝜎2)

where I0 is the modified Bessel function of order zero, A is 
the scaling multiplier and σ is the broadening on the 
discreet in silico distance, arising from variation in the 
real sample structure and precision of acquired data. When 
σ2 << ΔXY02, we use the approximation1

𝑓(∆𝑋𝑌) ≈ 𝐴( 1
2𝜋𝜎) Δ𝑋𝑌

Δ𝑋𝑌0
exp( ―

(Δ𝑋𝑌 ― Δ𝑋𝑌0)2

2𝜎2 )
   These contributions for all of the discrete distances in 
the candidate model (ΔXY0, ΔXY1, ΔXY2, …) are summed to 
produce a combined distance distribution for the model. 
Two distance distributions for Gaussian clusters with a 
mean distance of zero (replacing ΔXY0 with 0 above) were 
also included to model repeated localizations of the same 
molecule and unresolvable substructure at a point in the in
silico model. This can also be considered as equivalent to 
a spread of mislocalizations resulting from overlapping 
images of nearby emitters2. An example of the presence of 
repeated localizations of the same molecule is the peak at 
ΔXY < 10 nm in the experimental Nup107 RPD data in XY (Fig 
2B) (and see further explanation below).
   Generally, noise in the localization data (e.g. due to 
finite localization precision or residual inaccuracy in 
frame-to-frame drift correction, after drift correction has 
been applied to the SMLM image sequence) increases the 
broadening parameters in the model. Where localization 
precision is estimated in a model, this includes the effect 
of such noise.
   At least three options are available to include further 
aspects of variability (e.g. of diameter of a ring or 
random placement of localizations around a ring). First, a 
parameterized modification to the in silico model RPD can 
be used, as in the smoothing of ΔXY and the treatment of 
repeated localizations, above. Second, additional 
localization positions can be calculated for the candidate 
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in silico structural model, before calculating the RPD. 
This approach also requires a parametric model of 
variability, but this may be more easily derived from 
assumptions at the initial structural stage. It also 
requires calculating the positions of enough localizations 
to represent their distribution faithfully for the 
subsequent RPD calculation, and will increase the time 
taken to calculate RPDs, including during iterations of 
model fitting. Finally, a total RPD can be generated from a 
concatenation of RPs calculated from several structural 
models, e.g. from rings of different diameters, where 
diameter is assumed to vary in a parameterized way.
Background terms can also be included, appropriate to the 
experimental conditions and acquired data, as a further 
linear addition to the distance distribution obtained from 
the in silico model RPD. For instance, for a random 
distribution of 2D localizations, a background distance 
function

𝐵𝐺(∆𝑋𝑌) = 𝐶.∆𝑋𝑌
would be added, where C is a scaling multiplier to allow 
fitting to the experimental data. In the XY Nup107 data 
(Fig. 2), we noted that this background distribution would 
be modified by the fact that the ring-like structures do 
not overlap, and the low density of localizations 
observable within the rings. We therefore used an 
approximate background distribution of

𝐵𝐺(∆𝑋𝑌) = { 0, ∆𝑋𝑌 < 𝑜𝑛𝑠𝑒𝑡
𝐶.∆𝑋𝑌 ― 𝐶.𝑜𝑛𝑠𝑒𝑡, ∆𝑋𝑌 ≥ 𝑜𝑛𝑠𝑒𝑡

where onset is a distance at which BG(ΔXY) begins to 
increase linearly as expected for a random distribution of 
localizations. This model provided a good fit to the data 
(Fig. 2E). In total, therefore, this model had 9 parameters 
to vary in the fitting procedure: D, σ, A, C, onset, 
equivalents to σ and A for repeated localizations of the 
same molecule, and equivalents to σ and A for unresolvable 
substructure at a point in the in silico model structure.

Quantitative model selection using the corrected Akaike’s 
Information Criterion (AICc)
We used Akaike’s Information Criterion (AIC)3-5 to determine 
which candidate model RPD best fits the experimental RPD. 
The AIC value for the best model is lower compared to the 
other models, which means that less information is lost 
when approximating the data with that model. The AIC 
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includes a penalty for increasing the number of parameters 
(K) in a model, which disfavors over-fitting by complex
models as the number of parameters increases. To improve
our method further, we based model selection on a corrected
AIC (AICc) value that further increases the penalty for
increasing K, as K becomes non-negligible with respect to
the number of data points (e.g. distance histogram bins) 4,
6:

and

𝐴𝐼𝐶 = 𝑛ln (𝑆𝑆𝑅
𝑛 ) + 2𝐾

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝐾(𝐾 + 1)
𝑛 ― 𝐾 ― 1

where n is the number of data points, or distances at which 
the model and experimental RPDs are evaluated, SSR is the 
sum of squared residuals for the fitted model and K is the 
number of estimated parameters in the model fit. In this 
case (least-squares fitting), K is the number of fitted 
parameters used in the calculation of the in silico model 
RPD plus one, to include the estimate of the variance of 
the residuals. Therefore K = 9 + 1 = 10 was used in the 
comparison between fitted models with different orders of 
symmetry against the Nup107 ΔXY data.
   Differences in AICc values are used in calculations of 
relative likelihood that the candidate model RPDs are 
correct, given the data4, 7:

likelihood ∝ 𝑒
―

1
2𝐴𝐼𝐶𝑐

   Likelihood ratios resulting from differences in AICc 
values can also be given as relative ‘Akaike weights’, w, 
in a sum to 1, to aid interpretation4, 5. Among the models 
being compared, model i has AICc value AICci, and the most 
likely model has the minimum AICc value, min(AICci). Then 
each model i has an AICc difference,

