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Supplementary Note

Overview of methodology

Our drug discovery pipeline consists of three parts: mining relevant drugs, identifying the disease in-
teractome, and investigating the drug mechanism. Fig. 1 describes the inputs, outputs and algorithms
used in each of the three parts. Briefly, the first part (mining relevant drugs) takes in normal and in-
fected/diseased RNA-seq samples along with the public CMap database, which contains gene expression
data on cell lines treated with a variety of FDA approved compounds, to train an autoencoder and sub-
sequently construct synthetic interventions in the learned latent space. It outputs a list of drugs ranked
by the correlation of each drug with the reverse disease signature. The second part of the pipeline (iden-
tifying disease interactome) also takes in the normal and infected/diseased RNA-seq samples as well as
a PPI network (e.g. from the public IREF or STRING databases). It then identifies the genes that are
differentially expressed in the disease and learns the disease interactome connecting these genes in the
PPI network using the prize-collecting Steiner forest algorithm. In addition, the inferred ranked list of
drugs output from part 1 in the pipeline is mapped to its targets using the public DrugCentral database.
The drug targets are intersected with the disease interactome to further filter the list of drugs to only
include those drugs that target nodes in the interactome. The third part of the pipeline (investigating
drug mechanism) uses multi-sample RNA-seq data (e.g. high number of replicates or single-cell RNA-seq
data) to learn the causal directions in the disease interactome using GSP, a causal structure discovery
algorithm, and identifies which drugs and drug targets have the largest downstream causal effect on the
disease interactome.

Comparison of SARS-CoV-2 versus IAV and RSV

In order to test how specific our findings are to SARS-CoV-2 and demonstrate the broad applicability of
our pipeline, we apply our computational pipeline to two additional viral infections: respiratory syncytial
virus (RSV) and influenza A virus (IAV). As for SARS-CoV-2 infection, we obtain gene expression
data for these viruses from [1]. First, we perform differential expression analysis for IAV and RSV
(Supplementary Fig. 20) showing that only 3.19% and 19.6% of genes specific to SARS-CoV-2 are shared
with RSV and IAV, respectively. Next, we apply our over-parameterized autoencoder and synthetic
interventions framework to IAV and RSV to obtain drug lists ranked by their correlation with the
reverse disease signature.

In order to quantitatively compare the drug lists obtained for RSV and IAV to the drug list for SARS-
CoV-2, we measure the similarity of two rankings using curves akin to a receiver operating characteristic
(ROC) curve, namely: given two rankings of n drugs, we consider the top k drugs in one of the lists
and compute the number of drugs in common among these top k drugs for k = 1, 2, . . . n. Thus, the x-
coordinate in each plot indicates the proportion, k/n, of each drug list we consider and the y-coordinate
is the size of the intersection of the two subsets normalized by k. The area under the curve (AUC) is a
measure of similarity between two drug lists. When two drug lists are exactly the same, the AUC is 1
and when the two drug lists are maximally different (i.e., one drug list is the reverse of the other), the
AUC is 1− ln(2) ≈ .306; see Supplementary Fig. 9a. Supplementary Fig. 21a-b show that that the drug
lists for SARS-CoV-2 and RSV are significantly different and in fact very close to the lower bound, while
the drug lists for SARS-CoV-2 and IAV are quite similar with an AUC of 0.843.

Finally, we perform the Steiner tree analysis based on the identified differentially expressed genes for
IAV and RSV as well as the drug lists obtained by the overparameterized autoencoder. As for SARS-
CoV-2, since the morbidity and fatality rate of IAV is higher in the aging population, we compute a
combined IAV and aging interactome. This consists of 185 nodes and 486 edges based on 124 terminal
genes. Since RSV is riskier in young children, but can also be serious for the aging population, we
compute two interactomes, one without taking aging into account (234 nodes and 871 edges based on
139 terminal genes) and one combined with RSV and aging (303 nodes and 1177 edges based on 200
terminal genes) to make it more comparable to the other interactomes. To make the results comparable,
since for SARS-CoV-2 we intersected the targets of the top 142 ranked drugs from the overparameterized
autoencoder analysis with the interactome, we perform the analysis with the same number of drugs also
for IAV and RSV. The resulting drugs and drug targets are shown in Supplementary Fig. 22. For IAV,
this results in 20 drugs, 13 of which overlap with drugs identified in the SARS-CoV-2 analysis. These
drugs target 9 proteins in the interactome, 2 of which are also present in the SARS-CoV-2 interactome,
namely EGFR and RIPK1. For RSV with and without aging the resulting drug lists as well as their
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targets have no overlap with the ones identified by SARS-CoV-2. In particular, the identified drug lists
contain no tyrosine kinase inhibitors, thereby indicating the specificity of our results to SARS-CoV-2.

