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sFig. 1. Architecture of U-Net for infected lesion segmentation. A total of 507 CT scans
from suspected COVID-19 patients in Wuhan area constituted the training dataset. Coarse
annotation was performed by experienced radiologists, in which multifocal small patchy
shadowing, ground-glass opacities, and consolidations were selectively annotated on CT
images with major lesions. In subsequent, 7359 slices were utilized to train the DL

segmentation algorithm.
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sFig.2. Effectiveness of different radiomic features selection methods. In order to find out
the optimal feature selection approach for our study, five representative methods were utilized
for feature selection, including L1 regularized least absolute shrinkage and selection operator
(L1-LASSO), L1 regularized logistic regression (L1-LR), L1 regularized ridge regression
(L2-Ridge), eXtreme gradient boosting (XGBoost), and Z-test. By analyzing the ROC curves
() and PR curves (b) on the training and validation sets, the performance of corresponding
developed models is evaluated to verify and compare the effectiveness of different feature

selection methods.



sFigure 3

1.0

0.8

0.6
0.4

=, L E

_.._...

dik L n.-..__.._.

0.2

1L

-_.....r iy ....n..

B mew s——

F.;.i _.;..ﬁm_x. inll-

_..." .1

—— xgboast AUC=0.897

—— mip AUC=0.879

—— svc AUC=0.879
—— logistic AUC=0.897

ROC Curve

10

0.6

1-Specificity

04

0.

PR Curve

0.929

—— svc AUC=0.813

— mip AUC:

—— logistic AUC=0.957
—— xgboost AUC=0.626

“00

T P i T s
B

=:
2

i

|

!
i
i

|

i

1-Specificity

04

02




sFigure 3
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sFig.3. Redundancy analysis for selected radiomics features. Pearson Correlation
Coefficient (PCC) among the 108 selected features were calculated. All features, features
with PPC < 0.8 and 0.5 constituted three feature sets which were further applied to train the
machine learning models. Correlation heat-maps for different feature sets were displayed
separately in panel a (108 features), panel b (features with PPC < 0.8), and panel ¢ (features
with PPC < 0.5). Model performance was then evaluated in terms of ROC curves and PR

curves to examine the feature redundancy (b and c).
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sFig.4. PR curve analyses of ML models on training and validation sets. To evaluate the

performance of these ML models, PR curves were also analyzed along with ROC curves on



training and validation sets. Similarly, all ML models but SVM achieved PR-AUC of 1.000

on training set while MLP and SVM displayed a better performance on the validation set.
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sFig.5. Predictive probabilities of COVID-19 by ML models. Predicted probabilities for

COVID-19 and CAP (non-COVID-19) were quite differently distributed. A diagnostic

threshold of 0.5 could well discriminate between these two classes.