∆𝑖 = 𝐴𝐼𝐶𝑖 ― min(𝐴𝐼𝐶𝑐𝑖)
and an Akaike weight,

𝑤𝑖 =
𝑒𝑥𝑝( ― ∆𝑖 2)

∑
𝑖𝑒𝑥𝑝( ― ∆𝑖 2)

Note that while this approach is able to demonstrate which 
of the candidate models best fits the data, it does not 
unequivocally prove that the model with the lowest AICc 
value represents the true arrangement of the molecules. In 
the derivation of AIC4, it is assumed that information will 
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be lost between the complexity of the data obtained on the 
true molecular arrangement (including natural variability 
and contributions to noise) and the model approximating 
that arrangement, but it is not possible to quantify that 
information loss absolutely4, 5. 
   AIC does, however, give the difference in information 
loss between models, and so provides relative information 
on how good the models are compared with one another, as 
explained above. Inspection of the model fits to the 
experimental data provide further useful information to the 
user as to how well the best model or models are explaining 
the data. Furthermore, as data leading to improved 
hypotheses of structure become available, and as data 
collection techniques improve, AIC may later be used to 
identify a new model as an improvement on the previous best.
If models result in similar AICc values and Akaike weights, 
the user should not confidently select one model over 
another, i.e. among the linear models shown in Table S7. 
However, some data and in silico models may be separated 
into different dimensions (e.g. ΔXY, ΔZ; Figs. 2, 4), and 
model selection may still proceed using the RPD component 
in one dimension (or combination of dimensions), even if it 
does not yield a single most-likely model in another. 
Furthermore, if the RPD appears similar to a random, or 
otherwise simply explained distribution, these types of 
distributions should be included as controls, to judge 
whether the proposed structural models are really any more 
likely to be true than a random distribution. It was 
necessary to take such an approach in the investigation of 
ACTN2 localizations, where we compared in silico models of 
organized structure with a random distribution of 
localizations across the thickness of the Z-disc (Fig. 
4A,B, Table S7).

Notes on specific in silico models
Nup107
In the Nup107 XY model (Fig. 2C–F), the sharp peak in the 
RPD at < 10 nm led us to include the term for repeated 
localizations, resulting from multiple on/off cycles of a 
single Alexa Fluor 647 molecule in dSTORM. The trough in 
the RPD between the first two peaks was fitted poorly until 
an additional term for unresolvable substructure at points 
on the model was also included. This is consistent with 
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previous EM data 8 that shows substructure at each vertex of 
the complex. 
   The RPD has a linear form beyond ~150 nm, as expected 
for a distribution of localizations in 2D, beyond the 
length scale of the visible features (Fig. 2A, B). The 
background term for RPs from localization data internal to 
a single ring structure is expected to be lower than the 
contribution from adjacent ring structures. This explains 
why an extrapolation of the linear form (background term) 
of the RPD beyond ~150 nm does not intersect with the 
origin. 
   We approximated the background of RPs using a two-
segment linear model, with the RPD equal to zero up to an 
onset distance (variable parameter) and increasing with a 
linear slope beyond that. Mathematical details are given 
for this model above. Free parameters in model fitting 
include diameter of the ring, broadening and amplitude of 
the inter-vertex distance contributions to the RPD and 
broadening, amplitude of the term for repeated 
localizations of a molecule, amplitude of the unresolvable 
substructure term, and the onset distance and slope for the 
background mode. 
   In the Z model for Nup107 (Fig. 2J–M), the peaks in the 
RPD were explained well with only one broadening parameter 
for the within-layer spread of localisations. Note that the 
precision of localization in Z is expected to be 2–3 times 
larger than in XY. Here we used a background term for RPs 
with an exponential decay. This is derived from the form of 
the evanescent field in Z used to excite the fluorescent 
labels.
DNA Origami
In the DNA-origami model, a model that included two terms 
for zero mean distance (for repeated localizations of the 
same molecule and for unresolvable structure; Fig. S4) was 
a better fit than a model with only one such term, 
according to the AICc. This seems reasonable as the 
nanostructures contain multiple labelling sites in a 
cluster at each vertex, as described previously9 and each of 
these sites were localized repeatedly by DNA-PAINT 10. We 
used a linear background model for the RPD as would be 
expected for 2D data. We made this approximation for this 
3D dataset because the data was greater in extent in XY 
than in Z and because the exponential decay of the 
excitation field in Z reduces the number of RPs as ΔZ 
increases. To take account of nearby structures on the 
square lattice that is visible in the data, we included a 
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term with equal contributions at distances of a and √2 × a, 
where a is the lattice constant of the square grid.
ACTN2
In the Z-disc ACTN2 X model (Figs. 4, S6D), the 
contributions of the repeating distance units decrease 
linearly with the number of repeats between localizations, 
as expected if ACTN2 is on a regular repeat and populates 
all of the binding sites in a repeating structure (or 
populates them randomly). For instance, in the five-layer 
Z-disc in silico model structure, containing four multiples 
of the repeating distance r, the relative amplitudes of the 
contributions at distances r, 2r, 3r and 4r are 1, 0.75 (1 –
1/4), 0.5 (1 – 2/4) and 0.25 (1 – 3/4). We also included 
repeated localizations of the same Alexa Fluor 647 molecule. 
The background term is the decreasing linear distribution 
expected for localizations in a 1D random uniform 
distribution with finite bounds.
   In the Z-disc ACTN2 YZ model (Figs. 4, S7E), we used a 
standardized experimental RPD, which is defined as the RPD 
(at distances ΔYZ) divided by ΔYZ (Fig. S7). A random 
distribution of distances in 2D would result in a constant 
value for the standardized RPD. Therefore, we used a 
constant background term.