Randomization analysis

(1) Randomization of PPI network: Randomization of the IREF protein-protein interaction net-
work was performed via randomly permuting the vertex labels. Such randomization affects a gene’s
neighborhood while preserving basic network properties such as number of edges and degree distribu-
tion. The prize-collecting Steiner tree analysis pipeline was then applied to this new network. Drugs
targeting terminal nodes were systematically selected in all randomization runs, as expected given that
the prize-collecting Steiner tree algorithm parameters were set so that all terminal nodes are included
in the solution. Other drugs identified by the non-randomized analysis that did not target any terminal
node appeared with frequencies varying from 56% (primaquine, which has 5 targets in the network) to
97% (imatinib, which has 69 targets in the network). Only two drugs (mifepristone and palbociclib) that
were not selected by the non-randomized analysis appeared more frequently (80% of runs) than the least
frequently selected drug from the non-randomized analysis (primaquine, 56% of runs).

(2) Permuting expression data: Randomizing gene labels in the RNA-seq expression data set from [1]
while preserving gene labels of the GTEx aging data set is an implicit approach to randomizing the list
of terminal genes used as input for the prize-collecting Steiner tree algorithm. After applying the Steiner
tree analysis pipeline, the drugs selected in the non-randomized analysis appeared between 18% (mil-
rinone) and 100% (sunitinib) of the runs. Generally, the more proteins a drug targeted in the IREF
network, the more frequently it appeared in the solution (sunitinib, with 260 targets, is the drug with
highest number of targets in the PPI network). 16 drugs that were not selected in the non-randomized
analysis (this represents 1% of the set of non-selected drugs) appeared more frequently than the least
frequently selected drug from the non-randomized analysis (milrinone).

(3) Randomization of CMap signatures: We also ran the Steiner tree analysis after randomly
permuting the SARS-CoV-2-anticorrelation scores of the 605 CMap drugs and selecting the drugs with
anticorrelation above 0.86 (resulting in 142 drugs as in the original non-randomized analysis). After
applying the Steiner tree analysis pipeline, drugs that were selected in the non-randomized analysis ap-
peared in the final list with a frequency between 22% and 26%, as expected (since 142/605 ≈ 23.5%).
More interestingly, 17 drugs which were not selected in the non-randomized analysis (representing 1%
of the overall set of non-selected drugs) appeared at a similar 22-29% frequency in the solution. These
are drugs that target one of the network nodes yet have a true SARS-CoV-2-anticorrelation score lower
than 0.86.

(4) Randomization of terminal nodes: Finally, we directly randomized the list of terminal nodes,
by randomly selecting 162 genes from the RNA-seq expression dataset and prizing them with their corre-
sponding absolute log2 fold change after SARS-CoV-2 infection in A549-ACE2 cells. The drugs selected
in the non-randomized analysis appeared between 3% (milrinone) and 100% (sunitinib) of the runs. In
this analysis, 41 drugs that were not selected in the non-randomized analysis (this represents 2.5% of
the set of non-selected drugs) appeared more frequently than the least frequently selected drug from the
non-randomized analysis (milrinone).

