
1

Supplementary Materials on Clinical Outcomes Database

�e clinical outcomes database analyzed in Section 1 aggregates reported data from di�erent hospitals across the world.
�ese hospitals may have di�erent equipment and reporting standards. It was obtained through a human reading
process, which is inherently imperfect. For this reason, we now list some important observations and caveats about the
database, and refer the reader to our website for a complete list of the 160 papers entered into the database.1

– To minimize human error in data reporting, we have veri�ed some key features with additional scrutiny, including
mortality, ICU and hospital length of stay, key symptoms (fever, cough, short breath, fatigue, diarrhea) and common
comorbidities (hypertension, diabetes).

– Across papers, subcohort divisions may follow di�erent criteria, including: severity of disease (severe vs. mild),
mortality (survivors vs. non-survivors), treatment (intubation vs. non-intubation), comorbidity (diabetic vs. non-
diabetic). To retain a large enough number of studies in each category, we classify a population as “mild” if the study
classi�es it as “not asymptomatic” and “mild”, “general”, or “non-ICU” and not “severe/critical”; and we classify a
population as “severe” if the study classi�es it as “severe”, “critical”, “ICU only” or “non-survivors only”.

– Studies in this dataset do not always have the same purpose. For instance, many papers from Italy seem to report
data only on non-survivors. In addition, some studies focus on the disease’s contagion pro�le, with li�le information
on mortality, discharge, stay length. Data points from these studies may exhibit a high proportion of missing
features.

– We have tried to report all lab values in consistent units. We have included a companion document (Reference
Ranges) with corresponding reference ranges to facilitate analysis. �ere are some instances where the reported lab
units seem inconsistent with the expected ranges (e.g. for D-Dimer), but we have generally reported the raw values
from the source papers.

– �e papers entered in the database do not consistently report con�dence intervals alongside population means. For
this reason, we have declined to provide con�dence intervals for the quantities estimated in this part of the paper.

– We intend to continuously update the database as new papers become available. For this reason, the average values
reported in this paper may change as more data becomes available.

Table S1: Count and prevalence of treatments among COVID-19 patients, broken down per continent (Asia, Europe,
North America). A “-” indicates that fewer than 100 patients in a subpopulation reported on this symptom.

Treatment Asia Europe North America

No. Report Prev. (%) No. Report. Prev. (%) No. Report. Prev. (%)

Kaletra 5, 665 35.2% − − − −
Oseltamivir 5, 901 25.1% − − − −
Remdesivir 337 47.4% − − 868 10.3%
Arbidol 5, 902 34.8% − − − −
Interferon 3, 647 51.8% − − − −
Hydroxychloroquine 6, 008 0.7% − − 1, 235 61.7%
Invasive Ventilation 7, 945 8.0% 75, 120 4.8% 5, 840 19.3%

Proj. Mortality 12, 820 16.7% 79, 750 9.9% 19, 060 15.8%

Table S1 reports statistics on treatments in di�erent continents. �e data are reported at a higher level of granularity
in early studies in Asia, which hinders direct comparisons. Still, we observe signi�cant di�erences in the use of
hydroxychloroquine and ventilation between Asia, Europe and North America.

1 h�ps://www.covidanalytics.io/dataset

https://www.covidanalytics.io/dataset
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Supplementary Materials on Clinical Risk Calculators

Method Details

We construct the feature space by aggregating all clinical features for each of the cohorts. We restricted the features to
those that have at most 40% of missing values in both datasets (ASST Cremona and HM Hospitals). Missing values
are imputed using k-nearest neighbors imputation method (Troyanskaya et al. 2001). �e mortality model consists
of 22 features. �e infection model has a larger feature space, since we are not limited to common features in both
datasets. We restrict this model to the 20 most important features, as determined by the algorithm, to ensure usability
and reduce the data entry burden on end-users.