Fitting in silico model parameters
The model RPDs were fitted to the experimental distance 
distribution in Python scripts with 
scipy.optimize.curve_fit 11, a least squares fitting 
function. Where raw distance histogram bin values were 
large (Figs. 2, 3), we scaled the counts to have a mean of 
1.0, to improve the performance of the fitting algorithm. 
This function outputs the covariance matrix for the 
optimized model parameters, cov(P), where P is the vector 
of in silico model parameters. Uncertainties on parameters 
(1 s.d., given as variation in the last significant digits) 
are √diag(cov(P)). Confidence intervals on the model RPD 
values at each distance were calculated from cov(P) and 
derivatives of the fitted model values with respect to the 
model variables:

𝜎2= 𝐉 cov(𝐏) 𝐉𝑻

where σ2 is the variance of the fitted model RPD and J is the 
Jacobian of P. J was calculated with numdifftools, a Python 
package based on the MATLAB toolbox DERIVESTSuite (John 
D’Errico, 
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2006, http://www.mathworks.com/matlabcentral/fileexchange/1 
3490-adaptive-robust-numerical-differentiation). Bounds on 
the 95% confidence intervals are the estimated model RPD value 
± 1.96σ.
   Starting values and bounds for parameters (e.g. 
distances, broadening on the distribution) are also required 
by the model-fitting implementation. Examples of these, 
including default values and opportunities to edit them, are 
available in the code. For instance, for the rotationally 
symmetric models of rot_2d_symm_fit.py, they can be seen in 
the functions create_default_fitting_params_dicts,
set_up_model_replocs_substruct_iso_bg_with_onset_with_fit_s
ettings and 
set_up_model_replocs_substruct_no_bg_with_fit_settings.

Code availability
The code developed in this study is available at 
https://bitbucket.org/apcurd/perpl-python3/src/0.1/, and 
test data for the software can be found at 
https://bitbucket.org/apcurd/perpl_test_data/src/0.1/. 
Included with the code are interactive notebooks that run 
analysis and produce plots and results as reported. Updated 
versions of the code can be found at 
https://bitbucket.org/apcurd/perpl-python3/.

3D dSTORM localizations of SNAP-tagged Nup107. Data was 
acquired as described in Li et al. 12. U2OS cells that 
expressed Nup107–SNAP 13 were fixed and labelled with 
benzylguanine-Alexa Fluor 647 (NEB, Ipswich, MA, USA) and 
imaged on a custom microscope in a standard blinking buffer 
(50 mM Tris, pH 8, 10 mM NaCl, 10% (w/v) d-glucose, 35 mM 
2-mercaptoethylamine, 500 μg/mL glucose oxidase, 40 μg/mL 
catalase, 2 mM cyclooctatetraene. Single molecules were 
localized using a Gaussian PSF model and the data were 
drift corrected using redundant cross-correlation.
We filtered the localizations for high precision, less than 
10 nm uncertainty in Z according to the MLE fitting routine 
12.

3D DNA-PAINT localizations of DNA-origami structures. DNA 
origami nanostructures were assembled in a one-pot reaction 
in a final volume of 50 µl. The assembly mix contained 
p8064 single-stranded DNA scaffold strand (Tilibit 
Nanosystems) at a final concentration of 10 nM, single-

http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
https://bitbucket.org/apcurd/perpl-python3/
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stranded core DNA oligonucleotides at 100 nM, DNA-PAINT P1 
(5’-Staple-TT ATACATCTA-3’) docking sites at 500 nM, 
biotinylated DNA strands at 800 nM in a buffer of 5 mM Tris 
and 1 mM EDTA supplemented with 12 mM MgCl2. The pooled 
strand solution was heated to 80 °C for 5 min followed by a 
thermal ramp from 60 °C to 4 °C over the course of 17 h. 
Assembled nanostructures were purified by agarose gel 
electrophoresis (1.5 % (w/v) agarose, 0.5×TAE, 10 mM MgCl2, 
1×SYBR Gold) at 3 V/cm for 3 h at 4 °C. Gel bands were cut, 
crushed and structures were purified with Freeze ‘N Squeeze 
spin columns (Bio-Rad) for 5 min at 1,000×g at 4 °C.
For DNA-PAINT imaging, flow chambers for imaging were 
assembled with a coverslip (no. 1.5, 18x18 mm2) attached to 
a standard microscopy glass slide with two strips 
(approximately ~0.5 cm – 1 cm apart) of double-sided sticky 
tape. As a first step, 20 µl of biotin-labeled bovine serum 
albumin (1 mg/ml, dissolved in buffer A (10 mM Tris-HCL, pH 
7.5, 100 mM NaCl and 0.05% (v/v) Tween 20, pH 7.5)) was 
flown into the flow chamber and incubated for 2 min. 
Afterwards, the chamber was washed with 40 µl of buffer A, 
followed by incubation with 20 µl streptavidin (0.5 mg/ml 
in buffer A) and incubated for another 2 min. After washing 
with 40 µl of buffer A and 40 µl of buffer B (5 mM Tris-
HCl, pH 8, 10 mM MgCl2, 1 mM EDTA, 0.05 % (v/v) Tween 20 at 
pH 8). 200 pM of the self-assembled DNA origami structure 
was incubated in the channel and allowed to attach for 2 
min. The chamber was washed with 40 µl of buffer B and 
finally 3 nM Cy3b labeled DNA-PAINT imager strand 
(CTAGATGTAT-Cy3b) was added in buffer B supplemented with a 
PCA/PCD/Trolox oxygen scavenging system. The chamber was 
sealed with picodent before imaging. Nanostructures were 
imaged for 15000 frames, with an exposure time of 200 ms 
per frame and at a laser excitation (560 nm) intensity of 3 
kW/cm2.
   DNA-PAINT imaging was carried out on an inverted Nikon 
Eclipse Ti microscope (Nikon Instruments) with the Perfect 
Focus System, applying an objective-type TIRF configuration 
with an oil-immersion objective (Apo SR TIRF 100×, NA 1.49, 
Oil). A 561 nm excitation laser (200 mW, Coherent Sapphire) 
was used. The laser beam was passed through a cleanup 
filter (ZET561/10x, Chroma Technology) and coupled into the 
microscope objective using a beam splitter (ZT561rdc, 
Chroma Technology). Fluorescence light was spectrally 
filtered with an emission filter (ET600/50 and ET575lp for 
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561 nm excitation, Chroma Technology) and imaged on a sCMOS 
camera (Andor Zyla 4.2) without further magnification, 
resulting in an effective pixel size of 130 nm after 2x2 
binning. A cylindrical lens was inserted into the beam path 
in front of the camera for 3D imaging, the corresponding 
calibration was performed as previously reported 14. Camera 
Readout Sensitivity was set to 16-bit, Readout Bandwidth to 
200 MHz.
   DNA-PAINT images were reconstructed with the Picasso 
software suite as previously reported 10. Single structures 
were picked and aligned in their native orientation in a 
two-dimensional grid for further processing. This grid of 
structures was the FOV analyzed with PERPL (Fig. 2g–j), 
without prior knowledge of the origami structure or its 
arrangement. Localizations were not filtered for estimated 
localization precision in this case.