These results show that while the output of our Steiner tree analysis pipeline is quite robust to changes
in the underlying PPI network, the selection of the terminal nodes has a critical effect on the final drug
list.
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Supplementary Figures

Supplementary Fig. 1: Detailed schematic of our computational drug repurposing platform. Green boxes
denote inputs that may need to be collected for the specific virus/disease and cell type of interest. Blue
boxes denote inputs corresponding to databases that are publicly available. Orange boxes denote our
computational methods and yellow boxes denote method outputs. Computational pipeline for (a) mining
relevant drugs, (b) identifying disease interactome and (c) investigating drug mechanism.
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Supplementary Fig. 2: (a) Gene expression of A549-ACE2 cells with and without SARS-CoV-2 infection,
with differentially expressed genes in red. (b) Gene expression of A549 cells with and without SARS-
CoV-2 infection, with differentially expressed genes in purple. (c) Gene expression of A549 cells with
and without ACE2 receptor, with differentially expressed genes in green. (d) Top 10 gene ontology
terms associated with differentially expressed genes between A549-ACE2 cells with and without SARS-
CoV-2 infection. (e) Top 10 gene ontology terms associated with differentially expressed genes between
A549 cells with and without SARS-CoV-2 infection. (f) Top 10 gene ontology terms associated with
differentially expressed genes between A549 cells with and without ACE2 receptor. All gene ontology
terms have adjusted p-value < 0.05 (adjusted for multiple hypothesis testing using Benjamini–Hochberg
procedure).
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Supplementary Fig. 3: (a) Top 10 gene ontology terms associated with aging (adjusted for multiple
hypothesis testing using Benjamini–Hochberg procedure). (b) Venn diagram showing significant overlap
between aging associated genes considering different definitions of older, specifically just individuals in
the oldest category of 70-79 years old (dark blue, left circle) or individuals that are 60-79 (light blue,
right circle).
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Supplementary Fig. 4: (a) Heatmap of log2-fold changes of differentially expressed genes shared by
SARS-CoV-2 and aging with gene names. (b) 2D histogram of the number of genes having a certain
rank in aging and SARS-CoV-2 datasets.
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A549 Control Batch 2
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Supplementary Fig. 5: (a) Uniform Manifold Approximation and Projection (UMAP) of control and
perturbations across all cell types in Connectivity Map (CMap). The effect of a perturbation (black) on
a given cell type is small relative to the differences between cell types (cell types are denoted by different
colors). (b) Principal component analysis highlighting batch effects for the control samples of the A549
cell line from CMap. K-means clustering by gene expression vector is used to identify and remove batch
effects (represented as red and blue clusters).
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a

c
Num.

Hidden 

Units

Num. 

Hidden 

Layers

Nonlinearity Optimizer, LR Initialization Seed Used Training Loss Test Loss

1024 1 Leaky ReLU Adam, 1e-4 PyTorch

Default

17 7.3 x 10^-7 1.1 x 10^-6

100 1 Leaky ReLU Adam, 1e-4 PyTorch

Default

17 2.8 x 10^-3 2.8 x 10^-3

1024 1 CosID Adam, 1e-4 PyTorch

Default

17 6.4 x 10^-6 6.5 x 10^-6

Over-parameterized Autoencoder Under-parameterized Autoencoder

b

Supplementary Fig. 6: Overview of autoencoder architectures, optimization methods and hyperparameter
settings considered. (a) Diagram representing an overparameterized autoencoder. While this autoen-
coder is capable of learning the identity function, training leads to a solution that better aligns drug
signatures across cell types in the latent space. (b) Diagram representing an underparameterized au-
toencoder. While this architecture is most commonly used in practice, it does not align drug signatures
as well in the latent space as its overparameterized counterpart; see Supplementary Fig. 8. (c) Details
on the width, depth, nonlinearity, optimization method, learning rate, random seed, training loss and
test loss for all architectures considered in this work.
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a b Under-parameterized Autoencoder Over-parameterized AutoencoderPCA (100 PCs)PCA (2 PCs) c d

