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SUMMARY
Accurate measures of contrast sensitivity are important for evaluating visual disease progression and for
navigation safety. Previousmeasures suggested that cortical contrast sensitivity was constant across widely
different luminance ranges experienced indoors and outdoors. Against this notion, here, we show that lumi-
nance range changes contrast sensitivity in both cat and human cortex, and the changes are different for dark
and light stimuli. As luminance range increases, contrast sensitivity increases more within cortical pathways
signaling lights than those signaling darks. Conversely, when the luminance range is constant, light-dark dif-
ferences in contrast sensitivity remain relatively constant even if background luminance changes. We show
that a Naka-Rushton function modified to include luminance range and light-dark polarity accurately repli-
cates both the statistics of light-dark features in natural scenes and the cortical responses to multiple
combinations of contrast and luminance. We conclude that differences in light-dark contrast increase with
luminance range and are largest in bright environments.
INTRODUCTION

Contrast sensitivity and visual acuity are two of the most impor-

tant measures of visual function in visual disease (Chung and

Legge, 2016). While there is strong evidence that visual acuity

changes with luminance (Riggs, 1965; Shlaer, 1937), cortical

contrast sensitivity is thought to remain constant across vastly

different luminance ranges that we experience indoors and out-

doors (Frazor and Geisler, 2006; Geisler et al., 2007; Mante et al.,

2005; Shapley and Enroth-Cugell, 1984). To some extent,

cortical responses to contrast need to remain constant across

luminance changes; otherwise, image features would change

from dark to light when light intensity increases. At the same

time, cortical contrast sensitivity needs to be continuously

adjusted if the brain wants to capture the most informative con-

trasts, which are different in dark and bright scenes. All of the

past studies of cortical contrast sensitivity used stimuli that

were several orders of magnitude dimmer than those experi-

enced outdoors (Albrecht and Hamilton, 1982; Boynton et al.,

1999; Tolhurst et al., 1983) while assuming that the measure-

ments generalized across the entire luminance range. However,

this assumption remains untested.

Another common assumption from previous studies is that

cortical contrast sensitivity is similar for dark and light stimuli

(i.e., stimuli darker or lighter than their background). Conse-

quently, most scientists continue to measure cortical contrast

sensitivity with grating stimuli that cannot distinguish dark

from light contrast. In fact, the most common neuronal
This is an open access article under the CC BY-N
contrast measurement, Michelson contrast, computes a dif-

ference between maximum and minimum luminance that is

always positive and disregards light-dark polarity. Similarly,

the most common image contrast measurement, root-mean-

square (RMS) contrast, computes a squared difference be-

tween pixel intensity and pixel intensity average that also

disregards light-dark polarity. Weber contrast computes a dif-

ference between stimulus and background luminance that can

distinguish between dark (negative Weber contrast) and light

contrast (positive Weber contrast). However, Weber contrast

is usually restricted to stimuli presented on homogeneous

backgrounds and has a limited application to the natural im-

ages that we perceive.

The disregard of light-dark polarity in cortical contrast mea-

surements is probably rooted in the belief that ON and OFF path-

ways segregate in the retina and thalamus but fully combine in

the visual cortex. However, this common belief is rapidly chang-

ing. There is strong evidence that ON and OFF pathways segre-

gate in the visual cortex (Jin et al., 2008; Kremkow et al., 2016;

Lee et al., 2016; McConnell and LeVay, 1984; Najafian et al.,

2019; Norton et al., 1985; Zahs and Stryker, 1988) and that the

cortex represents the OFF pathway better than the ON pathway

(Jansen et al., 2019; Jimenez et al., 2018; Jin et al., 2008; Wang

et al., 2015; Xing et al., 2015; Yeh et al., 2009). There is also ev-

idence that dark stimuli generate stronger, faster, and more

spatiotemporally precise cortical responses than light stimuli

(Jansen et al., 2019; Jin et al., 2011; Komban et al., 2014; Ma-

zade et al., 2019; Rekauzke et al., 2016) and that contrast
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Figure 1. Measuring the effect of luminance range on contrast sensitivity

(A) Natural image with low luminance range.

(B) The same image with higher luminance range.

(C) Cartoon illustrating how an expansion of luminance range affects the neural signaling of contrast range.

(D) Stimulus combinations of contrast polarity, background luminance, and luminance range. Each rectangle represents a sequence of stimuli with different

luminance contrast but the same polarity (red: light, blue: dark in all figures). The longer horizontal line on the top or the bottom of the rectangle illustrates the

background luminance. The longer side of the rectangle illustrates the luminance range.

(E) Stimulus temporal sequence.

(F) Naka-Rushton function fit to the cortical responses and itsmain parameters: the luminance that generates half-maximum response (L50), the exponent (n), and

the response generated by the maximum contrast (R100). L50b is L50 minus the background luminance. L50n is L50b divided by the luminance range. Lb is the

stimulus luminance minus the background luminance.
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sensitivity is higher within ON than OFF cortical pathways (Krem-

kow et al., 2014; Pons et al., 2017).

Previous studies demonstrated that ON-OFF differences in

cortical contrast sensitivity are more pronounced when using

the maximum or minimum luminance of the monitor as back-

ground (e.g., minimum for ON, maximum for OFF) than when us-

ing a common middle-gray (Kremkow et al., 2014; Pons et al.,

2017). However, these studies did not investigate the possible

reasons for this difference. Middle-gray backgrounds could

reduce ON-OFF contrast asymmetries either because they

keep the luminance background of ON and OFF measures con-

stant or because they reduce the monitor luminance range by

half (e.g., 200 versus 100 cd/m2 in a monitor with a maximum

luminance of 200 cd/m2). Here, we investigate what image pa-

rameters affect ON and OFF contrast sensitivity by measuring

the responses in both cat and human visual cortex to stimuli

that vary in luminance background, luminance range, luminance

contrast, and contrast polarity. Our results demonstrate that,
2 Cell Reports 34, 108692, February 2, 2021
against current belief (Frazor and Geisler, 2006; Geisler et al.,

2007; Mante et al., 2005; Shapley and Enroth-Cugell, 1984),

cortical contrast sensitivity changes with luminance range and

the changes are different for light and dark stimuli.

RESULTS

As we navigate through our visual environment, our brain is

continuously adjusting its visual responses to large variations

in luminance range. The luminance range, defined as the differ-

ence between maximum and minimum luminance in an image

sequence, is continuously changing from sunrise to sunset and

can be several orders of magnitude larger in outdoor than indoor

environments. As the luminance range increases (Figures 1A and

1B), the visual cortex shifts its maximum response toward

greater values of stimulus luminance to signal the entire contrast

range (Figure 1C). This mechanism could make contrast re-

sponses fully independent of global changes in luminance, as



Figure 2. Example ON and OFF cortical response functions

(A) Top: peri-stimulus time histograms of ON responses measured in a cortical site (luminance range: 300 cd/m2, background luminance: 0 cd/m2, 30 trials per

contrast). The first peak is the response to the stimulus onset (onset response) and the second the response to the stimulus turned off (rebound response). See

luminance values in Method details. Bottom: onset responses (circles) fitted with a Naka-Rushton function (red line, L50b: black dotted line). The bottom right

corner shows goodness of fit (R2), L50n, and non-linearity index (NL).

(B and C) Same for 600 and 1,000 cd/m2 luminance range.

(D–F) Same for OFF responses measured in different cortical site (background luminance: 1,000 cd/m2).

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.celrep.2021.108692.
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past studies assumed (Albrecht and Hamilton, 1982; Boynton

et al., 1999; Tolhurst et al., 1983). However, because past

studies used dim stimuli, the measurements may not apply to

the much brighter stimuli experienced outdoors. To investigate

contrast-luminance interactions in much brighter environments,

we used a monitor that could reach 1,000 cd/m2 of maximum

luminance and measured responses in the cat visual cortex to

multiple stimulus combinations of luminance contrast, contrast

polarity, background luminance, and luminance range (Fig-

ure 1D). The stimuli were large dark or light squares covering

the receptive fields from multiple groups of neighboring cortical

neurons that were simultaneously recorded (Figure 1E, see

Method details).

Effect of luminance range on contrast response
functions
For each specific combination of luminance background,

range, and light-dark polarity, we measured cortical responses

to multiple luminance contrasts. We then fit these responses

with a Naka-Rushton function (Figure 1F) and measured

the cortical contrast sensitivity as the absolute value of

the luminance generating half-maximum response (L50), the

L50 minus the background (L50b), or the L50b divided by

the luminance range (L50n). The L50 is closely related to the

contrast sensitivity at threshold and is less vulnerable to noise;
therefore, we used this measure as an estimate of contrast

sensitivity throughout the article. We used three different mea-

surements of L50 (L50, L50b, and L50n) to make the data anal-

ysis as transparent as possible and verify the replicability of

results across different measurements. The L50 describes the

absolute stimulus luminance, which is important to report

because cortical neurons respond to luminance temporal

changes (Mazade et al., 2019; Wang and Wang, 2016; Xing

et al., 2014). The L50b and L50n describe the luminance

contrast as the difference between stimulus and background

luminance (L50b), and the difference divided by the luminance

range (L50n). Throughout the article, we refer to cortical

contrast sensitivity as the contrast sensitivity measured (not

originating) in the visual cortex. We also report the response

to the maximum contrast (R100) and the exponent of the func-

tion (n). As in previous measurements with dimmer stimuli,

cortical responses increased with luminance contrast (Albrecht

and Hamilton, 1982). However, unlike previous studies, we

found that the shape of the contrast-response function was

strongly dependent on the luminance range and the light-dark

polarity of the stimulus (Figures 2A–2F). ON cortical responses

increased their saturation to light contrast as the luminance

range expanded from 300 cd/m2 (Figure 2A) to 600 cd/m2 (Fig-

ure 2B) and 1,000 cd/m2 (Figure 2C). Conversely, OFF cortical

responses decreased their saturation to dark contrast as the
Cell Reports 34, 108692, February 2, 2021 3
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luminance range expanded from 300 cd/m2 (Figure 2D) to

600 cd/m2 (Figure 2E) and 1,000 cd/m2 (Figure 2F).