We train models for each of the two outcomes of interest (mortality and infection), both including and excluding
lab values. �is results in a total of four models, referred to as “mortality with lab”, “mortality without lab”, “infection
with lab”, and “infection without lab”. We use the XGBoost algorithm to train all models (?). We leverage a Bayesian
optimization framework to select the best model parameters, using the mean cross-validation area under the curve
(AUC) across 40 random seeds as the loss function. �is technique results in a more accurate tuning compared to
standard grid search, yielding be�er performance on the test set. We use Scikit-learn (Pedregosa et al. 2011) to interface
XGBoost and Scikit-optimize (?) to perform the hyperparameter tuning. We tune the following parameters for every
model: learning rate, γ, λ, α, minimum child weight, maximum tree depth, number of estimators, and the subsample
ratio of columns when constructing each tree. All remaining hyperparameters are set to their default value.

Performance Evaluation

Figure S1(a) reports the average receiver operating curve and precision-recall curve for each model. �e results are
averaged across models generated from 40 random seeds. �e mortality models have higher average AUCs than the
infection models, although the infection models are stronger when evaluated on precision and recall. As expected,
predictive performance deteriorates when lab values are excluded. Yet, the models without lab values still achieve
strong performance. In particular, the AUC of mortality model drops only moderately when lab values are excluded.
Both models see a similar loss in precision/recall when lab values are excluded.
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Fig. S1: Bootstrapped results on ROC and Precision Recall curves for all calculators on the testing set.

Table S2 reports threshold-based metrics, which evaluate the discriminative ability of the calculators at a �xed
cuto�. We ensure a sensitivity of at least 90% to re�ect the high cost of false negatives (missing a death or an infection).
We select the highest corresponding threshold to maximize speci�city. �e results show that the accuracy of the models
spans 65%–80%. �e mortality calculator with lab values achieves a speci�city of 76%. �e infection model with lab
values has lower speci�city (63%), but be�er precision (74% vs. 56%).

Finally, Figure S2 displays calibration plots, showing the true event rates as a function of the average predicted
probabilities. �e x-axis bins the population by average predicted risk, and the y-axis plots the true event rate (percentage
of deaths or infection). All four risk calculators are well calibrated across subgroups, as the �ts are close to the 45-degree
line. �e bo�om plot shows the distribution of predicted risk values from the models. For the mortality calculators,
the mean predicted values fall below 10% for most samples, whereas the infection calculators distribute the risk more
evenly across the cohort. �is re�ects the fact that mortality is less prevalent than infection.
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Table S2: Performance evaluation summary. Average results across 40 random seeds are reported along with 95%
con�dence intervals. A minimum threshold of 90% sensitivity is enforced.

Model Type Lab Values �reshold Accuracy Sensitivity Speci�city Precision Negative
predictive value

False
positive rate

Mortality Present 17.45
(15.61,19.29)

79.29
(77.47,81.11)

90.38
(90.38,90.38)

75.66
(73.25,78.07)

55.86
(53.46,58.25)

95.97
(95.84,96.1)

24.34
(21.93,26.75)

Mortality Absent 12.66
(11.11,14.2)

70.85
(68.45,73.24)

90.38
(90.38,90.38)

64.53
(61.37,67.7)

46.15
(43.96,48.33)

95.3
(95.04,95.55)

35.47
(32.3,38.63)

Infection Present 28.32
(26.63,30.02)

77.58
(76.48,78.68)

90.36
(90.36,90.36)

63.24
(60.9,65.58)

73.59
(72.33,74.85)

85.26
(84.79,85.73)

36.76
(34.42,39.1)

Infection Absent 27.51
(26.55,28.47)

66.31
(65.37,67.25)

90.36
(90.36,90.36)

39.32
(37.33,41.32)

62.64
(61.85,63.44)

78.12
(77.28,78.96)

60.68
(58.68,62.67)
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Fig. S2: Bootstrapped Results on the Calibration Curves for both risk calculators on the testing set. �e intervals are:
[0,10%], (10,20%], (20,30%], . . . , (90,100%]. �e event rates are plo�ed against the bin mid-points. An ideal event rate is
marked by the do�ed 45 degree line.
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Supplementary Materials on DELPHI-pred and DELPHI-presc