Supplementary Fig. 7: Receiver operating characteristic (ROC) curves for the agreement in classification
between gene expression vectors and reconstructed gene expression vectors obtained using an embedding
given by the first 2 principle components in (a), the first 100 principle components in (b), an underpa-
rameterized autoencoder in (c), and an overparameterized autoencoder in (d). While a logistic regression
model trained to classify between 831 A549 control samples and 32893 A549 perturbation samples shows
differences in predictions on original gene expression vectors versus underparameterized autoencoder
reconstructions and reconstructions from the top 2 or 100 principal component, the overparameterized
embedding allows near perfect reconstruction of the original gene expression vectors with no difference in
predictions between using overparameterized embeddings for gene expression vectors and original gene
expression vectors.
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Supplementary Fig. 8: Comparison of drug signature alignment between A549 and MCF7 (top) and A549
and HCC515 (bottom) cell types upon using an embedding verus the original space. Embeddings provided
include (from left to right) top 2 PCs, top 100 PCs, underparameterized leaky ReLU autoencoder,
overparameterized cosid autoencoder, overparameterized leaky ReLU autoencoder. Embeddings from
the overparameterized autoencoder with leaky ReLU activation better align drug signatures between
these two pairs of cell types than any other embedding considered while still providing near perfect
reconstruction of the original data.
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Autoencoded vs. Original
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Comparison with Randomly Ordered List

Supplementary Fig. 9: Quantitative analysis of similarity between drug lists obtained using the latent
space embedding as compared to the original and PCA embedding (using 2 PCs). Given two rankings
of n drugs, we consider the top k drugs and plot the number of drugs in common among these top k
drugs for k = 1, 2, . . . n; i.e., the x-coordinate of a point indicates the proportion, k/n, of each drug list
we consider and the y-coordinate is the size of the intersection of the two subsets normalized by k. AUC
denotes the area under the curve; green line indicates the expected size of intersection for randomly
chosen lists; (a) shows the result when considering two maximally different drug lists, i.e., when one is
the reverse of the other, resulting in an AUC of 0.307; (b) demonstrates that the drug list produced in
the latent space of the over-parameterized autoencoder is similar to that produced in the original space
and to that produced using 2 PCs. The advantages of using the over-parameterized autoencoder are
that the resulting latent space contains enough signal to reconstruct gene expression vectors well and
provides better alignment between drug signatures across cell types than in the original space.
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Supplementary Fig. 10: Quantitative analysis of similarity between drug lists obtained using the overpa-
rameterized autoencoder on gene expression data from different MOIs for A549 cells with and without
ACE2 supplement. (a) Comparison of drug lists obtained from SARS-CoV-2 infected A549-ACE2 cells
with MOI 2 and A549 cells with MOI 2, (b) A549-ACE2 cells with MOI 2 and A549-ACE2 cells with
MOI 0.2, and (c) A549 cells with MOI 2 and A549-ACE2 cells with MOI 0.2. The similarity between the
drug lists drops when comparing an MOI of 2 to an MOI of 0.2, which is consistent with the observation
by [1] that low-MOI conditions did not stimulate an important interferon-I and -III response.
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Supplementary Fig. 11: Terminal node selection for prize-collecting Steiner forest analysis. Terminal
genes include 162 genes present in the IREF interactome that are either upregulated in both SARS-
CoV-2 infection and aging or downregulated in both SARS-CoV-2 infection and aging. Each terminal
gene is prized with its absolute log2-fold change between SARS-CoV-2 infected A549-ACE2 cells and
normal A549-ACE2 cells. (a) Histogram of prizes for the 162 terminal genes along with descriptive
statistics. (b) Table of 75 terminal genes upregulated in both SARS-CoV-2 infection and aging (left)
and table of 87 terminal genes downregulated in both SARS-CoV-2 infection and aging, along with prize
and log2 fold change information (also indicated by color).
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Supplementary Fig. 12: Parameter selection via sensitivity analysis for prize-collecting Steiner forest
analysis. (a1) Boxplot of penalized edge costs (log-scale) in the IREF interactome for different values
of g. Each boxplot displays the distribution of penalized edge costs for all 182,002 edges of the IREF
interactome. The median corresponds to the green middle line, with a box indicating the first (Q1)
and third (Q3) quartiles. Whiskers describe the range of the data but do not extend to more than
1.5 × IQR (where IQR=Q3-Q1 denotes the interquartile range). Outliers are plotted as separate dots.
The distribution of penalized edge costs is very similar for g = −∞ and g = 0. For these values of g,
the maximum penalized edge cost is upper bounded by 1. (a2) Histogram of shortest path cost between
any two terminals in the IREF interactome for g = 0, along with descriptive statistics. The data used
in this visualization corresponds to the shortest path cost (computed using Dijkstra’s algorithm on the
IREF interactome) between all 13,041 unique terminal pairs. (b) Range of parameters g, w and b
used in sensitivity analysis. Red values indicate a stable range for the interactome obtained with the
prize-collecting Steiner forest algorithm. We retain g = 0, w = 1.4 and b = 40 for our subsequent
analysis. (c1-3) Heatmaps of the matrix M indexed for different types of selected nodes: all nodes (c1),
terminal nodes (c2) and SARS-CoV-2 interaction partners (c3). Each row/column corresponds to a
prize-collecting Steiner forest obtained from a given set of parameters (g = 0, w, b). A stability region
for the prize-collection Steiner forest solution appears for g = 0, w ≥ 1.2 and b ∈ [5, 50].
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1003 edges