To quantify the saturation non-linearity of the contrast-

response functions, we computed a non-linearity index (NL) that

estimates the difference between the measured function and an

ideal linear function. The NL equals 0 when the function is a

straight line with no contrast saturation, and equals 1 when the

function deviates the maximum possible from a straight line and

saturates at very low contrasts (Koch et al., 2016). The OFF func-

tion measured at the 1,000 cd/m2 range was very close to the

ideal linear function. For example, the OFF function illustrated in

Figure 2F had an NL of 0.07 (0 in ideal function) and an L50n of

0.5 (0.5 in ideal function). Unlike the OFF contrast-response func-

tion, the ON function measured at the 1,000 cd/m2 range was the

opposite of an ideal linear function. For example, the ON function

illustrated in Figure 2C had an NL index of 0.64 and an L50n of

0.15. As the luminance range increased, the ON contrast-

response function decreased its L50n and increased its NL

(L50n/NL: 0.38/0.19, 0.31/0.39, and 0.15/0.64 for 300, 600, and

1,000 cd/m2, respectively, in Figures 2A–2C). Conversely, the

OFF contrast-response function increased its L50n and

decreased its NL (L50n/NL: 0.31/0.38, 0.36/0.25, and 0.5/0.07

for 300, 600, and 1,000 cd/m2, respectively, in Figures 2D–2F).

We investigated the effects of luminance range on the cortical

contrast-response function by averaging the responses across

all luminance backgrounds for each luminance range. Increasing

the luminance range from 300 to 1,000 cd/m2 shifted the average

cortical ON and OFF L50b (Figures 3A and 3B, top) toward a

higher stimulus luminance, allowing the cortex to continue

signaling the entire contrast range. However, the shift in L50b

was more pronounced for OFF than ON cortical responses (Fig-

ure 3C, top) increasing the OFF-ON differences in L50b (Fig-

ure 3D, top). The same conclusion can be reached if we divide

the L50b values by the luminance range (Figures 3A–3D, center).

Because expanding the luminance range from 300 and 1,000 cd/

m2 increased the L50b less for ON than OFF cortical responses,

the ON L50n decreased (Figure 3A, center) while the OFF L50n

increased (Figure 3B, center), enhancing the OFF-ON L50n dif-

ferences (Figures 3C and 3D, center). The same conclusion

can be reached if we measure the absolute L50 luminance value

(Figures 3A–3D, bottom). Because expanding the luminance

range from 300 and 1,000 cd/m2 decreased the L50 average

across all backgrounds for ON responses (Figure 3A, bottom)

but increased it slightly or did not change it for OFF responses

(Figure 3B, bottom), the OFF-ON L50 difference became larger

(Figures 3C and 3D, bottom). Therefore, expanding the lumi-

nance range increased the OFF-ON differences in contrast

sensitivity (Figure 3D), mostly because the ON L50b did not in-

crease enough to compensate for the change in luminance

range. The ON L50b became closer to the lowest contrasts,

causing an increase in contrast sensitivity and high-contrast

saturation for light stimuli. Conversely, the OFF L50b followed

more tightly the changes in luminance range, becoming closer

to middle-contrast values, and causing a reduction in both

contrast sensitivity and high-contrast saturation to dark stimuli.

Increasing the luminance range from 300 and 1,000 cd/m2 also

enhanced the average OFF-ON differences in the linearity of the

contrast-response function. The average non-linearity increased
4 Cell Reports 34, 108692, February 2, 2021
in the ON function (Figure 3E, top) while decreasing in the OFF

function (Figure 3F, top), making the OFF-ON differences larger

(Figures 3G and 3H, top). Increasing the luminance range also

reduced the exponent of the ON and OFF contrast-response

functions (Figures 3E–3H, center), a finding that is consistent

with the exponent increase previously demonstrated at low light

(Pons et al., 2017). Expanding the luminance range also

increased themaximumON (Figure 3E, bottom) andOFF cortical

responses (Figure 3F, bottom). OFF responses were significantly

stronger than ON responses at the 300 cd/m2 but not at the 600–

1,000 cd/m2 luminance range, suggesting that brighter environ-

ments may make the strength of ON and OFF cortical responses

more balanced (Figures 3G and 3H, bottom). Based on these

measurements, we conclude that expanding the luminance

range affects all of the parameters of the contrast response func-

tion, including the contrast sensitivity, contrast saturation, expo-

nent, and maximum response while increasing the ON-OFF dif-

ferences in contrast sensitivity and saturation. Similar results

can be demonstrated if we do not average the responses across

backgrounds and restrict the background luminance to 0 cd/m2

for ON responses and 1,000 cd/m2 for OFF responses (Fig-

ure S1). Similar results can also be demonstrated if we measure

responses to stimuli turned off (rebound responses) instead of

responses to stimuli turned on (onset responses). Rebound re-

sponses are weaker and show less stimulus specificity than

onset responses (Komban et al., 2014; Mazade et al., 2019),

but, as demonstrated here, they are similarly affected by lumi-

nance range (Figures S2A–S2E).

Effect of background luminance on contrast response
functions
Unlike the luminance range, the background luminance did not

cause consistent changes in the contrast response function.

When the luminance range was kept constant at 300 cd/m2,

changes in background luminance also kept the ON and OFF

L50b relatively constant (Figures 4A and 4B, top). Most

100 cd/m2 increments in background luminance did not cause

significant changes in ON L50b (Figure 4A, top), and although

some 100 cd/m2 increments were associated with significant

changes in OFF L50b, the changes were small (�7% average)

and unrelated to luminance increments (R2 = 0.05, p = 0.563; Fig-

ure 4B, top). The OFF L50b was larger than the ON L50b for all

backgrounds (Figure 4C, top), consistent with our previous mea-

surements (Kremkow et al., 2014; Pons et al., 2017). The OFF-ON

differences in L50b were significantly higher at 400 cd/m2 than at

other luminance backgrounds (Figure 4D, top), probably by

chance, since the p values were relatively modest (p = 0.026

and 0.011 for 300–400 and 400–500 cd/m2 comparisons, n =

85, 91, and 71 pairs of ON-OFF functions measured at 300,

400, and 500 cd/m2 background luminance, respectively).

Consistent with this interpretation, the ON-OFF differences in ab-

solute L50 remained remarkably constant across changes in

background luminance (Figures 4C and 4D, bottom). Moreover,

the increase in both ON andOFF L50 (Figures 4A and 4B, bottom)

waswell predicted by linear functions with a slope of 1 (R2 = 0.977

for ON and 0.982 for OFF). Notice that the absolute L50 (without

background subtraction) is larger for ON than OFF responses

because the luminance at half-range is also larger (i.e., the middle



Figure 3. Effects of luminance range on cortical response functions

(A) Average L50b (top), L50n (center), and L50 (bottom) measured at 3 different luminance ranges from ON onset responses (n: 670, 685, and 110 cortical

recording sites listed from lowest to highest luminance range).

(B) Same for OFF onset responses (n: 1,113, 818, and 217 cortical recording sites listed from lowest to highest luminance range).

(C) ON and OFF values superimposed for comparison.

(D) Difference between OFF and ON values. *p < 0.05, p < 0.001; ns, not significant (bootstrap resampling, 50,000 repetitions).

(E–H) Same for NL (top), exponent (center), and response at maximum contrast (R100, bottom).

For (A)–(C), *p < 0.05, **p < 0.001; ns, not significant (2-sided Wilcoxon rank sum test).

See also Figures S1 and S2.

Cell Reports 34, 108692, February 2, 2021 5

Article
ll

OPEN ACCESS



Figure 4. Effects of background luminance on cortical response functions

(A) Average L50b (top) and L50 (bottom) from ON onset responses measured at different luminance backgrounds (luminance range: 300 cd/m2, n: 81, 90, 88, 85,

91, 71, 81, and 83 cortical recording sites measured at 8 different backgrounds listed from lowest to highest luminance).

(B) Same for OFF onset responses (n: 146, 138, 148, 149, 145, 135, 129, and 123 cortical recording sitesmeasured at 8 different backgrounds listed from lowest to

highest luminance).

(C) ON and OFF values superimposed for comparison.

(D) Difference between OFF and ON values.

(E–H) Same for NL (top), exponent (center), and response at maximum contrast (R100, bottom). LB: background luminance. Statistical tests and symbols as in

Figure 3.

See also Figure S2.
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value between a 600-cd/m2 target in a 300-cd/m2 background is

450 cd/m2, but the middle value between a 0-cd/m2 target in a

300-cd/m2 background is 150 cd/m2).

The background luminance also did not affect the non-linearity

of the ON and OFF luminance response functions. As in our pre-

vious measurements (Kremkow et al., 2014; Pons et al., 2017),
6 Cell Reports 34, 108692, February 2, 2021
the nonlinearity was consistently more pronounced for ON than

OFF functions at all backgrounds (Figures 4E–4G, top). Most of

the 100 cd/m2 luminance increments did not cause significant

changes in the ON or OFF NL (Figures 4E and 4F, top), and incre-

ments in background luminance were not significantly associ-

ated with changes in non-linearity (Figure 4H, top). Most
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100 cd/m2 increments in background luminance also did not

cause significant changes in the ON and OFF exponent (Figures

4E–4H, center). However, the exponent increased slightly when

the background luminance increased from 300 to 700 cd/m2

(Figure 4G, center), as if increasing the background luminance

in a constant luminance range was similar to reducing the

luminance range. Finally, the OFF maximum response was

consistently stronger than the ON maximum response at all of

the backgrounds measured at a 300-cd/m2 luminance range

(Figures 4E–4H, bottom, see Figures S2F–S2I for measurements

at a 600-cd/m2 luminance range). Therefore, we conclude that

the contrast response function is modulated by luminance range

more than background luminance.