Z-disc protein localization with 3D dSTORM.
Z-disc proteins were imaged either using 3D dSTORM, using 
an Affimer to ACTN2. Affimers are small (~10kDa) non-
antibody binding proteins that can be used like antibodies, 
but with the advantage that their small size reduces 
linkage error in 3D dSTORM 15, 16. To obtain Affimers to 
ACTN2, the CH domains from human ACTN2 were expressed and 
purified from E.Coli as described 17, biotinylated, and used 
in a phage-display screen as described 18. All 7 unique 
Affimers obtained from the screen were expressed, purified, 
and directly dye labelled (either using Alexa Fluor 647, or 
Alexa Fluor 488) using the unique C-terminal cysteine as 
described 19. The dye-labelled Affimers were then tested for 
their ability to label Z-discs in fixed adult rat 
cardiomyocytes by confocal microscopy (outlined below). 
Those that did were then tested in dSTORM (using Alexa 
Fluor 647 labelled Affimers). The Affimer that demonstrated 
the best labelling for dSTORM was then used in subsequent 
experiments.
   To prepare cells for 3D STORM imaging, isolated 
cardiomyocytes were prepared as described 20 on laminin-
coated cleaned 25-mm diameter, #1.5 (Scientific Laboratory 
Supplies, MIC3350) coverslips 21. Cells were allowed to 
attach in cardiomyocyte medium 20 for 1-2 hours at 37 °C 
before fixing with freshly made 2% paraformaldehyde (PFA) 
in phosphate buffered saline (PBS )(for dSTORM). Fixed 
cells were permeabilized with 0.5% Triton X-100 in PBS,
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blocked with 5% bovine serum albumin (BSA) in PBS for 1 
hour, and then stained with Affimers directly labelled with 
Alexa-647 on a unique C-terminal cysteine residue (16, 22. 
The stock Affimer was diluted 1/750 in PBS with 1% BSA to 
give a final concentration of 0.6 µg/ml, for 60 mins at 
room temperature. After staining, cells were washed in PBS 
and stored briefly in PBS at 4°C before 3D dSTORM imaging.     
Imaging for 3D dSTORM 23 used an inverted microscope 
(Olympus, IX81) with a 60x, 1.2 NA, water-immersion 
objective lens (Olympus, UPLSAPO60XW). An automated XY 
stage with additional piezoelectric adjustment in Z (PZ-
2000, Applied Scientific Instrumentation) was fitted to 
accommodate a focus lock (C-focus, Mad City Labs) and the 
sample. The coverslips were mounted in chambers (I-3033-
25D, Applied Scientific Instrumentation), held in a stage 
insert (I-3033, Applied Scientific Instrumentation). Lasers 
at 561 nm and 405 nm (Jive, Cobalt and LuxX, Omicron, 
respectively, integrated in a LightHUB, Omicron) provided 
widefield excitation, together with a custom-built 2x beam 
expander before the rear illumination port of the 
microscope. A multi-band excitation filter 
(zet405/488/561/640m, Chroma) was used with a multi-band 
beamsplitter (zt405/488/561/640rpc, Chroma) and a multi-
band emission filter (zet488/561/640m-TRF). The imaging 
path included a 1.6x magnifier internal to the microscope, 
an external 1.2x magnifier (Diagnostic Instruments, 
DD12BXC) and a cylindrical lens with f = 150 nm (Thorlabs, 
LJ1629RM-A), which provided an astigmatic point-spread 
function for a single emitter 14. Images were captured by a 
back-illuminated, electron-multiplying CCD camera, cooled 
to −80°C (Andor Technology, iXON Ultra, model DU-897U-CSO-
#BV), using published scripts 23 called from the camera 
interface (Andor Technology, SOLIS).
   The data acquisition workflow 23 included capture of 
calibration images of a gold nanoparticle (742031, Sigma-
Aldrich) in steps of 50 nm in Z over a 4 µm range and use 
of these particles for drift-tracking. The Alexa Fluor-647 
labelled Affimer to ACTN2 was imaged in imaging buffer 
composed of PBS, pH 8.0 with 10% glucose (w/v), 0.5 mg/ml 
glucose oxidase, 80 µg/ml catalase, 110mM β-
mercaptoethanol. The fluorophore was excited using a 642-nm 
laser (100 mW), with EMCCD gain 150, and the blinking rate 
was controlled by gradually increasing 405 nm laser power 
from 2-20 mW. At least 11,000 frames were collected at 20 
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Hz and acquisition was stopped when the number of emission 
events per frame became negligible. Jump tracking was used 
to image the fiducials at the coverslip surface as well as 
emission events at a different height within the cell, so 
that both images fit within the calibration series.   
Emission events were localized using palm3d 23, with those 
lasting for more than one frame averaged to provide one 
‘linked’ localization. Localizations were then binned into 
a histogram for display, accounting for drift and XY 
distortion by the cylindrical lens. In order to make the 
localization data available for analysis, new Python 
scripts were required, which are available at 
https://bitbucket.org/apcurd/palm3d_extra/. These scripts 
provide users of palm3d with corrected localization data, 
including a precision estimate, allowing filtering and 
subsequent analysis of the dataset. They are for use with 
Python 2.7, for compatibility with palm3d.
   Localization precision was estimated as the standard 
error on the localization position (σ / √N), using a 2D 
Gaussian fit of the relevant image from the palm3d 
calibration stack (σ, mean of two widths from the 2D fit) 
and the photon count above background (N, available from 
the palm3d data for every linked localization). This simple 
precision estimate is likely to be an under-estimate 24, 
but was useful as a method to allow filtering for higher-
precision localizations and to assist in the resolution of 
short distances within the complex (e.g. ~20-nm distances 
between ACTN2 localizations). We filtered for estimated 
localization precision within 5 nm.
   3D SMLM fields of view (ranges of localization 
coordinates) were cropped such that gold nanoparticles, 
used for drift tracking, were excluded. A maximum pairwise 
distance of 200 nm was used in PERPL, so that distances 
across the thickness of the Z-disc would be obtained.
3D SMLM cardiomyocyte reconstructions, and the 
corresponding sets of 3D relative localization positions, 
were aligned by first rotating an XY-projection of each 
cell reconstruction (e.g. Fig. 2A) such that the cell-axis 
pointed along X. The corresponding set of 3D relative 
localization positions was then rotated by the same angle. 