Formulation of DELPHI-pred

General Formulation

�e DELPHI model separates people into 11 possible states:

– Susceptible (S): People who have not been infected.
– Exposed (E): People currently infected, but not contagious and within the incubation period.
– Infected (I): People currently infected and contagious.
– Undetected (UR) & (UD): People infected and self-quarantined due to the e�ects of the disease, but not con�rmed

due to lack of testing. Some of these people recover (UR) and some die (UD).
– Detected, Hospitalized (DHR) & (DHD): People who are infected, con�rmed, and hospitalized. Some of these

people recover (DHR) and some die (DHD).
– Detected, �arantine (DQR) & (DQD): People who are infected, con�rmed, and home-quarantined rather

than hospitalized. Some of these people recover (DQR) and some die (DQD).
– Recovered (R): People who have recovered from the disease (and immune).
– Deceased (D): People who have deceased from the disease.

In addition to main functional states, we introduce helper states to calculate a few useful quantities: Total Hospitalized
(TH), Total Detected Deceased (DD) and Total Detected Cases (DT). �e full mathematical formulation of the model is
as follows:

dS

dt
= −α̃γ(t)S(t)I(t) (1)

dE

dt
= α̃γ(t)S(t)I(t)− βE(t) (2)

dI

dt
= βE(t)− rdI(t) (3)

dUR
dt

= rd(1− µ̃)(1− pd)I(t)− σUR(t) (4)

dDHR
dt

= rd(1− µ̃)pdphI(t)− κDHR(t) (5)

dDQR
dt

= rd(1− µ̃)pd(1− ph)I(t)− σDQR(t) (6)

dUD
dt

= rdµ̃(1− pd)I(t)− τ̃UD(t) (7)

dDHD
dt

= rdµ̃pdphI(t)− τ̃DHD(t) (8)

dDQD
dt

= rdµ̃pd(1− ph)I(t)− τ̃DQD(t) (9)

dTH

dt
= rdpdphI(t) (10)

dDD

dt
= τ̃(DHD(t) +DQD(t)) (11)

dDT

dt
= rdpdI(t) (12)

dR

dt
= σ(UR(t) +DQR(t)) + κDHR(t) (13)

dD

dt
= τ̃(UD(t) +DQD(t) +DHD(t)) (14)

�is set of di�erential equations comprises 11 explicit parameters, de�ned below. �e parameters with a tilde are
the parameters that are ��ed against historical data for each state; the others are �xed parameters that we estimate
using our clinical outcomes database (Section 1).
– α̃ is the baseline infection rate.
– γ(t) measures the e�ect of government response and is de�ned as:

γ(t) =
2

π
arctan

(
−(t− t̃0)

k̃

)
+ 1,

where the parameters t̃0 and k̃ capture, respectively, the timing and the strength of the response. �e e�ective
infection rate in the model is α̃γ(t), which is time dependent.
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Fig. S3: Illustration of γ(t) = 2
π arctan(− t−10

5 ) + 1 (i.e., t̃0 = 10 and k̃ = 5).

– rd is the rate of detection. �is equals to log 2
Td

, where Td is the median time to detection (�xed to be 2 days). (?)
– β is the rate of infection leaving incubation phase. �is equals to log 2

Tβ
, where Tβ is the median time to leave

incubation (�xed at 5 days). (?)
– σ is the rate of recovery of non-hospitalized patients. �is equals to log 2

Tσ
, where Tσ is the median time to recovery

of non-hospitalized patients (�xed at 10 days). (??)
– κ is the rate of recovery under hospitalization. �is equals to log 2

Tκ
, where Tκ is the median time to recovery under

hospitalization (�xed at 15 days). (??)
– τ̃ is the rate of death. �is captures the speed at which a dying patient dies, and thus inversely proportional to how

long a dying patient stays alive.
– µ̃ is the mortality percentage. �is is the percentage of people who die from the disease in a particular region. Note

this quantity is independent from the rate of death.
– pd is the (constant) percentage of infectious cases detected. �is is set to 20%. (???)
– ph is the (constant) percentage of detected cases hospitalized. �is is set to 15%. (??)