ON and OFF functions in human visual cortex
To investigate the implications of these findings for human

vision, we performed electroencephalographic (EEG) recordings

from the human visual cortex. Our measurements in humans are

generally consistent with the most extensive measurements in

cats. In the example subject illustrated in Figure 5, doubling

the luminance range from 250 to 500 cd/m2 increased the

contrast sensitivity and saturation of the ON function and had

the opposite effect in the OFF function. In the ON function, the

L50n decreased from 0.34 to 0.21 and the NL increased from

0.26 to 0.34 (Figures 5A and 5B). In the OFF function, the L50n

increased from 0.28 to 0.34 and the NL decreased from 0.25 to

0.18 (Figures 5C and 5D). Similar results could be demonstrated

in two other subjects (Figure S3). As in the cat visual cortex, ex-

panding the luminance range significantly increased theON-OFF

differences in L50b (Figure 5E) and L50n (Figure 5F). The human

pupil size was not fixed, but at the time of the cortical measure-

ments (Figure 5G and 5H, arrows), its size variation was small

and not correlated with stimulus luminance (r < 0.05 for each

subject, see Method details). The variations in pupil size across

subjects were larger and allowed us to demonstrate a strong log-

arithmic relation between the range of retinal luminance (in tro-

lands) and the OFF/ON L50n ratio (Figure 5F; R2 = 0.93, slope =

0.6, 3 subjects, 2 luminance ranges per subject).

ON and OFF density functions in natural scenes
To further investigate the general implications of our results for

luminance vision, we measured the cumulative density functions

of light (ON) and dark (OFF) stimuli in natural scenes. We hypoth-

esize that if the cortex processes visual information efficiently,

then the ON and OFF cortical functions should match the ON

and OFF cumulative density functions of light and dark contrast

in nature. To test this hypothesis, we measured the ON and OFF

density functions from 4,167 monochrome calibrated images

(van Hateren and van der Schaaf, 1998). We calculated the cu-

mulative density functions as the accumulated number of pixels

with increasingly larger values of dark or light contrast relative to

the median image luminance (i.e., equivalent to background

luminance in cortical measures). If all contrast values are equally

represented in a natural image, then the density function should

be linear as the OFF cortical function. Conversely, if low contrast

values dominate, then the density function should saturate as the

ON cortical function. To facilitate the comparison, we normalized

the cortical functions by the maximum response (Figure 6A), the
density functions by the total number of pixels (Figure 6B, see

Method details), and the x axis of both functions by the lumi-

nance range. Since each image has �1.5 million pixels with

different luminance values, we defined the image luminance

range as the standard deviation of the luminance distribution

instead of the difference between two pixels with maximum

and minimum luminance (see Method details). We then

compared image sets with luminance standard deviations be-

tween 100 and 200, 200 and 400, and 400 and 800 cd/m2.

Increasing the luminance range made the OFF L50n larger

than the ON L50n in the image density function (Figure 6B),

closely replicating the findings in the visual cortex (Figure 6A).

Moreover, as in the visual cortex, the OFF L50n was larger

than the ON L50n in most images (Figure 6C). A luminance range

expansion from 0 to 200 cd/m2 to 400–800 cd/m2 increased

the OFF L50b more than the ON L50b (Figures 6D and 6E, top)

making the OFF-ON L50b differences larger (Figures 6F and

6G, top). It decreased the ON L50n and slightly increased the

OFF L50n (Figures 6D and 6E, center) also making the OFF-ON

L50n differences larger (Figures 6F and 6G, center). It decreased

the non-linearity of the OFF functions and increased it in the ON

functions (Figures 6D–E, bottom), also enhancing the ON-OFF

differences in non-linearity (Figures 6F and 6G, bottom). There-

fore, expanding the luminance range caused a significant

increase in the ON/OFF L50n ratio of natural images, which

resembled the increase demonstrated in the cat and human vi-

sual cortex (Figure 6H). The adaptation slope of this increase

(log increase in OFF/ON L50n per log increase in luminance

range) was similar in natural images (0.28) and cat cortex (0.29)

but higher in human cortex (0.73) for reasons that remain unclear

(e.g., species differences, small number of human subjects

tested, sampling limitations of electroencephalographic record-

ings). Based on these results, we conclude that changes in lumi-

nance range affect similar ON-OFF functions in natural images

and visual cortex.

Simulating human luminance vision
Our measurements of ON and OFF cortical functions could help

to simulate more accurately human luminance vision and pre-

vent bright digital images from appearing too dark (Figure 7A).

To pursue this goal, we developed an ONOFF algorithm that

uses separate ON and OFF cortical functions to process images.

The first stage of the ONOFF algorithm converts the luminance

range of any image into a common neuronal range that spans

from 0 to 1 (maximum firing rate). The second stage splits each

image into an ON and OFF version by subtracting the ON and

OFF backgrounds and passing the ON image through a function

with higher contrast sensitivity than the OFF image. Finally, the

third stage combines the ON andOFF images to simulate the im-

age that we see (see Method details).

We compared the performance of the ONOFF algorithm with

two other algorithms that are commonly used to enhance

contrast in image processing analysis: contrast-limited adaptive

histogram-equalization (CLAHE) and MATLAB Image adjust-

ment (IMADJUST). The ONOFF algorithm simulated human lumi-

nance vision better than the two other algorithms in images with

a bright sky, which appeared too dark with IMADJUST and had

unnatural dark regions around the clouds with CLAHE (Figures
Cell Reports 34, 108692, February 2, 2021 7



Figure 5. Luminance response functions in human visual cortex

(A) Top: ON cortical responses to different stimulus contrasts measured in a human subject (luminance range: 250 cd/m2, 30 trials per contrast for each

background luminance, light-dark polarity, and luminance range). Bottom: cortical responses (circles) fit with a Naka-Rushton function (line). Top left corner

shows goodness of fit (R2), L50n, and NL.

(B) Same for luminance range of 500 cd/m2.

(C and D) Same for OFF responses.

(E) OFF-ON differences in L50b measured in the same subject (white) and subject average (gray). *p < 0.05 (bootstrap resampling, 50,000 repetitions).

(F) Logarithmic relation between luminance range and OFF/ON L50n ratio (bootstrap resampling, 50,000 repetitions).

(G) Pupil response of same subject (top) measured at 250 (dotted line) and 500 cd/m2 luminance ranges (continuous line) at the peak (arrow) of the ON cortical

response (bottom).

(H) Same for OFF responses.

See also Figure S3.
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Figure 6. Dark and light contrast in natural scenes

(A) Average luminance response functions for ON (red) and OFF (blue) cortical responses measured at 300 cd/m2 (dashed lines, n: 670 recording sites for ON,

1,113 recording sites for OFF) and 1,000 cd/m2 luminance ranges (continuous lines, n: 110 recording sites for ON, 217 recording sites for OFF).

(legend continued on next page)
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7A andS4). To quantify this comparison, we processed the 4,167

monochrome calibrated images (van Hateren and van der

Schaaf, 1998) with the 3 algorithms. Then, we calculated the

contrast gain achieved by each algorithm across different spatial

frequencies. The contrast gain was consistently higher for the

ONOFF than the IMADJUST algorithm across all spatial fre-

quencies. CLAHE outperformed the other algorithms at the high-

est spatial frequencies but did very poorly at low spatial

frequencies. At low spatial frequencies (i.e., 0.04–0.4 cycles

per degree), the ONOFF algorithm consistently outperformed

the other two algorithms that we tested (Figure 7B). Low spatial

frequencies dominate the power spectrum of natural scenes

(Burton and Moorhead, 1987; Field, 1987); therefore, they need

to be accurately reproduced to avoid contrast distortions in large

surfaces such as sky patches (e.g., CLAHE in Figure 7A). The

more balanced performance of the ONOFF algorithm across

high, middle, and low spatial frequencies highlights the benefit

of processing images separately with ON andOFF contrast func-

tions. In addition, if the ONOFF algorithm incorporates an adap-

tation factor based on luminance range (ONOFF adaptive), it can

reproduce more closely the mean luminance of the original

scene than the other algorithms (Figure 7C; Method details).

ON-OFF model of visual contrast sensitivity
Our measurements could also help develop better models of vi-

sual contrast sensitivity. To search for the model that best pre-

dicted the L50 measurements, we fitted the cortical data with a

weighted sum of three terms: luminance background, luminance

range, and the interaction between light-dark polarity and lumi-

nance range. This analysis revealed a model that explains

78%–90% of L50 variance for all stimulus combinations tested,

regardless of whether the stimulus was turned on (Figure 7D, left)

or off (Figure 7D, right). In the model, the L50 for the stimulus

onset equals the background luminance plus a fraction of the

luminance range that is lower for light than dark stimuli (0.29

versus 0.45). Therefore, the L50b equals 0.29 * Lrange (lights)

and 0.45 * Drange (darks) and the L50n equals 0.29 and 0.45

(notice that the L50-background difference is negative for darks

because the background value is larger than the L50).

The analysis of the image density functions revealed a very

similar model that explains 80%–83% of the L50 variance (Fig-

ure 7E, left). In this model, the L50 equals again the background

luminance plus a fraction of the luminance range that is lower for

light than dark stimuli. The analysis of natural images also re-

vealed amodel for the exponent of theOFF function that explains

90% of the variance (Figure 7E, right). This model could not be
(B) Average ON andOFF image density functions of natural images with different lu

see sample sizes in D and E).

(C) ON L50n from image density functions plotted against OFF L50n. Each dot r

diagonal shows the unity line.

(D) Average L50b (top), L50n (center), and nonlinearity (bottom) for ON image de

617, 429, and 643 images listed from lowest to highest luminance range).