Supplementary Fig. 13: Interactome obtained from the prize-collecting Steiner forest algorithm (with
parameters g = 0, w = 1.4, b = 40) using the terminal gene list from Supplementary Fig. 11. The
interactome contains 1,003 edges between 252 genes, five of which are known SARS-CoV-2 interaction
partners (EXOSC5, FOXRED2, LOX, RBX1, RIPK1, indicated by crosses. Genes in the interactome
are grouped by general process (colored boxes in background). Terminal genes are colored by log2-fold
change between SARS-CoV-2-infected and normal A549-ACE2 cells, while Steiner nodes appear in grey.
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Supplementary Fig. 14: Selection of the prize p for non-terminal SARS-CoV-2 interaction partners (all
but EXOSC5, FOXRED2 and LOX) via sensitivity analysis. (a) Number of SARS-CoV-2 interaction
partners collected in the interactome obtained from the prize-collecting Steiner forest algorithm for
different values of p ranging from 0 to 0.02. For p > 0.02, all known SARS-CoV-2 interaction partners
present in the IREF network are collected in the final interactome. A stability region appears for
p ∈ [4 · 10−4, 10−3] with 7 SARS-CoV-2 interaction partners collected. (b-c) Heatmaps of the matrix M
indexed for different types of selected nodes: all nodes (b), and SARS-CoV-2 interaction partners (c).
Each row/column corresponds to a prize-collecting Steiner forest obtained from a given set of parameters
(g = 0, w = 1.4, b = 40, p). A stability region for the prize-collection Steiner forest solution appears for
g = 0, w = 1.4 and b = 40 and p ∈ [7 · 10−4, 10−3]. We retain g = 0, w = 1.4, b = 40 and p = 8 · 10−4

for our subsequent analysis.
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Supplementary Fig. 15: Interactome obtained from the prize-collecting Steiner forest algorithm (with
parameters g = 0, w = 1.4, b = 40) using the terminal gene list from Supplementary Fig. 11 augmented
with all other SARS-CoV-2 interaction partners prized with p = 8 · 10−4. The interactome contains
1,090 edges between 254 genes, seven of which being known SARS-CoV-2 interaction partners (EXOSC5,
FOXRED2, LOX, RBX1, RIPK1, CUL2, HDAC2, indicated by crosses). Genes in the interactome are
grouped by general function (colored boxes in background). Terminal genes are colored by log2-fold
change between SARS-CoV-2-infected and normal A549-ACE2 cells, while Steiner nodes appear in grey.
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Supplementary Fig. 16: 2-Nearest-Neighborhoods of nodes of interest (denoted by a red hexagon) in the
interactome of Supplementary Fig. 15 (parameters g = 0, w = 1.4, b = 40, p = 8 · 10−4). Proteins known
to interact with SARS-CoV-2 are denoted as blue squares, drug targets are denoted as green diamonds,
terminal nodes are colored according to log2-fold change in SARS-CoV-2-infected A549-ACE2 cells versus
normal A549-ACE2 cells, Steiner nodes appear in grey. Edges are colored according to edge confidence,
which is thresholded to improve readability (see Methods).
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NCOR1 Histone deacetylase 3/NCoR1 vorinostat 0.87 7.92

