
Supplementary Information: Deep learning models for COVID-19

chest x-ray classification: Preventing shortcut learning using feature

disentanglement

Caleb Robinson1,+, Anusua Trivedi1,+, Marian Blazes3, Anthony Ortiz1, Jocelyn Desbiens2,
Sunil Gupta2, Rahul Dodhia1, Pavan K. Bhatraju5, W. Conrad Liles5, Aaron Lee3,*,

Jayashree Kalpathy-Cramer4, and Juan M. Lavista Ferres1,*

1Microsoft AI for Good
2Intelligent Retinal Imaging Systems

3University of Washington
4Massachusetts General Hospital

5Department of Medicine and Sepsis Center of Research Excellence, University of
Washington (SCORE-UW)

*Corresponding authors: leeay@uw.edu, jlavista@microsoft.com
+these authors contributed equally as first-authors to all academic and professional effects,

and their names can be legitimately swapped in their respective publication lists

1 Supplementary related work

Using CXRs for COVID-19. Since the COVID-19 outbreak, various research has tried COVID-
19 diagnosis with Convolutional Neural Networks (CNNs) on radiographic images. Many ap-
proaches to classify chest x-ray scans to discriminate COVID-19 positive cases have been shown.
Focusing on a transfer learning-based approach, (1; 2) compare various classification performances
obtained between several popular CNN architectures. A similar approach employed by (3) uses
Resnet-based architectures with a 5-fold cross-validation strategy. (4) propose a novel CNN ar-
chitecture for the COVID classification task. However, all this research relies on the open-source
covid-chestxray dataset (5), made up of COVID-19+ CXRs sourced from around the web. For
COVID-19 negative cases, data are typically sampled from other open CXR datasets. However, if
any bias is present within these datasets, the model could learn the underlying biases, rather than
learning COVID-19 related features. For instance, a model could potentially learn to discriminate
based on differences due to the scanning devices, or unique windowing parameters of each CXR, or
some other acquisition settings. This can result in the classification task yielding apparently opti-
mal classification performance. Domain adaptation techniques like feature disentanglement can be
useful to address this issue.

Domain Adaptation. Domain adaptation (DA) transfers the knowledge learned from one or
more source domains to a target domain. Discrepancy-based DA approaches (6; 7; 8; 9), adversary-
based approaches (10; 11; 12), and reconstruction-based approaches (13; 14; 15; 16) are designed
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to handle a single-source to single-target adaptation. Originating from the theoretical analysis
in (17; 18; 19), the multiple source domain adaptation (MSDA) approach assumes that training
data are collected from multiple sources and has been applied to several practical applications
(20; 21; 22) (17) introduces an approach with H∆H-divergence between the weighted combination
of source domains and a target domain.

Disentangled Representation Learning. Disentangled representations learning tries to model
the factors of knowledge variation. (23; 24; 12; 25) aims at learning an interpretable representation
using generative adversarial networks (GANs) (26; 27) and variational autoencoders (VAEs) (28;
29). (30) proposes to disentangle the feature representation into a domain-invariant content space
and a domain-specific attribute space in a fully supervised setting. (25) proposes an auxiliary
classifier GAN (AC-GAN) to achieve representation disentanglement. However, all these approaches
specialize in disentangling representation in a single domain. (12) introduces a unified feature
disentangler for domain-invariant representation from data across multiple domains. However,
they assume multiple source domain availability during training, which limits its application.
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