(E) Same for OFF image density functions (n: 2,227, 534, and 253 images listed

(F) Superimposed ON and OFF values.

(G) Difference between OFF and ON values.

(H) Normalized bootstrap histograms of OFF/ON L50n log ratios from natural ima

range: ratio of luminance range. Adaptation slope: logarithm of OFF/ON L50n ratio

repetitions). Statistical tests and symbols as in Figure 3.
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replicated with the cortical data because the exponent variation

was very limited (1.5–2.5). However, in the imagemodel, the OFF

exponent increases when the luminance range decreases, which

is exactly what we found in cortical responses (Pons et al., 2017).

To further investigate the image factors that affect contrast

sensitivity, we fit the image data with another linear model that

included two shape descriptors of the luminance distribution—

kurtosis and skewness. The kurtosis is a measure of distribution

sharpness, which is zero for Gaussian distributions and positive

for sharper distributions than a Gaussian. The skewness is a

measure of distribution symmetry, which is zero when the distri-

bution is symmetric, negative when it decays slower toward the

darkest values, and positive when it decays slower toward the

brighter values. The model from this third analysis explains

54%–78% of the L50n variance across all images (Figure 7F)

and is very similar to the other two models. As in the previous

models, the L50 equals the background plus a fraction of the

luminance range. Because the skewness and kurtosis are

different for ON and OFF luminance distributions (Figure 7F),

the fraction is also different.

These three analyses indicate that contrast sensitivity is

closely associated with the background luminance, luminance

range, and the shape of the image luminance distribution. How-

ever, they do not capture the effect of the luminance range on the

different parameters of the contrast response function that we

measured. To develop a model that replicates our experimental

results more closely, we fit a Naka-Rushton equation to the

average contrast response functions measured in the cat visual

cortex at the 300 and 1,000 cd/m2 luminance ranges. We then

extracted the parameter values from these fits (L50n, exponent,

and gain) and used them to define a contrast metric that we call

ONOFF contrast. The parameters of ONOFF contrast are

different for dark and light stimuli (DVC and LVC in Figure 7G)

and vary with luminance range (see Method details). ONOFF

contrast falls within the same theoretical space as Weber

contrast and its two most important variants, W and logW

(Kingdom and Moulden, 1991; Whittle, 1986). However, unlike

all of the previous contrast metrics, ONOFF contrast changes

with luminance range and reaches its maximum value in bright

environments.

DISCUSSION

Luminance contrast is traditionally defined as a normalized lumi-

nance difference between two adjacent regions of an image. The

difference is calculated between the luminance of a stimulus and
minance ranges (dashed lines: 0–200 cd/m2; continuous lines: 400–800 cd/m2;

epresents an image (n: 3,061 images with median luminance >50 cd/m2). The

nsity functions measured in natural images with different luminance ranges (n:

from lowest to highest luminance range).

ges (left), cat visual cortex (center), and human visual cortex (right). High/low

divided by the logarithm of the high/low range (bootstrap resampling, n: 50,000



Figure 7. ONOFF image processing and visual contrast

(A) The left panels show a natural image (van Hateren and van der Schaaf, 1998) normalized by itsmaximum (top) and a histogram of image pixel intensity (bottom,

1,024 3 1,531 pixels). The other panels show the same for images processed with IMADJUST, CLAHE, and ON-OFF algorithms.

(B) Contrast gain from IMADJUST (black), CLAHE (green), and ON-OFF (blue, n: 4,167 images).

(C) Correlations between the mean luminance of the original image and the pixel intensity of the processed image (n: 4,167 images).

(D) ON and OFF L50 (x axis) can be accurately predicted (y axis) with linear regression models (equations at the top) for both onset responses (left) and rebound

responses (right). Notice that for each combination of background and range, the model returns a single value, but the measured L50 is more variable (n: 331

(legend continued on next page)
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its background in Weber contrast, the maximum and minimum

luminance inMichelson contrast, or the luminance of each image

pixel and the pixel mean in RMS contrast. These traditional mea-

surements assume that the cortical processing of luminance

contrast is independent of the dark-light polarity of the stimulus

and the amount of light in the scene. Against this current belief,

here, we show that cortical contrast sensitivity is higher for light

than dark stimuli and the difference increases with light intensity.

Based on these results, we introduce a measurement of visual

contrast (ONOFF contrast) that closely reproduces our cortical

measurements and reaches its highest value in bright scenes.

ONOFF contrast changes with luminance range
The practical implications of our results can be better illustrated

with an example of a contrast measurement outdoors. A subway

sign in New York City has white letters on a black background

with a letter/background luminance ratio that can vary from

4/0.3 cd/m2 in the evening to 2,500/180 cd/m2 in the middle of

the day (Pons et al., 2017). The Weber and Michelson contrasts

of this subway sign is always the same regardless the time of the

day (�90%). In comparison, the ONOFF contrast increases from

the evening (�72%) to the middle of the day (�100%). If contrast

was independent of image brightness as is currently thought,

contrast adaptation and the shape of the contrast response

function should be the same in monitors with very different lumi-

nance ranges. However, our results demonstrate that this is not

the case. Increasing the luminance range from 300 to 1,000 cd/

m2 causes pronounced changes in multiple parameters of the

contrast response function, including the contrast sensitivity,

contrast saturation, linearity, exponent, andmaximum response.

Moreover, these changes are different for dark stimuli than for

light stimuli, and the differences increase by up to three times

when the luminance range expands. Accurate measurements

of luminance contrast play a major role in a wide variety of fields,

including vision research, clinical vision, medical imaging, image

processing analysis, and architectural design (especially when

designing spaces for the elderly and visually impaired). There-

fore, the ONOFF contrast measurements that we introduce

could have broad practical implications.

ONOFF contrast predicts that strong sunlight should make it

difficult to discriminate large luminance differences between

the brightest values of the scene but easier to discriminate subtle

differences between the darkest values. For example, two bright

reflections in a shiny car should appear equally bright even if they

have different luminance because they fall in the saturating

portion of the ON luminance response function and generate

cortical responses with similar strength. Conversely, strong sun-

light shouldmake it easier to discriminate a dark fly standing on a
recording sites for ON onset responses, 520 recording sites for OFF onset respon

responses).

(E) Left: ON andOFF L50 of the image density functions (x axis) and prediction (y ax

images with mean luminance >50 cd/m2). Right: same as left but for the exponent

accurately fitted luminance response functions, R2 > 0.9).

(F) Correlations of the image L50n with the skewness (left) and kurtosis (center) of

n: 3,247 ON images and 3,247 OFF images with mean luminance >50 cd/m2).

(G) Definition of ONOFF contrast. DVC, dark visual contrast; LVC, light visual c

luminance.

See also Figure S4.
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dark table because slightly different dark stimuli fall within a

linear contrast response function and generate cortical re-

sponses with different strengths. Our results also indicate that

changes in luminance range affect cortical contrast sensitivity

more than changes in background luminance. Previous studies

demonstrated that increasing the background luminance from

black to middle-gray in a monitor reduced cortical contrast

sensitivity to light stimuli (Kremkow et al., 2014; Pons et al.,

2017). However, these studies increased background luminance

at the expense of reducing luminance range. Here, we show that

when the luminance range is constant, changing the background

luminance from black to middle-gray does not cause pro-

nounced changes in cortical contrast sensitivity.

It is important to emphasize that our definition of luminance

range includes both space and time because it is measured as

the maximum minus the minimum luminance in a temporal

sequence of images. In a static image, the luminance range

equals the spatial luminance range if the eye movements are

contained within the image. However, blinks often interrupt

fixation and can make the luminance range expand (from a lumi-

nance close to zero when the eyes are closed to a high lumi-

nance when the eyes open in front of a bright sky). Whereas

traditional measurements of contrast are frequently restricted

to luminance differences across visual space, temporal contrast

is equally important. Contrast measurements depend heavily on

the temporal history of the stimulus. A high-contrast stimulus

presented at a given time reduces the cortical responses (and

visibility) of a stimulus with lower contrast presented immediately

after (Albrecht et al., 1984; Gardner et al., 2005; Ohzawa et al.,

1982). This continuous adjustment of contrast sensitivity has a

time course that can span several seconds and is remarkably

similar between humans and cats (Albrecht et al., 1984). Consis-

tently, our experiments show that expanding the luminance

range across time also causes a similar increase in the dark-light

differences of contrast sensitivity in both species.

ONOFF contrast changes with the light-dark polarity of
the stimulus
Traditional measurements of luminance contrast frequently

disregard the light-dark polarity of the stimulus. For example,

the field of vision research has been using sinusoidal grating pat-

terns to measure neuronal contrast sensitivity for many decades

(Albrecht and Hamilton, 1982; Chung and Legge, 2016; Mante

et al., 2005; Shapley and Enroth-Cugell, 1984). However, most

grating measurements cannot separate responses to dark or

light contrast because the grating sinewaves have equal dark

and light deviations from the mean. RMS contrast also disre-

gards differences in dark-light polarity because it squares the
ses, 275 recording sites for ON rebound responses, and 321 for OFF rebound

is) with a linearmodel (equations at the top, n: 3,247 ON images and 3,247OFF

of the ON and OFF functions (n: 3,112 ON images and 3,175 OFF images with

the luminance distributions, and model predictions (right, equations at the top,

ontrast; Range, luminance range; Sb, stimulus luminance minus background
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difference between each pixel luminance and the luminance

mean of an image. Whereas traditional measurements assume

that cortical responses to light and dark contrast are similar

and can be averaged, our results demonstrate that this assump-

tion leads to inaccurate measurements, especially outdoors. We

notice that the separate processing of dark and light contrast is

one of the best evolutionarily preserved neuronal operations in

vision. Dark and light contrast are separately measured by ON

and OFF pathways already at the very first synapse made by

the photoreceptors in the visual pathway. Moreover, the light-

dark separation at the first synapse is present in all species

that can form retinal images, from flies to humans (Kremkow

and Alonso, 2018).