sunitinib 0.87 6.43

pazopanib 0.87 6.59

axitinib 0.88 5.60

TNF Tumor necrosis factor lenalidomide 0.87 7.89

dasatinib 0.88 8.25

sunitinib 0.87 5.66

ruxolitinib 0.87 5.59

axitinib 0.88 5.22
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Supplementary Fig. 17: Drug target discovery via prize-collecting Steiner forest analysis to identify pu-
tative molecular pathways linking differentially expressed genes in SARS-CoV-2 infection without taking
into account age-related differential expression. (a) The general procedure to obtain the interactome is
identical to the one described in Fig. 4a, with a different terminal gene list. A histogram of the prize
distribution is provided for 169 terminal nodes corresponding to genes differentially expressed in SARS-
CoV-2 infection after removing the effect of the ACE2 receptor (red circle and brown intersection). Only
11 of these 169 genes (brown intersection) belong to the terminal nodes list used in Fig. 4 (green circle
and brown intersection). The prize of a terminal node equals the absolute value of its log2-fold change
in SARS-CoV-2-infected A549-ACE2 cells versus normal A549-ACE2 cells based on data from [1]. (b)
Sensitivity analysis to choose the parameters w and b for the prize-collecting Steiner forest algorithm,
including heatmaps of the matrix M indexed for different types of selected nodes: terminal nodes (top),
all nodes (bottom left) and SARS-CoV-2 interaction partners (bottom right). Each row/column cor-
responds to a prize-collecting Steiner forest obtained from a given set of parameters (g = 0, w, b). A
stability region for the prize-collection Steiner forest solution appears for g = 0, w ≥ 1.2 and b ∈ [5, 50].
We select g = 0, w = 1.4 and b = 40 corresponding to a robust solution for moderate changes in the
parameters. (c) Interactome obtained using the prize-collecting Steiner forest algorithm on the IREF
interactome using the terminal genes of Supplementary Fig. 17(a). Proteins are grouped by general
function (colored boxes in the background) and marked with a cross if known to interact with SARS-
CoV-2 proteins based on data from [2]. (d) 2-Nearest-Neighborhoods of nodes of interest (denoted by
a red hexagon) in the interactome. Proteins known to interact with SARS-CoV-2 are denoted as blue
squares, drug targets are denoted as green diamonds, terminal nodes are colored according to log2-fold
change in SARS-CoV-2-infected A549-ACE2 cells versus normal A549-ACE2 cells, Steiner nodes appear
in grey. Edges are colored according to edge confidence, which is thresholded to improve readability
(see Methods). (e) Table of drug targets and corresponding drugs in the interactome. Selected drugs
are FDA-approved, high affinity (at least one of the activity constants Ki, Kd, IC50 or EC50 is below
10µM), and match the SARS-CoV-2 signature well (correlation > 0.86). The affinity column displays
(and is colored by) − log10(activity). The correlation column displays (and is colored by) correlations be-
tween drug signatures and the reverse signature of SARS-CoV-2 infection based on the overparameterized
autoencoder embedding. The protein name corresponding to each gene is included.
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Supplementary Fig. 18: (a) Matrix Q of estimated effects of interventions (columns) on measured genes
(rows) in A549 cells from CMap gene knockout and overexpression data with Qij = 1 representing that
perturbing gene j affects gene i and hence that gene i is downstream of gene j. (b) ROC curve evaluating
causal structure discovery methods GSP (turquoise), PC (blue) and GES (red) for predicting the effects