�erefore, we �t on 5 parameters from the list above (α̃, µ̃, τ̃ , t̃0, k̃). In addition, we introduce two additional parameters
k̃1, k̃2 to account for the unknown initial population in the infected (I) and exposed (E) states (see Supplementary
Materials for details). We thus �t seven parameters per area, using the methods described in the core of the paper.

Modeling Government Response

As governments respond to the spread of the epidemic, the rate of infection decreases. We model this by multiplying an
initial infection rate with an inverse tangent function, which captures three phases of government response (Figure S3).

– Phase I: �is phase models the initial response when the government has just started to consider implementing
policies. Some people have already changed their behavior in response to early reports, but most people continue
business-as-usual activities.

– Phase II: �is phase is characterized by the sharp decline in infection rate as policies get broadly implemented.
– Phase III: �is phase re�ects the diminishing marginal returns in the decline of the infection rate as the measures

reach saturation.

Using parameters t̃0 and k̃, we control the start time and the strength of the measures. We can therefore interpret t̃0 as
the median day of action, and k̃ as the median rate of action. �is formulation allows us to model, under the same
framework, a wide variety of policies—spanning school closures, restriction on mass gatherings, stay-at-home policies,
etc.

DELPHI-pred Validation

Figure S4 shows the projected number of deaths in the United States, with projections made on three di�erent weeks,
against historical observations. �is complements the corresponding �gure in the main text reporting the number of
projected vs. actual cases. We see that we were generally able to predict the number of deaths up to 4 weeks ahead with
good accuracy. One exception is our prediction made on April 3, which is due to a lack of state-level data on deaths
at the time (hence, we had to assume a constant mortality rate per state). But a�er that, our projections have closely
followed historical trends.
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Fig. S4: Cumulative number of deaths in the United States according to our projections made at di�erent points in time,
against actual observations

Formulation of DELPHI-pres

Modeling of the Impact of Government Response

Recall that we �t a machine learning model to predict the value of γ(t) (��ed by DELPHI-pred), as a function of
the policies in place. �e objective is to evaluate the impact of each policy on the infection rate in order to simulate
its overall e�ect on the dynamics of the pandemic. Figure S5 shows the resulting regression tree, using state-level
data in the United States. �e results show that more stringent policies result in lower values of γ(t), hence in lower
infection rates. For instance, in states with no measure in place, the predicted value of γ(t) is 1.304; in states where a
stay-at-home policy is in place, the predicted value of γ(t) is 0.312; in states where partial social distancing policies are
in place, the predicted value of γ(t) falls in between.

�e main objective of DELPHI-presc is to modify the value of γ(t) in DELPHI-pred to account for future changes
in social distancing policies, using the values predicted by the tree shown in Figure S5. To this end, we de�ne the
following quantities:

– tc is the time of the policy change.
– k0 is a normalized pair-wise di�erence between the predicted values of γ(t) between policies (with respect to the

largest predicted value of γ(t) under no measure). For instance, transitioning from stay-at-home to no measure
induces an o�set (1.304− 0.312)/1.304 = +0.761. All values can be found in Table S3—the o�set is positive if
the new policy is more lenient, and negative if it is more stringent.

– p0 is the normalized value of the current policy.

We then correct the government response as follows:

γ′(t) = max

{
2

π
arctan

(
− t− t̃0

k

)
+ 1 + k0 ·min

[
2− γ(tc)
1− p0

,
γ(tc)

p0

]
, 0

}
, ∀t ≥ tc.

For example, if we are currently in Lockdown and are moving to No measure, then we obtain k0 = 0.787,
p0 = 0.329/1.544 = 0.213 and γ(tc) = 2

π arctan
(
− tc−t̃0k

)
+ 1.