ON-OFF contrast asymmetries are likely to be inherited in part

from the retina (Cooper, 2016; Kremkow et al., 2014) and may

depend on parameters that we did not investigate such as spatial

frequency (Jansen et al., 2019; Kremkow et al., 2014; Onat et al.,

2011), visual eccentricity, and brain state (Azimi et al., 2020).

There is increasingly stronger evidence that ON and OFF path-

ways remain cortically segregated (Kremkow and Alonso,

2018) and operate relatively independently. For example, the

inactivation of the ON pathway in both humans and non-human

primates affects vision for light stimuli on dark backgrounds,

leading to night blindness, but does not affect vision for dark

stimuli on bright backgrounds (Dryja et al., 2005; Schiller et al.,

1986). Moreover, most visual cortical functions such as orienta-

tion and direction selectivity are preserved when the ON

pathway is inactivated in primates, cats, or mice (Sarnaik et al.,

2014; Schiller, 1982; Sherk and Horton, 1984). Cortical re-

sponses are tuned to dark and light stimuli with different spatio-

temporal properties (Komban et al., 2014; Onat et al., 2011) and

show a preference for dark stimuli that are fast and light stimuli

that are slow (Mazade et al., 2019). Similarly, humans are more

sensitive to slow stimuli that are light (Luo-Li et al., 2018), and

fly navigation relies on light stimuli moving slower than dark stim-

uli (Leonhardt et al., 2016).

A large body of psychophysical studies have also demon-

strated that dark and light stimuli contribute differently to human

vision. Dark targets are more salient than light targets when pre-

sented under low light (Blackwell, 1946; Pons et al., 2017; Short,

1966) or superimposed in noise (Komban et al., 2011, 2014; Pons

et al., 2017). Humans show a remarkably pronounced preference

for dark contrast instead of light contrast when judging lumi-

nance variance across texture surfaces (Chubb et al., 1994,

2004; Nam and Chubb, 2000). Moreover, humans read black let-

ters on white backgrounds faster than white letters on black

backgrounds (Buchner and Baumgartner, 2007), have different

contrast thresholds for dark than light targets (Kingdom and

Moulden, 1991; Whittle, 1986), and use different scaling to clas-

sify levels of darkness than lightness (Whittle, 1992). Eye doctors

have also been measuring visual function with dark or light stim-

uli instead of gratings for more than a century. The eye chart to

measure visual acuity uses dark contrast (i.e., black letters on

white background) and the perimetry test to measure visual

sensitivity uses light contrast (i.e., bright spots on white back-

ground). Even more recent tests to measure contrast sensitivity

(Pelli et al., 1988) or crowding (Levi, 2008) use letters instead of

gratings. The use of dark or light contrast in the eye clinic is
very consistent with the dark-light asymmetries demonstrated

in visual cortex. Since cortical spatial resolution is higher for

dark than light stimuli (Kremkow et al., 2014, 2016; Mazade

et al., 2019; Pons et al., 2017), measures of spatial resolution

(or contrast sensitivity loss at high spatial resolution) should be

best assessed with dark contrast. Conversely, since cortical

contrast sensitivity is higher for light than dark stimuli (Kremkow

et al., 2014; Pons et al., 2017), loss of contrast sensitivity should

be best assessed with light contrast.

Efficient cortical sampling of light and dark contrast in
natural scenes
Our results also demonstrate that light-dark differences in

cortical contrast sensitivity are closely matched to light-dark

contrast differences in nature, including their dependence on

luminance range. Previous studies demonstrated that neurons

efficiently sample image contrast in multiple species, ranging

from invertebrates such as the blowfly (Laughlin, 1981) to mam-

mals such as cats and macaques (Tadmor and Tolhurst, 2000).

However, these previous studies measured contrast with grat-

ings and did not separate dark from light contrast. Our results

extend this previouswork by demonstrating that neurons sample

efficiently the light-dark contrast differences found in nature

(Cooper and Norcia, 2015; Ratliff et al., 2010).

Our results also explain why previous studies did not find a

relation between contrast and luminance in neuronal responses

(Mante et al., 2005). If the variation in luminance range is limited

by a dim monitor, then changes in mean luminance will have a

negligible effect on contrast sensitivity. Similarly, contrast and

luminance can be independent in static natural scenes and

across images with similar luminance range (Frazor and Geisler,

2006). Luminance range changes by several orders ofmagnitude

in nature, from sunrise to sunset. As shown here, these slow tem-

poral variations adjust the contrast response function of cortical

neurons to capture the most informative contrasts at each lumi-

nance level. There is a limited advantage in knowing that two

bright specular reflections have different luminance in a brightly

lit sea. However, a subtle luminance change at night may signal

the movement of an approaching predator. Therefore, the visual

cortex needs to signal both contrast and luminance changes (Dai

and Wang, 2012; Mazade et al., 2019; Smith et al., 2015; Wang

et al., 2015; Xing et al., 2015), and, as shown here, these two

cortical signals are continuously interacting to efficiently sample

our visual world.
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D. (2016). Temporal Asymmetry in Dark-Bright Processing Initiates Propa-

gating Activity across Primary Visual Cortex. J. Neurosci. 36, 1902–1913.

Riggs, L.A. (1965). Visual acuity. In Vision and Visual Perception, C.H. Graham,

ed. (John Wiley & Sons).

Sarnaik, R., Chen, H., Liu, X., and Cang, J. (2014). Genetic disruption of the On

visual pathway affects cortical orientation selectivity and contrast sensitivity in

mice. J. Neurophysiol. 111, 2276–2286.

Schiller, P.H. (1982). Central connections of the retinal ON and OFF pathways.

Nature 297, 580–583.
Schiller, P.H., Sandell, J.H., andMaunsell, J.H. (1986). Functions of theON and

OFF channels of the visual system. Nature 322, 824–825.

Shapley, R.M., and Enroth-Cugell, C. (1984). Visual adaptation and retinal gain

controls. In Retinal Research, N.N. Osborne and G.J. Chader, eds. (Perga-

mon), pp. 263–346.

Sherk, H., and Horton, J.C. (1984). Receptive field properties in the cat’s area

17 in the absence of on-center geniculate input. J. Neurosci. 4, 381–393.

Shlaer, S. (1937). The Relation between Visual Acuity and Illumination. J. Gen.

Physiol. 21, 165–188.

Short, A.D. (1966). Decremental and incremental visual thresholds. J. Physiol.

185, 646–654.

Smith, G.B., Whitney, D.E., and Fitzpatrick, D. (2015). Modular Representation

of Luminance Polarity in the Superficial Layers of Primary Visual Cortex.

Neuron 88, 805–818.

Tadmor, Y., and Tolhurst, D.J. (2000). Calculating the contrasts that retinal

ganglion cells and LGN neurones encounter in natural scenes. Vision Res.

40, 3145–3157.

Tolhurst, D.J., Movshon, J.A., and Dean, A.F. (1983). The statistical reliability of

signals in single neurons in cat and monkey visual cortex. Vision Res. 23,

775–785.

van Hateren, J.H., and van der Schaaf, A. (1998). Independent component fil-

ters of natural images compared with simple cells in primary visual cortex.

Proc. Biol. Sci. 265, 359–366.

Wang, Y., andWang, Y. (2016). Neurons in primary visual cortex represent dis-

tribution of luminance. Physiol. Rep. 4, e12966.

Wang, Y., Jin, J., Kremkow, J., Lashgari, R., Komban, S.J., and Alonso, J.M.

(2015). Columnar organization of spatial phase in visual cortex. Nat. Neurosci.

18, 97–103.

Whittle, P. (1986). Increments and decrements: luminance discrimination.

Vision Res. 26, 1677–1691.

Whittle, P. (1992). Brightness, discriminability and the ‘‘crispening effect’’.

Vision Res. 32, 1493–1507.

Xing, D., Yeh, C.I., Gordon, J., and Shapley, R.M. (2014). Cortical brightness

adaptation when darkness and brightness produce different dynamical states

in the visual cortex. Proc. Natl. Acad. Sci. USA 111, 1210–1215.

Xing, D., Ouni, A., Chen, S., Sahmoud, H., Gordon, J., and Shapley, R. (2015).

Brightness-color interactions in human early visual cortex. J. Neurosci. 35,

2226–2232.

Yeh, C.I., Xing, D., and Shapley, R.M. (2009). ‘‘Black’’ responses dominatema-

caque primary visual cortex v1. J. Neurosci. 29, 11753–11760.

Zahs, K.R., and Stryker, M.P. (1988). Segregation of ON and OFF afferents to

ferret visual cortex. J. Neurophysiol. 59, 1410–1429.
Cell Reports 34, 108692, February 2, 2021 15

http://refhub.elsevier.com/S2211-1247(21)00005-X/sref34
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref34
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref34
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref35
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref35
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref35
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref36
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref36
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref36
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref37
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref37
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref38
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref38
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref38
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref39
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref39
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref40
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref40
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref41
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref41
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref42
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref42
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref42
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref42
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref43
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref43
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref44
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref44
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref44
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref45
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref45
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref45
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref46
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref46
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref46
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref47
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref47
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref48
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref48
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref48
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref49
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref49
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref50
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref50
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref51
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref51
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref51
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref52
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref52
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref53
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref53
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref54
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref54
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref55
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref55
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref55
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref56
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref56
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref56
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref57
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref57
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref57
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref58
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref58
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref58
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref59
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref59
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref60
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref60
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref60
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref61
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref61
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref62
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref62
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref62
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref62
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref63
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref63
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref63
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref64
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref64
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref64
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref65
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref65
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref65
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref65
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref66
http://refhub.elsevier.com/S2211-1247(21)00005-X/sref66


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains
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Software and algorithms

MATLAB MathWorks R2016a

Psychtoolbox-3 Brainard, 1997 v3.0.12

Other

Custom 32-channel multielectrode arrays NeuroNexus N/A

OmniPlex Neural Recording Data Acquisition System Plexon N/A
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Lead contact
Further information can be requested to the Lead contact, Jose Manuel Alonso (jalonso@sunyopt.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All datasets, custom scripts and functions used in this manuscript are available from the Lead contact (jalonso@sunyopt.edu) upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal model
Adult male cats (Felis catus, 4-7 kg, age: 9 months to 1.5 years old, n = 6) were housed in groups and allowed periods of free roaming

within a private room. They were fed Purina cat food, provided with enrichment items, and had daily interaction with the personnel at

the animal facility. All animal experiments and procedures were performed following the guidelines of the United States Department

of Agriculture (USDA) and were approved by the Institutional Animal Care and Use Committee (IACUC) at the State University if New

York, College of Optometry.