of interventions in A549 cells. The performance of each algorithm is measured by sampling random
causal graphs and measuring number of true positives and false positives (see Methods). GSP performs
significantly above random guessing with p-value of 0.0177, while PC achieves p-value of 0.0694 and GES
a p-value of 0.5867. The grey line represents a random guessing baseline (not used for computation of
p-value) based on the number of ground truth positives and negatives, calculated from Q and scaled to
extend from (0, 0) to span the entirety of the plot.
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Supplementary Fig. 19: (a) Causal network corresponding to A549 cells. (b) Causal network corre-
sponding to AT2 cells. (c) Causal network corresponding to A549 cells learned using PPI interactome
obtained without considering age-associated genes as a prior. All non-singleton nodes are shown, gene
targets of drugs selected via our computational drug repurposing pipeline are in boxes and the node color
corresponds to the log2-fold change of expression between A549-ACE2 cells with SARS-CoV-2 infection
versus without SARS-CoV-2 infection. Grey nodes represent Steiner nodes.
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Supplementary Fig. 20: (a) Venn diagram of overlap between differentially expressed genes in SARS-CoV-
2 (pink circle), RSV (green circle) and IAV (purple circle) infections. (b) Heatmap of log2 fold change
of differentially expressed genes shared by SARS-CoV-2, IAV and RSV (first 3 genes), SARS-CoV-2 and
IAV (40 genes), and SARS-CoV-2 and RSV (last 4 genes).
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Supplementary Fig. 21: Quantitative analysis of similarity between drug lists obtained using the overpa-
rameterized autoencoder on gene expression data from different virus infections. Comparison of drug lists
from SARS-CoV-2 infected A549-ACE2 cells versus (a) RSV-infected A549 cells, and (b) IAV-infected
A549 cells.
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Supplementary Fig. 22: Drugs and their gene targets obtained from the prize-collecting Steiner tree
analysis for IAV and RSV in comparison to our findings for SARS-CoV-2. (a) Venn diagram between
selected drugs for IAV (red circle) and SARS-CoV-2 (green circle) using aging as a filter in the differential
gene expression analysis for both viruses, and (b) Venn diagram for the respective gene targets. (c) Venn
diagram between selected drugs for RSV (red circle) and SARS-CoV-2 (green circle) without taking aging
into account for the differential expression analysis of RSV, and (d) Venn diagram for the respective gene
targets. (e) Venn diagram between selected drugs for RSV (red circle) and SARS-CoV-2 (green circle)
using aging as a filter in the differential gene expression analysis for both viruses, and (f) Venn diagram
for the respective gene targets.
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Supplementary Fig. 23: Selection of correlation threshold for identifying candidate drugs. Plot showing
the percentage of drugs (y-axis) with correlation higher than a given threshold (x-axis). The vertical
red line indicates the x-value (0.86) for which the y-value shows the largest jump and corresponds to the
threshold used for the selection of drug candidates.
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Supplementary Fig. 24: Comparison of drug targets resulting from analyzing the CMap dataset with
(red circle) and without removing confounding 1’s (green circle).
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Supplementary Tables