Application to Policy Assessment

To assess any policy, we run the DELPHI-pred model (governed by the system of di�erential equations), using the value
of the infection rate derived above. We report the impact of the di�erent policies on the case count in the main body of
the paper. Figure S6 provides a similar visualization of the e�ect on the death count in the state of New York. We can
draw similar observations regarding the impact of the various policies and the impact of the timing of these policies.
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Fig. S5: Regression Tree (CART) predicting an average value of γ(t) for each policy.

Table S3: Values of normalized o�set computations to correct the estimation of γ(t). Policies include: (i) No measure
(“none”); (ii) Restrict mass gatherings (“R-MG”); (iii) Restrict others (“R-O”); (iv) Authorize schools, restrict mass gatherings
and others (“R-MG-O”); (v) Restrict mass gatherings and schools (“R-MG-S”); (vi) Restrict mass gatherings, schools and
others (“R-MG-S-O”); and (vii) Stay-at-home (“SAH”).

from/to none R-MG R-O R-MG-O R-MG-S R-MG-S-O SAH

none 0 -0.127 -0.332 -0.206 -0.521 -0.577 -0.761
R-MG +0.127 0 -0.206 -0.080 -0.294 -0.451 -0.634
R-O +0.332 +0.206 0 +0.126 -0.189 -0.245 -0.429
R-MG-O +0.206 +0.080 -0.126 0 -0.314 -0.371 -0.554
R-MG-S +0.521 +0.294 +0.189 +0.314 0 -0.057 -0.240
R-MG-S-O +0.577 +0.451 +0.245 +0.371 +0.057 0 -0.183
SAH +0.761 +0.634 +0.429 +0.554 +0.240 +0.183 0
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(a) Impact of di�erent policies on the future number of deaths, in NY

(b) Impact of the timing of policies on the future number of deaths, in NY.

Fig. S6: Impact of di�erent policies on the future number of deaths in the State of New York, for di�erent policies and
policy start dates.
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Supplementary Materials on Ventilator Allocation

We now detail the formulation of the optimization model proposed for ventilator allocation. We begin by specifying the
model mathematically, then discuss data sources and parameter calibration.

Formulation

We consider S states, indexed by s = 1, · · · , S, and D days, indexed by d = 1, · · · , D.

Data.
In formulating the problem, we consider the following data as given:

– vs,d is the demand for ventilators in state s on day d.
– bs is the base supply of ventilators starting in each state s.
– nd is the surge supply of ventilators distributed by the federal government on day d.
– ds,s′ is the distance between state s and state s′.
– τs,s′ is the lead time between state s and state s′.

We note two comments regarding these inputs. First, the surge supply nd corresponds to the number of ventilators
that are actually distributed by the federal government on day d: the details of managing the federal stockpile fall
beyond the scope of this model. More generally, nd represents supply available from any exogenous, centralized source.
Second, we consider distances between states as a way to encourage transfers between neighboring states. We also
calibrate the distances such that ds,s > 0 for each state s, to ensure we do not propose meaningless transfers from
state s to itself.

Decisions.
We de�ne integer decision variables as follows:

– xs,d ∈ Z+ is the supply of ventilators in state s on day d.
– ys,s′,d ∈ Z+ is the number of ventilators sent from state s to state s′ on day d.
– zs,d ∈ Z+ is the additional supply state s receives from the federal government on day d.
– ws,d ∈ Z+ is the shortage of ventilators in state s on day d relative to the demand vs,d.
– ∆s,d ∈ Z+ is the shortage of ventilators in state s on day d relative to the demand with a bu�er.

Parameters.
We de�ne the following parameters, which control di�erent policy trade-o�s:

– fmax ∈ [0, 1] is the maximum fraction of its base supply that each state is willing to share. A value of fmax = 0
indicates that states are not willing to share any ventilator with other states; a value of fmax = 1 indicates that
states are willing to share all their ventilator supply with other states.

– α ∈ [0,∞) is the percentage of projected demand that states would like to plan for with a supply bu�er. For
example, α = 0.1 will penalize any solution such that supply falls within 10% of projected demand.

– λ ∈ [0,∞) is a regularization parameter that captures the trade-o� between the �nancial and logistical cost of
interstate transfers with the public health cost of ventilator shortages.