Human subjects
We recruited three human subjects tomeasure contrast response functions in human cortex: a 25 years oldmale, a 27 years oldmale,

and a 28 years old female. All experiments in human subjects were approved by the institutional review board at the State University

of New York College of Optometry and followed the principles outlined in the Declaration of Helsinki.

METHOD DETAILS

Multielectrode recordings from cortical spiking activity
Surgical procedures were similar to those described in previous studies (Kremkow et al., 2016; Mazade et al., 2019). Briefly, the an-

imals received intramuscular injections of acepromazine (0.2 mg per kg) and ketamine (10 mg per kg). Then, an intravenous catheter

was inserted in each limb to administer continuous infusions of propofol (3-6 mg per kg per hour), sufentanil (10-20 ng per kg per

hour), vecuronium bromide (0.2 mg per kg per hour), and saline (1-3 mL per hour). The nictitating membranes were retracted with

2% neosynephrine, the pupils dilated with 1% atropine sulfate, and the eyes fitted with contact lenses to protect the corneas

and focus visual stimuli on the retina. The contact lenses had an artificial pupil of 3 mm. For consistency, the paper gives all the lumi-

nance values in cd/m2 except in Figure 5F. The cat retinal illuminance (in trolands) can be calculated as the luminance of the stimulus

(in cd/m2) times the area of the pupil (radius2 * pi = �7.1 mm2).

A small craniotomywas performed over the primary visual cortex to give access to electrophysiological recordings. Throughout the

experiment, we continuously recorded and monitored multiple vital signs including heart rate, blood pressure, electrocardiogram,

temperature, pulse oximetry, expired CO2 and electroencephalogram (EEG) activity. Cortical recordings were performed using

32-channel linearmultielectrode arrays (0.1mm inter-electrode distance, Neuronexus) with one, two or four shanks (200-400microns
e1 Cell Reports 34, 108692, February 2, 2021
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of inter-shank distance). The multielectrode arrays were introduced nearly parallel to the cortical surface and centered in layer 4,

around 2 mm lateral to the brain midline and 4-5 mm posterior to stereotaxic zero. At these cortical locations, most receptive fields

were located between the horizontal meridian and the lower visual field within 10 degrees of eccentricity. The electrophysiological

spiking activity was amplified, sampled at 40 kHz, and filtered between 250 Hz and 8 kHz.

We presented visual stimuli on a high-dynamic-range monitor (TRU-Vu, SRMH-15-AR series, maximum luminance: 1,400 cd/m2)

placed at 0.57m from the animal. Themonitor was gammacalibrated and the stimulus luminance rangewas restricted to 1,000 cd/m2

(the monitor output luminance deviated from a standard gamma function for luminance values larger than 1000 cd/m2). All stimuli

were generated with MATLAB Psychtoolbox. We used sparse noise stimuli to map the aggregate receptive fields from each group

of neighboring cortical neurons sampled with each recording site of the multielectrode array. The sparse noise was made of dark

(�0 cd/m2) and light (1000 cd/m2) squares (2.8 deg/side) presented for 33ms in a pseudorandom sequence. The ON andOFF recep-

tive fields were calculated by spike-trigger averaging the light and dark stimuli. We measured luminance response functions with

large dark and light squares (8 deg/side) of different luminance that covered the receptive fields from all simultaneously recorded

neurons. The squares were presented in sequence, each one lasting 133 ms and separated from the next one by a blank period

without stimuli that also lasted 133 ms. Each sequence started with a uniform background lasting 10 s with no stimuli (adapting

background). The same background was used for the entire duration of the stimulus sequence. The stimuli within each sequence

had 15-30 randomized luminance values with one of two possible polarities (dark or light), one of three different luminance ranges

(300, 600 or 1000 cd/m2), and one of 10 different luminance backgrounds (0 to 1000 cd/m2, 100 cd/m2 interval). Each stimulus lumi-

nance value was repeated 30 times. The luminance values illustrated in Figure 2 are, from bottom to top: 0, 43, 64, 107, 129, 171, 193,

236, 257 and 300 cd/m2 for a and d; 0, 62, 124, 186, 248, 310, 372, 434, 497 and 559 cd/m2 for b and e; and 0, 125, 208, 333, 417, 542,

625, 750, 833 and 958 cd/m2 for c and f (notice that only a subset of all values tested are shown in the figure).

Analysis of spiking activity
We generated peri-stimulus histograms (PSTH) of themulti-unit activity recorded with each recording site of themultielectrode array.

The spike counts were averaged in time bins of 1 ms and smoothed with a Gaussian kernel of 20 ms. We calculated the signal-to-

noise of each recording site as the average response to all stimuli within a sequence divided by the average baseline activity of

sequence periods with no stimuli. Only recording sites with a signal to noise R 3 were included in the analysis. To generate lumi-

nance-response functions, we measured the peak response of the PSTH within 30-110 ms following the stimulus onset. We also

generated functions from rebound responses measured within a time window of 130-210 ms following the stimulus onset. Both

peak and rebound responses had subtracted baseline activity.

We fit each luminance response function with a Naka-Rushton function (Equation 1) using the MATLAB function fmincon.

R = Rmax

Ln

L50
n + Ln

(Equation 1)

Where Rmax is the maximum response of the function, n is the exponent, L is the stimulus luminance, and L50 is the luminance that

generated half-maximum response. Notice that the fitting parameter Rmax is different from the R100 that we used in our measure-

ments. Rmax is the multiplicative factor extracted from the fit whereas R100 is the response generated by the largest luminance

contrast (100%). We only included in the analysis cortical response functions that had a reasonable goodness of fit (R2 > 0.7).

HUMAN ELECTROENCEPHALOGRAPHIC RECORDINGS

We used a customized 6-channel electroencephalogram (EEG) headset with dry electrodes (Wearable sensing) to measure the

neuronal activity of the human occipital cortex with the same density as a 128-channel EEG (electrode locations: Oz, O1, O2,

POz, PO1, PO2). EEG recordings were sampled at 300 Hz and low-pass filtered at 100 Hz. We tracked eye position and pupil

size with Eyelink 1000, and asked subjects to fixate on a point at the center of the screen during the entire stimulus presentation.

While the subjects maintained fixation, we presented a sequence of stimuli. The stimuli were checkerboard patterns made of

20 squares per side. Each square had a side of 0.5 degrees and could have a variable luminance (square target) or the background

luminance (square background, 500 cd/m2). The luminance of all the square targets within each checkerboard was the same. The

luminance of the square targets from different checkerboards could take one of eleven possible values that spanned either 250

or 500 cd/m2 of luminance range. In the 250 cd/m2 luminance range, the luminance of the square targets varied from 500 to

250 cd/m2 for dark stimuli, or from 500 to 750 cd/m2 for light stimuli. In the 500 cd/m2 luminance range, the luminance of the

square targets varied from 500 to 0 cd/m2 for dark stimuli, or from 500 to 1,000 cd/m2 for light stimuli. The luminance was sampled

at 25 cd/m2 intervals in the stimulus sequences with 250 cd/m2 luminance range and at 50 cd/m2 intervals in the sequences with

500 cd/m2 luminance range. Each stimulus trial lasted 6 s and contained four stimulus cycles. The checkerboard was turned on

for 0.75 s and turned off for 0.75 s in each stimulus cycle. When the checkerboard was turned off, a uniform surface with the back-

ground luminance was shown. The checkerboards were presented in a sequence of 100 trials. Within each sequence, each check-

erboard could have either light or dark square targets and the two checkerboard types were randomly presented. Each subject

performed 400 trials (100 trials x 2 polarities x 2 luminance ranges) that contained 40 min of visual stimulation. Electroencephalo-

graphic recordings have a signal to noise much lower than recordings from spiking activity, which is a serious limitation when
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measuring responses to low contrast stimuli. Therefore, we used checkerboards (instead of the squares from the cat experiments) to

generate the strongest cortical responses possible. It should be noticed that the electroencephalographic activity that we measured

originates from the average of multiple cortical neurons with receptive fields in both fovea and visual periphery. Therefore, given the

small receptive fields of foveal neurons in human visual cortex, the central square of the checkerboard stimuli (centered at the fixation

point) was a large surface for many of the neurons contributing to the cortical response. At the time of the cortical measures, changes

in checkerboard luminance did not drive strong pupil responses and, therefore, the luminance of the stimulus was not correlated with

pupil size variations in any of the subjects (r % 0.05 for each subject). The average variation in pupil size was also small (6% for

the subject illustrated in Figure 5 and 8% across subjects). For consistency, the paper gives all the luminance values in cd/m2

except in Figure 5H. However, the retinal illuminance (in trolands) can be easily calculated bymultiplying the luminance of the stimulus

(in cd/m2) times the area of the pupil. The retinal illuminance was�7.4 mm2 for the subject illustrated in Figure 5 (average pupil diam-

eter: 3.1 mm), �8.1 mm2 for the subject illustrated in Figure S3 (average pupil diameter: 3.2 mm), and �5.5 mm2 for a third subject

(average pupil diameter: 2.7 mm).