https://bitbucket.org/apcurd/palm3d_extra/
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Validation of the ACTN2 Affimer by staining and structure 
determination. 
We screened for Affimers to ACTN2 and identified the best 
Affimer for imaging by confocal microscopy of fixed 
cardiomyocytes prepared in the same way as for dSTORM, 
except high concentrations of Affimer (Alexa 647 or 488 dye 
labelled) was diluted 1/100 from stock. Fixed cardiomyocytes 
were co-stained with anti-ACTN2 antibody 
(1:400) (Sigma, A7811, lot no. 024M4758), followed by 
staining with Alexa Fluor 647 (or 488) -labelled donkey 
anti-mouse secondary antibody (1:100, ThermoFisher). All 
antibodies and dyes were diluted in 0.2% BSA. Coverslips 
were washed and mounted in Prolong Gold Antifade. Cells 
were imaged using a 63x objective (NA 1.4), on a Zeiss 880 
LSM Airyscan confocal microscope.
   To determine where the Affimer interacts with ACTN2 CH 
domains, we performed X-ray crystallography with the 
complex. Crystals were obtained at 20°C by the sitting-drop 
vapor diffusion method using 20% (w/v) polyethylene glycol 
3350 and 0.2 M ammonium tartrate with a protein 
concentration of 8 mg ml-1. The crystals were flash-cooled 
in liquid nitrogen after soaking for 30 seconds in mother 
liquor solution containing 25% (v/v) glycerol as a cryo-
protectant. X-ray diffraction data were collected at the 
Diamond Light Source on beamline I04 to 1.2  resolution at 
100 K. The diffraction images were indexed and integrated 
using DIALS 25 before subsequent scaling in AIMLESS 26 and 
data processing in the CCP4i2 suite 27.
   The unit cell parameters for the crystal are a=46.2Å, 
b=48.5Å, c=147.0Å, α=β=γ=90.0° in space group P212121 with 
one ACTN2:AF9 complex in the asymmetric unit cell. The 
structure was determined by molecular replacement using the 
program PHASER 28 with the human ACTN2 CH domain structure 
(PDB code 5A38 17) and the truncated Affimer (PDB code 4N6T 
29) as the search models. Initial rounds of automated model
building were performed in BUCCANEER 30 followed by 
iterative rounds of manual model building in COOT 31 and 
refinement using REFMAC5 32. During the course of the model 
building structural validations were carried out using the 
program MOLPROBITY 33. The N-terminal 16 residues and C-
terminal 13 residues of the human ACTN2 CH domains were 
disordered and were not included in the final refined 
structure. The structure factor and coordinate files have 
been deposited in the Protein Data Bank with accession code 
6SWT. The structure shows that the Affimer interacts with a 
loop in CH domain 2.
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Estimates of Z-disc structure localization efficiency. 
We roughly estimated the number of Z-disc lattice points in 
the FOV (ACTN2 Affimer 3D dSTORM) by dividing the 
acquisition volume by the lattice dimensions. Acquisition 
volume ≈ number of Z-discs imaged × ~100 nm Z-disc 
thickness × ~15 µm cell-width × ~2 µm acquisition depth 
(range of localizations in Z). Z-disc lattice dimensions are 
~20 nm (cell-axial, X) × ~17 nm × ~17 nm (cell-transverse, 
YZ) 34. The localization efficiency for ACTN2 was obtained 
by dividing this result by two, since the labelled domains 
are found in pairs separated by only ~3 nm along the actin 
filaments of the Z-disc lattice, binding either side of the 
filament. Each pair is considered to be at the same lattice 
point, or within the resolvable length scale of these 
experiments.