– tmin ∈ Z+ is the number of days a ventilator is in use a�er it is shipped to a new location, allowing to control for
excessive transfers.

– ρ ∈ [0, 1] is a relative cost parameter capturing the relative importance of projected shortages vs. worst-case
shortages. Each unit of supply that falls short of the projected demand is assigned a cost of 1. Each unit of supply
that exceeds the demand but does not exceed the state’s desired supply bu�er is assigned a cost of ρ.

Objective.
�e problem of allocating scarce resources in a pandemic is complex because of the necessity to balance competing
interests. We identify two key operational goals: improving public health outcomes, and reducing �nancial cost. We
therefore formulate the ventilator allocation problem with two objectives, minimizing total shortage costs as well as
total ventilator transfer costs. Each unit of ventilator shortage is assigned a weight of 1 (for shortage relative to the
projected demand) or a weight of ρ ≤ 1 (for shortage relative to the bu�ered demand). We formalize the bi-objective
problem by means of a penalty on transfers, weighted with a trade-o� parameter λ.

min
S∑
s=1

D∑
d=1

(ws,d + ρ∆s,d) + λ
S∑
s=1

S∑
s′=1

D∑
d=1

ds,s′ys,s′,d. (15a)

Note that ventilators distributed by the federal government are not penalized, as our model simply treats this source as
exogenous.
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Constraints.
– Initial supply for each state s:

xs,0 = bs, ∀s = 1, · · · , S. (15b)

– �e supply in each state s on each day d remains higher than the fraction of its initial supply the state wants to
retain:

xs,d ≥ (1− fmax)bs, ∀s = 1, · · · , S, d = 1, · · · , D. (15c)

– �e transfers from the federal government cannot exceed the available surge supply on each day d:

S∑
s=1

zs,d ≤ nd, ∀d = 1, · · · , D. (15d)

– �e shortage variable corresponds to the positive part of the di�erence between ventilator demand and supply, if
positive, for each state s and day d:

ws,d ≥ vs,d − xs,d, ∀s = 1, · · · , S, d = 1, · · · , D. (15e)

– �e bu�er shortage variable is de�ned such that the total (actual plus bu�er) shortage corresponds to the di�erence
between bu�ered demand and ventilator supply, if positive, for each state s and day d:

ws,d +∆s,d ≥ (1 + α)vs,d − xs,d, ∀s = 1, · · · , S, d = 1, · · · , D. (15f)

– (Conservation of �ow) For each state s and day d, today’s supply is equal to yesterday’s supply plus what is received
today from the government and the other states, minus what is sent to other states, with τs′,s re�ecting shipments’
lead times:

xs,d = xs,d−1 + zs,d +
S∑

s′=1

ys′,s,d−τs′,s −
S∑

s′=1

ys,s′,d, ∀s = 1, · · · , S, d = 1, · · · , D. (15g)

– (Minimum days in use) For each state s and day d, any incoming ventilator, either from another state or from the
federal government, cannot be shipped out for at least tmin days. �is constraint ensures that ventilators are not
transferred too o�en.

d−1∑
d′=max(1,d−tmin)

(
zs,d′ +

S∑
s′=1

ys′,s,d′

)
≤ xs,d, ∀s = 1, · · · , S, d = 1, · · · , D. (15h)

– Any state s facing a shortage on day d cannot ship any ventilators to other states on day d. To write this constraint,
we de�ne auxiliary binary variables as,d ∈ {0, 1} indicating if there is a shortage in state s on day d and a parameter
Vmax providing a trivial upper bound on the number of ventilators a state can ship per day (we use a value of 3,000
which does not restrict the solution, as it exceeds the shortage faced by any state on any given day).

ws,d +∆s,d ≤ vs,d(1 + α)as,d, (15i)
S∑

s′=1

ys,s′,d ≤ Vmax(1− as,d). (15j)

Data Sources and Parameter Calibration

Our optimization model is complex enough to model high-level dynamics of scarce resource allocation, yet simple
enough to only require simple data inputs. We now describe our methodology in collecting the key data necessary to
solve this optimization problem.