A stimulus trial was aborted and repeated if the subject blinked or interrupted fixation in the middle of a trial. We selected subjects

that were able to perform the task with a minimum number of aborted trials. Maintaining visual fixation on the monitor through the

entire task was very important in these measurements to avoid contaminating the luminance range with the dark room environment

(i.e., if the eye moves out of the monitor many times, the average luminance range becomes determined not only by the monitor

but also by the dark room). The stimuli were presented in the same high range monitor used for the experiments in cat visual cortex

(TRU-Vu, SRMH-15-AR series, maximum luminance: 1400 cd/m2). The monitor was placed at 60 cm distance from the observer and

the stimuli were generated with MATLAB Psychtoolbox.

To calculate the luminance response functions, the EEG signals were first processedwith a low-pass filter of 5 Hz cut-off frequency

and high-pass filter of 25 Hz cut-off frequency. We then calculated the current density (D) at the central position of the electrode

array (between Oz and POz) by performing a voltage subtraction across the electrodes. The averaged voltage from the flanking elec-

trodes, (VO1+VPO1+VO2+VPO2)/4, was subtracted from the average voltage of the central electrodes, (VOZ+VPOZ)/2, as shown in

Equation 2.

D =
ðVO1+ VPO1+ VO2+ VPO2Þ

4
� ðVOZ + VPOZÞ

2
(Equation 2)

The acquired signals were averaged over 30 trial cycles and the responsemeasured as themaximumminus theminimumvaluewithin

a time window of 0.05 to 0.3 s after the stimulus onset. At the time of the cortical measurement, the signal to noise was high and the

variations in pupil size small. Trial cycles with signal amplitude higher than 50 microvolts were classified as recording artifacts and

removed from the analysis (e.g., movements, muscle contractions). The average responses were fit with a Naka-Rushton function

(Equation 1) to extract the parameters of the luminance response function.

ANALYSIS OF NATURAL IMAGES

To estimate the ON and OFF functions that best match the luminance variations in nature, we measured the cumulative density of

light and dark pixels from 4,167 monochrome calibrated natural images (van Hateren and van der Schaaf, 1998). We then subtracted

themedian luminance of each image from all its pixel luminance values and classified the positive values as lights and negative values

as darks. By choosing the median luminance as the classifier threshold, we obtained an equal number of pixels with light and dark

values. However, similar results were obtained if we chose themean instead of themedian luminance as the classifier threshold. After

classifying the pixel values, we computed the histogram of the luminance distribution for lights and darks in each image using a lumi-

nance bin of 1 cd/m2. The luminance histograms were then transformed into cumulative luminance density functions by calculating

the accumulated number of pixels with increasingly larger values of dark or light contrast (i.e., density of darks or lights). The light and

dark density functions were then normalized between 0 and 1 to estimate the dark or light contrast associated with the half-maximum

density (L50). As for cortical functions, we calculated the L50b as L50minus themedian image luminance (i.e., background luminance

in cortical measurements). We also calculated the L50n as L50b divided by the luminance range (maximum minus minimum image

luminance). To obtain reliable comparisons of maximum andminimum luminance across images, we truncated the sides of the lumi-

nance distribution from each image (top and bottom 2.5 percentiles) and then measured the maximum and minimum. The L50 of the

luminance density function describes the accumulated density of dark or light luminance at half-maximum pixel density. The

maximum darkest or lightest luminance describes the luminance driving the strongest cortical response (R100). As the eye scans

an image, the average cortical response should be strongest when the receptive field moves from a region with median luminance

(i.e., the most frequent luminance value in the image) to a region with darkest or lightest luminance. Instead, the average response

should be weakest when the receptive field moves from a region with median luminance to a different region that has also median

luminance. To convert pixel image intensity to luminance in cd/m2, we used the conversion factor provided by van Hateren and van

der Schaaf (1998) for each image (pixel luminance = pixel value x conversion factor). The conversion factor was calculated by van

Hateren and van der Schaaf (1998) based on the camera settings (aperture, shutter time, and International Organization for Standard-

ization ISO number). They used the image of a gray overcast sky simultaneously measured with a Minolta luminance meter as

calibration.
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To compare the ON and OFF image functions measured at different luminance ranges, we divided the images into three groups

based on their luminance standard deviation: low (0-200 cd/m2), middle (200-400 cd/m2), and high luminance range (400-800 cd/m2).

Since each image has a large number of luminance values (�1.5 million pixels), the standard deviation of the luminance distribution

provided amore accuratemeasure to classify imageswith different luminance range than a two-pixel luminance difference. The stan-

dard deviation is also less vulnerable to the noise of the camera sensors and luminance measurements than the two-pixel luminance

difference.We selected for this analysis only images withmedian luminance higher than 50 cd/m2 to restrict our measurements to the

photopic range and avoid errors associated with image measurements at low light. The ranges of standard deviations were selected

to keep the sample size of ON functions relatively constant (617, 429 and 643 images for low, middle, and high luminance respec-

tively) and have a reasonable minimum sample size of OFF functions per group (2,227, 534 and 253 images for low, middle, and high

luminance respectively). Other ranges of standard deviations increased the sample size disparity across groups because the mean

luminance standard deviation is lower for OFF than ON functions in nature (103 versus 665 cd/m2 in this image dataset). The average

maximum-minimum luminance range for the group of images with low/medium/high luminance was 246/781/1,550 cd/m2 for ON

functions and 233/836/1,630 cd/m2 for OFF functions. For comparison, the sky luminance can range from 1,000 cd/m2 at sunset

to 15,000 cd/m2 at noon in a bright day. The difference between the maximum and minimum luminance was strongly correlated

with the luminance standard deviation in the image dataset (r = 0.99 for both ON and OFF).

ONOFF image processing
The luminance distribution of digital images generated by cameras, monitors or other devices needs to be modified with

gamma functions or other algorithms to better simulate the images that we perceive. However, current algorithms are poorly related

to biological function and frequently fail to simulate human vision, particularly in bright scenes. Here we introduce an ONOFF algo-

rithm that modifies image luminance using simplified versions of the ON and OFF functions measured in visual cortex (without

compromising processing speed). The ONOFF algorithm was tested with calibrated images in gray scale but it can also be

used to process color images by adjusting the lightness dimension of the image in HSL color space (HSL: hue, saturation,

lightness). As retinal photoreceptors, the first stage of our ONOFF algorithm converts different image luminance ranges into a com-

mon neuronal range (0 to maximum firing rate) after normalizing each image by its maximum luminance. As ON and OFF

bipolar retinal cells, the second stage of the algorithm splits each image into ON and OFF images by selecting pixels with higher

(ON) or lower values (OFF) than the ON and OFF backgrounds. The ON and OFF backgrounds are chosen as the 50-a and 50+a

percentiles of the imagemaximum luminance, respectively with a determining the luminance overlap between the ON and OFF func-

tions (set at 20 percent for all the measurements in this paper). Since the OFF cortical function is roughly linear, the algorithm maps

the OFF luminance values with a linear function that spans from a minimum dark value of 0 to a maximum dark value of 1. Since the-

ON cortical function saturates at high contrasts, the algorithm maps the ON luminance values with a piecewise linear function that

saturates at the top b percent of the luminance distribution from each image (b was set to the 95 percentile of the luminance

distribution in all the simulations illustrated in this paper). Notice that, because the luminance distribution can have a long tail at

the highest values, the maximum luminance is frequently much larger than the luminance at the 95 percentile. As in visual

cortex, the third stage of our ONOFF algorithm merges the ON (ION) and OFF (IOFF) images into the single image percept (I), as

shown in Equation 3. Merging the ON and OFF images requires setting a midpoint weight (w) that specifies the relative ON and

OFF response strength. The midpoint weight is calculated based on the number of ON (nON) and OFF pixels (nOFF) in the image,

as shown in Equation 3.

I = w� IOFF w+ ION ð1�wÞ (Equation 3)
w =
nOFF

nOFF + nON

We used images from the van Hateren database (van Hateren and van der Schaaf, 1998) to compare the performance of our ONOFF

algorithmwith other algorithms that are commonly used in image processing analysis: contrast-limited adaptive histogram-equaliza-

tion (CLAHE) andMATLAB Image adjustment (IMADJUST). CLAHE stretches the luminance distribution in multiple local regions of an

image (local histogram equalization), and applies bilinear interpolation to eliminate the boundaries between local regions. It also limits

the contrast within each local region to reduce noise. IMADJUST also stretches the luminance histogram while saturating the values

at the two histogram sides by a specific percentage. To evaluate the performance of CLAHE and IMADJUST, we selected the pa-

rameters that generated the most natural images in both (CLAHE: 8 3 8 local tiles and contrast limit of 0.05; IMADJUST: 1% satu-

ration). To compare the performance of the three algorithms, we calculated the power frequency spectrum from each image with a

two-dimensional Fast Fourier Transform. We converted the frequency spectrum to spatial frequency in cycles per degree by using

1min of arc per image pixel (van Hateren and van der Schaaf, 1998). We then calculated the difference between the logarithms of the

power frequency spectrum from processed (Pprocessed) and original images (Poriginal), as shown in Equation 4. This subtraction

estimates the contrast gain obtained with each method.

log ðgainðfÞÞ = log ðPprocessedðfÞÞ � log
�
PoriginalðfÞ

�
(Equation 4)
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We also developed anONOFF algorithm variation that adapts to changes in luminance range (e.g., from a natural image in the outside

world to the same image displayed in a monitor or other device). Images in most conventional displays have much lower luminance

range than in nature. Our results demonstrate that, as the luminance range decreases, the OFF/ON ratio of contrast sensitivities also

decreases. Therefore, the ONOFF-adaptive algorithm iteratively adjusts the ON and OFF luminance ranges in the display to match

the change in OFF/ON contrast sensitivity. The algorithm converges to this match in 20 iterations. At the first iteration, it subtracts the

mean of the original image ðItÞ from all image pixels and assigns the positive pixel values to the ON image (IONt) and the absolutes of

the negative pixel values to the OFF image (IOFFt). Then, it calculates an ON/OFF adapted luminance ratio (ALR) as the ratio between

the ON and OFF luminance ranges (standard deviations) of the original image multiplied by an adaptation factor (Equation 5). The

adaptation factor equals the ratio between the maximum luminance of the display (LDmax) and the maximum luminance of the orig-

inal image (LImax) elevated to the power of 0.29, which is the adaptation slope measured in cat visual cortex (Figure 6H). The ON and

OFF images are then weighted and combined as in the regular ONOFF algorithm but the weight is calculated based on the ON and

OFF luminance ranges and ALR (wt in Equation 5). Because the combined image is slightly different in each iteration (It), its mean is

also different and the algorithm keeps generating slightly different ON andOFF images until the IONt/IOFFt luminance ratio converges

to ALR at the 20th iteration (R2: 0.93 across 4,167 images). Notice that, when LDmax equals LImax, ALR equals the ratio of luminance

ranges in the original image because the adaptive factor (LDmax/LImax)̂ 0.29 equals one. It is only when LDmax is smaller than LImax

that the ON/OFF ratio of luminance ranges changes to match ALR.