2D dSTORM localizations of Cep152. 
Human centrioles were purified and antibody labelled as 
described previously 35. STORM imaging of immunostained 
centriole samples was performed using a recently developed 
flat-field epi illumination microscope 36. Briefly, a 642 nm 
laser (2RU-VFL-P-2000-642-B1R, MPB Communications) was used 
to switch off fluorophores on the sample, while a 405 nm 
laser (OBIS, Coherent) controlled the return rate of the 
fluorophores to the fluorescence-emitting state. A custom 
dichroic (ZT405/561/642/750/850rpc, Chroma) reflected the 
laser light and transmitted fluorescence emission before and 
after passing through the objective (CFI60 PlanApo Lambda 
Å~60/NA 1.4, Nikon). After passing the emission filter 
(ET700/75M, Chroma), emitted light from the sample was 
imaged onto the sCMOS camera (Prime, Photometrics). Axial 
sample position was controlled using the pgFocus open 
hardware autofocus module 
(http://big.umassmed.edu/wiki/index.php/PgFocus). Typically, 
40,000 frames at 10 ms exposure time were recorded using 
Micromanager 37. Imaging was performed using an optimized 
STORM buffer as described previously 38. Image stacks were 
analyzed using a custom CMOS-adapted analysis routine 39. 
Localizations from individual centrioles were segmented and 
extracted using SPARTAN as described previously 35. We 
filtered the localizations for high estimated localization 
precision, within 5 nm. Segmented and filtered particles 
were averaged as described previously 35.

http://big.umassmed.edu/wiki/index.php/PgFocus
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SUPPLEMENTARY FIGURES 

Fig. S1. Example Scatterplots of the localizations in XY 
and XZ and the distance histograms that can be generated in 
various directions when relative_positions.py is run on a 
list of localizations. These are placed into an html report 
for the user, as well as being saved individually. 
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Fig. S2. Examples of plots saved (A) and contained in the 
html report when rot_2d_symm_fit.py (see note on code 
availability) is run on output data from 
relative_positions.py. In this example, the optimized 
models for each order of symmetry are plotted on the XY-
distance histogram (A) and simple plots of the optimized 
geometry at each order of symmetry are generated (B). These 
examples are models fitted to the ΔXY distribution for 
Nup107 localizations in Fig. 2A–G. The html report from 
rot_2d_symm_fit.py also contains the AICc values, relative 
likelihoods, and parameter estimates and uncertainties for 
each modelled order of symmetry. Additionally, it contains 
descriptions of the model parameters and their initial 
guesses and bounds as used by the least squares fitting 
function.
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Fig. S3. RPD models fitted to the distance histogram of 
localizations of dye labels on a DNA origami structure 
(Fig. 3, Tables S4, S5). Two triangular prism models follow 
the same curve: in one the sides are all equal, in the 
other the length of the edges on the equilateral triangular 
faces was independent of the length of the connecting edges 
between them. In the cuboid model, the three edge lengths 
were independent of each other. In the tetrahedron model, 
the edge length on the equilateral triangular base was 
independent of the height of the pyramid. 
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Fig. S4. Generation of the model RPD for triangular 
prismatic structures on a square grid, and fitting to the 
experimental distribution of localizations on DNA-origami, 
obtained with DNA-PAINT10. Histogram of separations between 
localizations in 3D Euclidean space (A). Equilateral 
triangular prismatic candidate structure for a geometry 
arranged on a square grid (B). RPD generated from the model 
in B, when distances a and b  are equal (C); this also 
includes the terms shown for repeated localizations of the 
same molecule, unresolvable substructure or clustering, 
background and a contribution from features nearby on the 
square grid, i.e. on adjacent grid points (see Material and 
Methods). The model RPD fitted to the experimental 
distribution (D), 95% confidence interval in pink (too 
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narrow to see at this scale). The structure inferred from 
fitting the in silico model RPD to the experimental 
relative position data (E).