Demand.
�e most important input data is the forecasted ventilator demand vs,d. Consistent with our end-to-end data-driven
approach, and in contrast with other ventilator allocation approaches (Mehrotra et al. 2020), we develop our own
demand forecasts using DELPHI-pred (Section 3 of the main text). Recall that DELPHI-pred does not only estimate
the number of cases, but also the number of hospitalizations, equal to DHR +DHD . We then apply a 25% ratio to
estimate the number of ventilators in use—given that, in our clinical outcomes database, 25% of hospitalized patients
are on a ventilator. Ultimately, we can use the DELPHI-pred outputs to derive projections of ventilator demand at the
state level and at the daily level—consistently with the optimization input vs,d.
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Supply.
It can be di�cult to estimate how many ventilators are available in each state as well as at the federal level. For the base
supply bs, we use inventory levels from a 2010 American Medical Association report (?). We adjust this number for
population growth, under the assumption that the number of ventilators per capita has remained constant in each state.

Of course, ventilators can also be used to treat non-COVID-19 patients. We assume that 50% of ventilator supply
across the board is unavailable due to non-COVID-19 usage, in line with other estimates (Mehrotra et al. 2020).

In addition, our model takes into account the daily availability nd of ventilators at the federal level. Estimating
this quantity from publicly-available sources is both di�cult due to limited data and politically fraught. We use the
estimate from the Society for Critical Medicine that the federal stockpile contains at least 12,700 ventilators (?). Some
news reports suggest a lower estimate of 10,000 based on some defects in the stockpiled equipment (?), while others
suggest an estimate of 16,600 based on older model repairs (?). Based on these reference points, we estimate roughly
13,500 available ventilators and assume that they can be deployed evenly over a month. In other words, we allow
450 ventilators to be deployed each day for 30 days (starting on day 4 to allow for lead times). �is gradual release
re�ects potential operational constraints and strategic considerations of controlling the release of inventory in case
of unexpected outbreaks. Yet, given the underlying uncertainty, we perform sensitivity analysis to explore how the
model’s recommendation varies with the federal stockpile.

Distances and lead times.
We compute the interstate distance ds,s′ as the Euclidean distance between the centers of states s and s′, and we let
the lead time parameter τs,s′ equal 3 days for every pair of states. Our choice of a conservative uniform lead time for
shipments is motivated by simplicity concerns. �is could be improved, in future work, to be�er re�ect e�ciencies in
the US shipping infrastructure.

Trade-o� parameters.
– Understanding the impact of states’ willingness to share ventilators with other states is a key takeaway from our

model. In Figure 7B, we vary the fraction fmax of each state’s pooling supply between {0%, 5%, 10%, 15%, 20%}.
Results indicate there is li�le additional e�ciency to be gained from states sharing more than 20% of their supply.

– Understanding the relative importance of federal surge supply compared to interstate transfers is another interesting
takeaway from our model. In Figure 7A, we show the e�ects of removing federal surge supply, or preventing
interstate transfers, on ventilator shortage reduction. We show more detailed sensitivity analysis results in Section
5.

– We vary the parameter λ to derive the the Pareto-optimal frontier of the trade-o� between inter-state transfers vs.
ventilator shortages (for instance in Fig. 7B). As λ tends to zero, transfers incur no cost other than rendering the
ventilators unavailable during shipment; as λ tends to in�nity, transfers become heavily discouraged.

– �e parameter α models uncertainty in the demand forecast as well as robustness to ine�ciency in ventilator
allocation within each state. We vary the percentage α of bu�ered demand within {0%, 5%, 10%, 20%} in Section
5.

Finally, we choose the following values for the remaining two parameters, which have a small impact on the �nal
solution.

– We set the value of tmin to 10 days, based on the clinical outcomes database (Section 1).
– We set ρ, the cost of shortage with respect to bu�ered demand relative to the cost of shortage with respect to real

demand, to 0.25.
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