ALR =
std ðIONtÞ
std ðIOFFtÞ

�
LDmax

LImax

�0:29

ft = 1g (Equation 5)
wt =
std ðIONtÞ

std ðIONtÞ+ ALR � std ðIOFFtÞ f1% t%20g
It = wt + IONtð1�wtÞ � IOFFt wt f1% t%20g
ONOFF VISUAL CONTRAST

We fit a linear model to the L50 measurements obtained from the cortical functions (Equation 6). The model was a weighted sum of

three different terms applied to the luminance background (a), the luminance range (b) and the light-dark polarity of the stimuli (c).

Then, the L50b was calculated as L50 minus the background and the L50n was calculated as L50b divided by the luminance range.

As shown in the results, the background coefficients resulting from the fits to L50 were always one and the coefficients for the lumi-

nance range were always lower for light than dark stimuli.

L50 = a Background + ðb + c PolarityÞ Range (Equation 6)

We also fit the L50b and L50n of the image functions using two different linear models (Equation 7). The L50b was fit as a weighted

sum of two different terms applied to the luminance range (b) and the light-dark polarity of the stimuli (c). Then, the ON L50was calcu-

lated as L50b + background and theOFF L50 as background - L50b. The L50nwas fit as aweighted sumof three terms: a constant (b)

and two coefficients applied to descriptors of the image luminance distribution, kurtosis (c) and skewness (d).

L50b = ðb + c Polarity ÞRange (Equation 7)
L50n = b+ c Kurtosis+d Skewness

We also tested different linear approaches to fit the exponent of the image function. The best fit was different for ON and OFF ex-

ponents and both were inversely correlated with luminance range (Drange for darks, Lrange for lights). The OFF exponent was

strongly related to the OFF contrast (OFFc, mean difference between the luminance of each individual OFF pixel and the median

OFF luminance). The fit for the ON exponent was poorly correlated with the image measures but seemed to be related to the back-

ground luminance (Bg, median luminance of ON pixels in Equation 8).

ON exponent = 1+ 0:4 Bg =Lrange (Equation 8)
OFF exponent = � 1:5+ 1:7 OFFc = Drange

These linear models revealed close relations between contrast sensitivity and the image luminance distribution. However, they could

not accurately reproduce the L50 changes that we measured. To obtain a measurement of visual contrast that more closely repro-

duced our results, we used a Naka-Rushton function similar to the one used to fit our experimental data (Equation 9). In this function,

VC is the ONOFF visual contrast, C is the contrast of the stimulus (calculated as stimulus luminance minus background luminance

divided by the luminance range), C50 is the stimulus contrast that generates half-maximumperceived contrast (calculated as the C50

luminanceminus background divided by the luminance range), n is the exponent of the function, and G is a gain correction factor that
e5 Cell Reports 34, 108692, February 2, 2021
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makes the response at 100% contrast (R100) equal to our measurements. As in our results, C50, n and G change with luminance

range and stimulus contrast polarity. Therefore, the perceived ONOFF contrast also changes as a function of these stimulus param-

eters. It is important to notice that, without G, the ON contrast would be always higher than the OFF contrast because C50n is at the

denominator of Equation 9 and both C50 and n have lower values in ON than OFF functions. Therefore, the gain parameter G is

needed to make dark visual contrast stronger or equal than light visual contrast and match our R100 measurements in visual cortex.

VC =
G � Cn

C50n + Cn
(Equation 9)

To estimate the values of the C50, n, and G parameters, we fitted the Naka-Rushton function to the average contrast response func-

tions measured in cat visual cortex at low (300 cd/m2) and high luminance ranges (1000 cd/m2) with dark and light stimuli. The fits

(Equation 10) were very accurate for all stimulus conditions; the R2 was 0.99 for dark visual contrast at 300 cd/m2 (DVC indoors),

0.99 for dark visual contrast at 1,000 cd/m2 (DVC outdoors), 0.99 for light visual contrast at 300 cd/m2 (LVC indoors), and 0.98 for

light visual contrast at 1,000 cd/m2 (LVC outdoors). Notice that small changes in the parameters of Equation 9 can have amajor effect

on themeasurements of ONOFF contrast. Themeasurements of VC indoors provide an approximation of theONOFF contrasts expe-

rienced indoors or outdoors at night (e.g., < 500 cd/m2) whereas the measurements of VC outdoors provide an approximation of the

ONOFF contrasts experienced outdoors at daylight (e.g., >500 cd/m2). Human psychophysical measurements with brighter monitors

may allow us to approximate these parameters more accurately in the future.

DVC indoors =
0:9 � C3

0:43 + C3
LVC indoors=

0:8 � C2

0:32 + C2
(Equation 10)
2

DVC outdoors =
1:2 � C

0:52 + C2
LVC outdoors=

1:1 � C2

0:32 + C2
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical comparisons between central values of distributions (e.g., Figures 3, 4, and 6) were performed with two-sided Wilcoxon

rank tests (MATLAB ranksum function). For comparisons between distributions with different sample size (e.g., Figures 3D–3H,

4D–4H, 5E, 6G, and 6H), the distribution with the largest sample size was resampled 50,000 times with the lower sample size of

the other distribution. After resampling, we calculated the difference between the two distributions and obtained the 95% confidence

intervals of the distribution difference (shown as error bars in Figures 3D–3H, 4D–4H, and 6G). We also calculated the probability that

two distributions are different (p value) as the area of overlap between distributions divided by their sum.
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Supplemental Figure 1. Effects of luminance range on cortical-response functions measured with backgrounds 
of 0 and 1000 cd/m2 luminance. Same as figure 3 but measured with a single background (0 cd/m2 for ON responses 
and 1000 cd/m2 for OFF responses; n: 81, 116, 110 cortical recording sites for ON and 123, 152, 217 cortical recording 
sites for OFF, listed from lowest to highest luminance range). Related to Figure 3. 

 
  



 
 

 
 

 
 
Supplemental Figure 2. Effects of luminance range on rebound responses and effects of background 
luminance on onset responses at 600 cd/m2 luminance range. a-e. Same as Figure 3 but showing effect of 
luminance range on rebound responses to stimulus turned off instead of onset responses to stimulus turned on (n: 524, 
608, 88 cortical recording sites for ON and 539, 460, 162 cortical recording sites for OFF, listed from lowest to highest 
luminance range). Notice that red illustrates light stimuli and blue dark stimuli, not luminance increment and decrement. 
These results demonstrate that the effect of luminance range is better related to stimulus polarity (light or dark) than 
luminance changes over time (light increment or decrement). Dark stimuli are consistently associated with more linear 
contrast response functions than light stimuli. However, luminance decrements (dark stimuli turned on or light stimuli 
turned off) are only associated with more linear contrast responses functions than luminance increments (light stimuli 
turned on or dark stimuli turned off) at onset responses. f-g. Effect of background luminance on the average ON and 
OFF L50b (f) and L50 (g) measured at 600 cd/m2 luminance range with onset responses (n: 116, 149, 149, 134, 137 
cortical recording sites for ON and 176, 174, 154, 162, 152 cortical recording sites for OFF, listed from lowest to highest 
background luminance). The results are similar as for 300 cd/m2 luminance range (Figure 4). h-i. Same as f-g for non-
linearity index (h), exponent (i, left) and R100 (i, right), showing ON and OFF values superimposed in the same plot. 
Related to Figures 3 and 4.  



 
 

 
 

 

Supplemental Figure 3. Luminance response functions in human visual cortex. a-b. Same as a-d from figure 5 
but measured in a different human subject. c. Average and standard error of L50b, L50n, non-linearity and R100 from 
three human subjects obtained by bootstrap resampling (1,000 times for the two subjects illustrated in the paper and 
2,000 times for a third subject with noisier recordings) and then selecting the luminance response functions with R2 
>0.8 (n: 2,492 and 2,486 for ON, 2,633 and 3,835 for OFF, listed from lowest to highest luminance range). Related to 
Figure 5. 

  



 
 

 
 

 

Supplemental Figure 4. Images processed with three different algorithms to simulate human luminance vision. 
a. From left to right, original image, image processed with Matlab image adjustment (IMADJUST), contrast-limited 
adaptive histogram-equalization (CLAHE), and the ONOFF algorithm. b-g. Same for other example images. The 
images processed with the ONOFF algorithm reproduce more closely human perception, particularly when the images 
have bright sky patches. Original images from (van Hateren and van der Schaaf, 1998). Related to Figure 7.  
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