Supplementary Online Materials for Phillips and Ardell "Structural and Genetic Determinants of Convergence in the Drosophila tRNA Structure-Function Map"

CONTENTS

1	Code and Data	1
2	Substitutions in Ion-Binding Pocket by Functional Class and Location	1
3	Substitutions in Ion-Binding Pockets by Chromosomal Location	3
4	Transition and Transversion Rates in Drosophila tRNA Genes	3
5	Site Divergences with Other Evolutionary Models	3
6	Significance of Paired-Site CIFs in D. melanogaster	3
7	Average Frequency and Information of Nucleotides in tRNA genes in D. melanogaster	3

1. CODE AND DATA

The full code and data to reproduce all results is available at http://dx.doi.org/10.6084/m9.figshare. 12713705.

2. SUBSTITUTIONS IN ION-BINDING POCKET BY FUNCTIONAL CLASS AND LOCA-TION

Table S1. Sequence patterns, ortholog sets, functional classes and locations (in *D. melanogaster*) contributing to elevated substitution rates in an ion-binding pocket. Results are provided for the largest subset of data partitions (X indicates the species is excluded from that partition). Species bit-string corresponds in order to: *D. melanogaster*, *D. simulans*, *D. sechellia*, *D. yakuba*, *D. erecta*, *D.ananassae*, *D pseudoobscura*, *D. persimilis*, *D. willistoni*, *D. mojavensis*, *D. virilis*, *D. grimshawi*. Functional classes use IUPAC amino acid one-letter abbreviations for elongator tRNAs, "X" for initiator tRNAs, "U" for selenocysteine tRNAs.

Species Bit-String	Coordinate(s)	Ortholog Set (Class Anticodon):Sequence	Location in <i>D. melanogaster</i>
111111110111	16:17	72 (U TCA):TGGGGGGGGGGGGGG	2R:c(72450697245155)
		-TTTTTTTTTT	
111111110111	16:60	2 (R TCT):TTTTTCCC0TCC:	2L:19654261965498
		TTTTTCCCTCC	
		92 (L AAG):CCCCCCC0CCT	2R:c(1087183210871913)
		112(I AAT):TTTTTTTTT0CCC	2R:1560307015603143
		114(X CAT):TTTTTTTCT0TTT	2R:1561341015613481

		1 1 3	
Species Bit-String	Coordinate(s)	Ortholog Set (Class Anticodon):Sequence	Location in D. melanogaster
		136(S TGA):TTTTTCTT0TTT	2R:c(1895954218959623)
		137(S TGA):TTTTTCTT0TTT	2R:1896010418960185
		188(P CGG):AAAAAAAAGGGG	3L:1861149018611561
		192(R TCG):AAAAAAAAOTTT	3R:12139501214022
		226(V AAC):TTTTTTCT0TTT	3R:1214741212147484
		251(V CAC):CCCCCTC0TCC	3R:1561584415615916
		285(S AGA):CCCCCC0ACC	X:c(1391914213919223)
111111110111	17	46 (N GTT):TTTTTTTTTTCTT0CCT	2R:c(20401082040181)
11111110111		77 (M CAT):TTTTTTTTTTOATT	2R:c(75480687548140)
		102(F GAA):T-TTTTTTTTTTTTTTTT	2R:c(1349204013492112)
111111110111	17	138(N GTT):TTTTTCTT0CCT	2R:2026158620261659
11111110111	17	186(M CAT):TTTTTTTTTOAAA	3L:1634301716343089
		205(N GTT):TTTTTCTT0CCT	3R:c(39652553965328)
		231(A AGC):GGGGGAGG0GGG	3R:1344546013445532
		240(A AGC):GGGGGAGG0GGG	3R:c(1347102913471101)
111111110111	60	245(A AGC):GGGAGAGG0AGG	3R:c(1348410313484175)
		246(A AGC):GGGGGAGG0AGG	3R:1349390913493981
		252(A AGC):GGGGGAGG0GGG	3R:1561669415616766
11111111011X	16	260(S GCT):TTTTTATT0AAX	3R:c(1822290218222983)
11111110118	60	221(T TGT):CCCCCTT0TCX	3R:c(81482858148356)
	60	242(A AGC):GGGGGGGGGGGG	3R:1347209013472162
1V11111011V	16	258(S GCT):AXAAATAA0TTX	3R:1822225018222331
		259(S GCT):AXAAAAAA0TTX	3R:c(1822252118222602)
	16	83 (I AAT):TCCCTTCC0XXX	2R:c(93177879317860)
111111110XXX		85 (I AAT):TTTCTTCC0XXX	2R:93184899318562
		272(Q TTG):CCCTTTTT0XXX	X:c(33214853321556)
111111110XXX	17	193(M CAT):TTTTTAAA0XXX	3R:c(23217612321833)
	60	234(A AGC):GGGGGGGGGGOXXX	3R:1344826813448340
111111110XXX		238(A AGC):GGGGGGGGGGOXXX	3R:c(1345676413456836)
		244(A AGC):AGGGGAGG0XXX	3R:1348286713482939
11XX111X0111	16	287(S AGA):TTXXTTCX0CCC	X:1396467413964755
11X1111X01X1	16	292(P CGG):AAXAAGTX0TXT	X:1845979718459868
1111X1110XXX	17	61 (N GTT):TTTTXCTT0XXX	2R:c(20776342077707)
1XXX111X0111	60	166(A AGC):GXXXGAGX0GGG	3L:c(80216468021718)
111111110000	16	273(Q CTG):TTTTTTXC0XXX	X:37137323713803
111111/10///		294(I AAT):TTTTTTXC0XXX	X:c(2110235221102426)
1XX1111X01X1	16	220(T TGT):TXXTTTTX0TXA	3R:80322978032368