Fig. S5. Affimer used to stain ACTN2 in the Z-disc. The CH 
domains of α-actinin-2 (ACTN2) (A) were used to generate an
Affimer. The co-crystal of the Affimer and the CH domains 
(B) shows that the Affimer binds to a loop in CH2. This
places the Affimer at either end of the antiparallel dimer
(C). D: Confocal microscopy using adult rat cardiomyocytes
shows the ACTN2 Affimer, labelled on a unique cysteine (C-
terminal) with Alexa 647, is localized to the Z-disc,
similar to that for the antibody to ACTN2 (α-ACTN2).
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Fig. S6. Workflow for PERPL analysis of relative positions 
parallel to the cell axis (X) in ACTN2 Affimer dSTORM data. 
Reconstruction of the FOV, from ACTN2 localizations (A). 
Experimental distance histogram in X, including only pairs 
of localizations for which ΔYZ ≤ 10 nm (B). Kernel density
estimate (KDE) (C) of the distribution of ΔX. The kernel
has the form of the distance distribution between two 
Gaussian distributions in 1D (1, Materials and Methods), 
with σ = 3.1 nm for the Gaussian distributions (mean
localization precision for included localizations 
(Materials and Methods)). Illustration of distances in a 
candidate model structure for localizations on a simple 
linear repeating pattern (D). The RPD for a model structure 
containing five localizations on a linear repeat, also 
including a background term for random localizations across 
the finite thickness of the Z-disc and a localization 
precision term for repeated localizations of the same 
molecule (E). The model of E fitted to the experimental 
data, 95% confidence interval in pink (F).
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Fig. S7. Workflow for PERPL analysis of relative positions 
perpendicular to the cell axis (X) in ACTN2 Affimer dSTORM 
data. Reconstruction of the FOV from ACTN2 localizations 
(A). Experimental distance histogram in YZ, including only 
pairs of localizations for which ΔX ≤ 10 nm (B). KDE (C) of
the distribution of ΔYZ. The kernel has the form of the
distance distribution between two Gaussian distributions in 
2D (1, Materials and Methods), with a kernel width of 5 nm, 
or σ = 3.5 nm for the Gaussian distributions. The
standardized KDE (D) is obtained by dividing density at ΔYZ
by the distance ΔYZ, so that characteristic distances in
the 2D distribution may appear as deviations from a 
horizontal line. (E) shows the RPD up to 30 nm for a model 
containing a flat horizontal line for a uniform 
distribution of localizations, and two peaks at 
characteristic distances. The function describing these 
peaks is the distance distribution between two Gaussian 
clusters of localizations in 2D1 divided by distance, as in 
the standardization of the KDE (C, D). (F) shows the model 
of E fitted to the experimental data. In this case, the 95% 
confidence interval is narrower than the width of the line 
showing the best model fit.
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Table S1. Parameters and uncertainties (1 s.d.) for the 
best fit RPD model (8-fold) to pairwise distances between 
Nup107 localizations (Fig. 2A–G). 

7.4(2) a.u.Localization 
precision term

Amplitude

Spread (precision, 
s.d.)

3.63(5) nm

15.3(2) a.u.
A (Cluster term) 

Amplitude
Spread (s.d. of
approx. Gaussian
cluster) 

9.6(1) nm

95.4(1) nm

15.73(5) a.u.
B–E (rotational 
symmetry 
contributions)

Diameter of structure 
Amplitude of 
contributions 
Spread (broadening  of 
contributions, s.d.) 14.18(7) nm

Onset 80(1) nm
Background term*

Gradient 0.00645(9) 
a.u. nm-1

* An approximation reflecting the fact that the ring-like
image features (nuclear pores), may be near to each other
but do not overlap. The background is expected to have a
linear form (isotropic in 2D) beyond the diameter of a
nuclear pore, dominated by the distribution of other
nuclear pores. It must also have a lower rate of increase
at smaller distances, which we have approximated to zero,
up to an ‘onset’ distance.
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Table S2. Parameters and uncertainties for the two-layer 
RPD model for pairwise distances in Z between Nup107 
localizations (Fig. 2H–L). The model contains two layers of 
localizations, each with the same Gaussian spread, and an 
exponentially decaying background. This background 
distribution for ΔZ has the same form as the distribution 
in Z of the probability of excitation in the evanescent 
illumination field of the TIRF instrumentation12.

Separation between 
layers

58.0(1) nm 

Spread of layer 
(s.d.)

15.92(4)nm 

Within-layer term: 46.8(8) a.u. 
Two-layer 
components*

amplitude  
Between-layer term: 39.6(5) a.u. 
amplitude 

Amplitude 0.21(3) a.u.

Background term†
Exponential scale
parameter 71(5) nm

* The model contains two layers of localizations in Z, each
with the same Gaussian spread.
† An exponentially decaying background model for ΔZ. This
has the same form as the distribution in Z of the
probability of excitation in the evanescent illumination
field of the TIRF instrumentation 12.
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Table S3. Parameters and uncertainties for the best fit RPD 
model (8-fold) to pairwise distances between Nup107 
localizations assumed to be within the same layer of the 
Nup107 complex (ΔZ < 20 nm).

Amplitude 18.8(4) a.u.Localization 
precision term Spread (precision, 

s.d.) 3.64(3) nm

Amplitude 16.2(4) a.u.

A (cluster term) Spread (s.d. of 
approx.
Gaussian cluster)

9.1(2) nm

B–E (rotational 
symmetry 
contributions)

Diameter of 
structure 
Amplitude of 
contributions 
Spread (broadening 
of contributions, 
s.d.)

95.5(1) nm
15.52(8)a.u.

13.5(1) nm

Onset 83(2) nm
Background term

Gradient 0.0056(2) 
a.u. nm-1
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Table S4. Akaike information and weightings (summing to 
one) of the relative likelihood of RPD models to be the 
closest to the true RPD, for the models in Fig. S3.

RPD model AICc Akaike 
weight

Triangular prism on square 
lattice (all sides equal)*

-1748.53 0.75†

Triangular prism on square 
lattice (unequal sides)*

-1746.33 0.25

Cuboid on square lattice -1477.75 1.2×10-59

Tetrahedron on square lattice -1438.53 3.6×10-68

* Side length in the model with all sides of equal length
was 105.5(4) nm, while the two side-lengths in the unequal-
sides model were 105(1) nm and 106(2) nm. These have
therefore resulted in essentially the same model, but the
AICc has penalized the model that allows unequal side-
lengths for having an extra parameter, and results in the
selection of the more parsimonious model with all sides
equal.
† Selected model.
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Table S5. Parameters and uncertainties for the most likely 
RPD model (triangular prism, equal sides) to the 
distribution of pairwise distances between DNA-PAINT 
localizations of labelled DNA-origami structures.