Drug name
% differentially expressed
nodes downstream (A549)

% nodes downstream
(A549 no age)

% nodes downstream
(AT2)

afatinib 98.51 0.00 83.93
axitinib 98.51 0.85 83.93
bosutinib 98.51 0.00 83.93
dasatinib 98.51 0.00 83.33
erlotinib 98.51 0.00 83.33
imatinib 98.51 0.00 83.93
pazopanib 98.51 0.85 83.93
ruxolitinib 98.51 0.00 83.33
sorafenib 97.01 0.00 0.60
sunitinib 98.51 0.85 83.93
tofacitinib 1.49 0.00 0.00
belinostat 98.51 94.92 83.33
vorinostat 98.51 94.92 83.33
formoterol 98.51 94.92 83.33
primaquine 98.51 94.92 83.33
vardenafil 0.00 0.00 0.00
milrinone 0.00 0.00 0.00
docetaxel 98.51 0.00 83.33

Supplementary Table 1: Percentage of nodes in the largest connected component of the corresponding
causal graph that are targeted by each drug. For A549 cells, only genes that are associated with SARS-
CoV-2 and aging are considered.

28



Frequency of appearance
in randomizations

drug Selected
# targets

in PPI
Gene labels

CMAP
signatures

Terminal
genes

PPI
network

sunitinib 1 260 1.0 0.25 0.997 1.0
bosutinib 1 203 0.998 0.24 0.993 1.0
axitinib 1 99 0.997 0.25 0.98 1.0
dasatinib 1 128 0.98 0.246 0.98 1.0
sorafenib 1 116 0.998 0.266 0.975 1.0
pazopanib 1 103 0.991 0.235 0.965 1.0
ruxolitinib 1 132 0.988 0.243 0.94 1.0
erlotinib 1 96 0.967 0.234 0.933 1.0
afatinib 1 38 0.94 0.226 0.863 1.0
vardenafil 1 13 0.348 0.247 0.071 1.0
milrinone 1 9 0.178 0.253 0.034 1.0
imatinib 1 69 0.947 0.238 0.921 0.971
vorinostat 1 32 0.79 0.261 0.8 0.898
belinostat 1 11 0.743 0.225 0.755 0.867
docetaxel 1 13 0.422 0.251 0.576 0.796
tofacitinib 1 43 0.481 0.243 0.58 0.709
formoterol 1 5 0.326 0.253 0.499 0.59
primaquine 1 5 0.344 0.24 0.463 0.555
palbociclib 0 13 0.924 0.741 0.863
mifepristone 0 10 0.634 0.544 0.747
vemurafenib 0 4 0.246 0.393
danazol 0 16 0.501 0.377
tacrolimus 0 13 0.418 0.29
haloperidol 0 42 0.286
bicalutamide 0 2 0.278 0.277
clozapine 0 39 0.195
risperidone 0 36 0.188
sulconazole 0 25 0.186
econazole 0 41 0.439 0.164
amitriptyline 0 33 0.138
clemastine 0 25 0.103
dipyridamole 0 19 0.353 0.103
phentolamine 0 17 0.095
iloperidone 0 24 0.092
methysergide 0 22 0.092
cyproheptadine 0 29 0.09
carteolol 0 2 0.083
lenalidomide 0 2 0.083
cabergoline 0 17 0.079
loxapine 0 29 0.079
digitoxin 0 9 0.076
terconazole 0 17 0.198 0.069
ketotifen 0 17 0.065
desipramine 0 22 0.054
rosuvastatin 0 2 0.054
perphenazine 0 16 0.053
naftifine 0 2 0.05
desoximetasone 0 1 0.048
flunisolide 0 1 0.048
halcinonide 0 1 0.048
irinotecan 0 7 0.048
phenelzine 0 10 0.048
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prednisone 0 2 0.048
buspirone 0 13 0.046
guanfacine 0 8 0.043
terazosin 0 7 0.039
sertraline 0 19 0.038
flumazenil 0 36 0.037
daunorubicin 0 1 0.036
bortezomib 0 15 0.241
caffeine 0 3 0.324
cisplatin 0 10 0.234
clofarabine 0 2 0.216
dobutamine 0 23 0.226
famotidine 0 3 0.24
gefitinib 0 72 0.232
glimepiride 0 4 0.18
iloprost 0 8 0.206
lapatinib 0 13 0.256
midodrine 0 1 0.254
mitoxantrone 0 18 0.23
montelukast 0 21 0.251
nilotinib 0 70 0.292
olaparib 0 4 0.261
panobinostat 0 11 0.247
sildenafil 0 20 0.233
sitagliptin 0 2 0.183
tamoxifen 0 51 0.278
tolbutamide 0 2 0.18
topotecan 0 5 0.277
treprostinil 0 6 0.206
warfarin 0 1 0.254
zafirlukast 0 13 0.238

Supplementary Table 2: Frequency of a drug’s presence in the list of final drugs after performing Steiner
tree analysis with randomization of gene labels, CMap signatures, terminal genes, and the PPI network
(1000 randomization runs). Only FDA-approved drugs with high affinity (at least one of the activity
constants Ki, Kd, IC50 or EC50 is below 10µM , the drug is dropped if no activity constant is available)
and high correlation (> 0.86) with the reverse SARS-CoV-2 signature are considered, amounting to
104 drugs. Green rows correspond to final drugs selected in the non-randomized analysis, while red
rows correspond to final drugs selected in the randomized analysis that had not been selected in the
non-randomized analysis.

30



Supplementary References

1. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19.
Cell (2020).

2. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.
Nature (2020).

31