Table S1 – continued from previous page

Species Bit-String	Coordinate(s)	Ortholog Set (Class Anticodon):Sequence	Location in <i>D. melanogaster</i>
171111110777	16	274(P CGG):GXGAAGTT0XXX	X:37216553721726
IXIIIIIUXXX		289(R TCG):TXTTTTCC0XXX	X:c(1399775213997824)
1X111110XXX	17	47 (N GTT):TXTTTCTT0XXX	2R:20406912040764

Table S1 – continued from previous page

3. SUBSTITUTIONS IN ION-BINDING POCKETS BY CHROMOSOMAL LOCATION

4. TRANSITION AND TRANSVERSION RATES IN DROSOPHILA TRNA GENES

5. SITE DIVERGENCES WITH OTHER EVOLUTIONARY MODELS

We ran analogous site divergence calculations using the HKY model (Hasegawa, M., H. Kishino, and T. Yano (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution* 22(2), 160–174) and the HKY+ Γ model. We estimated substitution rates with MrBayes 3.2.1 (Huelsenbeck and Ronquist 2001; Ronquist et al. 2012) using the fixed known species tree (Drosophila 12 Genomes Consortium 2007). For all runs we constrained change to the tree topology by setting rates of stochastic TBR and branch multipliers to zero probability. All Bayesian analyses were run with two simultaneous chains for 4×10^6 iterations, monitoring convergence of split frequency standard deviations and saved parameters every 500 iterations.

6. SIGNIFICANCE OF PAIRED-SITE CIFS IN D. MELANOGASTER

7. AVERAGE FREQUENCY AND INFORMATION OF NUCLEOTIDES IN TRNA GENES IN D. MELANOGASTER

Table S2. Sequence changes in ion-binding pocket sites by chromosome (Muller elements A – E), when location data was available for *D. melanogaster*. The X chromosome (Muller element A) has a larger fraction of change compared to other chromosome arms.

Chromosome	Ortholog Sets with Changes in	Ortholog Sets with Changes in	
Location	Sites 15, 18, 19, 20, or 59	Sites 16, 17 or 60	
	(% of total)	(% of total)	
2L	5 (0.119)	4 (0.095)	
2R	10 (0.096)	23 (0.221)	
3L	6 (0.113)	7 (0.132)	
3R	6 (0.073)	21 (0.256)	
Х	9 (0.273)	11 (0.333)	
Not Available	14 (0.030)	18 (0.039)	

Fig. S1. Site divergence rates with a HKY evolutionary model. (A) the set with the largest number of species (11111110111, missing *D. willistoni*); 84 orthologous sets); (B) the set with the second largest tree length (110011100111, second only to the set with largest number of species, set contains *D. melanogaster*, *D. simulans*, *D. erecta*, *D.ananassae*, *D pseudoobscura*, *D. mojavensis*, *D. virilis*, *D. grimshawi*); 86 orthologous sets; and (C) the set with the largest number of included ortholog sets (101111110000, *D. melanogaster*, *D. sechellia*, *D. yakuba*, *D. erecta*, *D.ananassae*, *D. pseudoobscura*, *D. persimilis*); 155 ortholog sets

Fig. S2. Site divergence rates for three Mr.Bayes analyses show confirmatory results to the GTR model when simulations are run with a HKY+ γ evolutionary model. Sites show similar patterns to the structural divergence rates in the GTR model data.. (A) the set with the largest number of species (11111110111, missing *D. willistoni*); 84 orthologous sets); (B) the set with the second largest tree length (110011100111, second only to the set with largest number of species, set contains *D. melanogaster*, *D. simulans*, *D. erecta*, *D.ananassae*, *D pseudoobscura*, *D. mojavensis*, *D. virilis*, *D. grimshawi*); 86 orthologous sets; and (C) the set with the largest number of included ortholog sets (10111110000, *D. melanogaster*, *D. sechellia*, *D. yakuba*, *D. erecta*, *D.ananassae*, *D. pseudoobscura*, *D. persimilis*); 155 ortholog sets

	101111110000	110011100111	11111110111
$C{\leftrightarrow}T$	0.2726 (0.1725, 0.3756)	0.2491 (0.1402, 0.3657)	0.2662 (0.1979, 0.3875)
$A{\leftrightarrow}G$	0.4828 (0.3557, 0.6201)	0.4947 (0.3325, 0.6455)	0.4889 (0.4031, 0.6464)
$A{\leftrightarrow}C$	0.0456 (0.0053, 0.0942)	0.1045 (0.0353, 0.1951)	0.1047 (0.0510, 0.1857)
$G{\leftrightarrow} T$	0.0676 (0.0250, 0.1140)	0.0508 (0.0147, 0.0914)	0.0472 (0.0224, 0.0873)
$A{\leftrightarrow}T$	0.0600 (0.0191, 0.1078)	0.0427 (0.0048, 0.0882)	0.0426 (0.0158, 0.0878)
$C{\leftrightarrow}G$	0.0714 (0.0297, 0.1161)	0.0583 (0.0192, 0.1036)	0.0504 (0.0286, 0.0912)

Table S3. Median and Credible Intervals of Transition and Transversion Rates in *Drosophila* tRNA Genes

Permutation-Based Significance of Paired-Site CIFs in D. melanogaster

Fig. S3. The Surprisal of paired-site tRNA CIFs in *D. melanogaster* as a function of the total structure-conditioned functional information (stack-heights) of CIFs, and colored by computed Benjamini-Hochberg FDRs, as computed by tSFM v1.0.

Fig. S4. Average composition and relative average structure-conditioned functional information of the four RNA nucleotides in 288 *Drosophila* tRNA genes with COVE bit-scores ≥ 50 bits.