Amplitude 2.8(3) a.u.Localization 
precision term Spread (precision, 

s.d.) 6.4(3) nm

Length of edges on 
triangular face 105.5(4) nm

Amplitude of 
contributions 2.49(5) a.u.Inter-vertex 

distances
Spread (broadening of
contributions, s.d.) 19.9(3) nm

Amplitude of 
contribution 15.7(4) a.u.Substructure at 

vertices Spread (cluster size, 
s.d.) 14.3(3) nm

Square lattice 
arrangement
of prisms*

Square side length

Amplitude of 
contribution
Spread (s.d., due to 
the prism structure 
at each lattice 
point)

311(23) nm

325(125)a.u. nm-1

72(11)

Background term Gradient 3.3(2) ×10-3 a.u. 
nm-1

* These parameters are less well-estimated, since the 
relevant features reflecting the lattice spacing would be 
beyond the maximum fitted distance on the distance 
histogram. However, inclusion of the features in this way 
did allow the models to fit to the increase in the distance 
histogram from 200 to 250 nm.
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Table S6. Data collection, processing and refinement 
statistics for α-actinin-2:Affimer complexes.

ACTN2:AF9 

Source Diamond beamline i04-1

Wavelength (Å) 0.9159
Resolution range (Å) 73.50–1.20 (1.23–1.20)*

Space group  P212121
Unit-cell parameters (Å) a=46.2, b=48.5, c=147.0

Completeness (%)   98.9 (93.3) 
No. of observed reflections 603488 (23921) 

No. of unique reflections 103011(7078)
Redundancy  5.9 (3.4)
< I/σ(I) >  10.4 (1.6)
Wilson B factor   13.5
Rmerge (%)† 7.3 (80.2)
Rpim (%)‡      2.9 (49.3)
CC1/2 0.99 (0.62)
Refinement statistics 
Resolution range for refinement (Å) 73.5–1.2
R factor (%) 14.9
Rfree (%)§ 16.4
No. of protein non-H atoms 1848
No. of water molecules  230
R.m.s.d bond lengths (Å) 0.008
R.m.s.d bond angles (˚) 1.4
Average overall B factor (Å2)
All atoms 22.9
Protein 22.1
Water 32.0
Ramachandran analysis, the
percentage of residues in the
regions of plot (%)
Favored region 97.5
Outliers 0.3
PDB code 6SWT 

*Values given in parentheses correspond to those in the outermost
shell of the resolution range.

†
        

hkl ihkl i imerge hklIhklIhklIR /

‡
        

hkl i ihkl i ipim hklIhklIhklIhklNR /]}1)(/[1{ 2/1

§ Rfree was calculated with 5% of the reflections set asiderandomly.
¶ Ramachandran analysis using the program MolProbity 33.
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Table S7. Akaike information and weightings (summing to 
one) of the relative likelihood of RPD models to be the 
closest to the true RPD, for pairwise distances along the 
cell-axis between localizations of the ACTN2 Affimer.

Axial RPD model
Fitted axial
repeating 
distance

AICc Akaike 
weight*

Linear repeat with 
4 peaks
(5-layer Z-disc)

18.4(6) nm 364.35 0.427

Linear repeat with 
5 peaks
(6-layer Z-disc)

18.5(5) nm 364.51 0.394

Linear repeat with 
3 peaks
(4-layer Z-disc)

18.6(7) nm 366.38 0.155

Linear fit only
(Random 
distribution)

N/A 370.28 0.022

Linear fit, with 
repeated 
localizations also 
allowed

N/A 374.67 0.002

* The models for a repeating distance along the cell-axis
for ACTN2 are far more likely than the model for random
distribution of localizations through the thickness of the
Z-disc (linear fit), or the same but including repeated
localizations (or clusters) of molecules. Furthermore,
these fits all resulted in the same repeating distance for
ACTN2 along the direction cell-axis, close to the 19.2 nm
result measured previously by EM 34. They may be grouped
together to give a combined weighting of 0.98 compared with
0.02 for the random distribution model 4, 5. Combining the
uncertainties for the linear repeat models gives a repeat
of 18.5(1.0) nm.



33

Table S8. Parameters and uncertainties for the RPD model 
with highest likelihood (linear repeat with 4 peaks, 5-
layer Z-disc) for the distribution of pairwise distances 
along the cell-axis between localizations of the ACTN2 
Affimer.

OffsetLinear term 
(background) Slope

49(15)a.u.

-0.35(17)a.u. 
nm-1

Linear repeat 
distance
Amplitude of first 
peak

Peaks on linear 
repeat, height 
decreasing with 
distance Spread (broadening 

of peaks, s.d.)

18.4(6) nm 

200(236)a.u.

5.3(2.0)nm

AmplitudeLocalization 
precision term Spread (precision, 

s.d.)

101(126)a.u.

2.9(1.7)nm
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Table S9: Parameters and uncertainties for the RPD model 
for cell-transverse pairwise distances in YZ between ACTN2 
localizations in the cardiomyocyte Z-disc (Fig. 4D, Fig. 
S7).

Background Constant value 10.587(8)a.u. 

Mean 
pairwise
distance

11.17(1)nm 

Peak 1

Amplitude 130(2)a.u. 

Mean 
pairwise
distance

24.08(5)nm 

Peak 2

Amplitude 203(3) a.u. 

Characteristic 
distances 
(peaks)

Spread (broadening of 
peaks, s.d.)

5.82(2)nm 
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