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List of abbreviations used below:  

 

- SC, stellate cell  

- PC, Purkinje cell 

- AIS, axon initial segment 

- Dendprox, proximal dendrites 

- Denddist, distal dendrites 

- AP, action potential 

- AHP, afterhyperpolarization 

- Thr, threshold 

- Ampl, amplitude 

- HW, half-width 

- Freq, frequency 

- eFEL, Electrophys Feature Extraction Library 

 

Ionic channels 

Nav1.1 - Nav1.6. Expression and distribution of SC sodium channels were determined 

experimentally 
1,2

. Nav1.1 channel was placed on the soma and Nav1.6 on the AIS and axonal compartment. 

The gating mechanism was taken from 
3,4

. 

Kv1.1. The low threshold Kv1.1 channel, in accordance with experiments 
1,5,6

, was placed on all 

compartments. The gating mechanism was taken from 
7
. 

Kv3.4. This ionic channel with delayed rectifier properties was distributed on the soma, AIS and 

axon to repolarize the Na
+
 spikes 

8-10
. The gating mechanism was taken from 

7
.  
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Kv4.3. This ionic channel with A-type properties was placed on the soma and proximal dendrites 
11-

13
. Moreover, Kv4.3 interacts with the LVA Ca

2+
 (Cav3.x) channels to create a complex with important 

functions in SC firing 
14

. The gating mechanism was taken from 
15

.  

Kv7.x. The M-current was identified electrophysiologically 
16-18

. Kv7 channels were expressed in the 

SC AIS were placed in the AIS using gating mechanisms developed for the granule cell  
19

. 

Kir. Inward rectifier K
+ 

channel was expressed in the SC soma 
20-22

.  

KCa1.1 - KCa2.2. Large and small conductance calcium-activated potassium channels, which can 

cluster with Cav2.1 channels, were placed on the proximal/distal dendritic and somatic compartments based 

on immunohistochemical and electrophysiological data 
14,23-25

. The gating  mechanism was taken from 
26

.  

Cav2.1. The high-threshold calcium channels (P-type) were placed on the proximal/distal dendritic 

and somatic compartments 
27,28

. The gating mechanism of Cav2.1 was taken from 
26,29

. 

Cav3.2 – Cav3.3. The low-threshold calcium channels (T-type) were placed on the proximal 

dendritic and somatic compartments 
11,12,14,30,31

. The gating mechanism of Cav2.1 was taken from 
32,33

. 

HCN1. Hyperpolarization activated cyclic nucleotide-gated cationic channel) was placed on the AIS, 

somatic and axonal compartments 
34,35

.  The gating mechanism was taken from 
36,37

. 

Calcium dynamics. The calcium buffer was taken from 
15

 and modified to contain Parvalbumin, the 

typical calcium binding proteins of the SC 
26,38-40

.  
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SUPPLEMENTARY TABLES 

Supplementary Table 1. Ionic mechanisms in stellate cell models 
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The table shows the main properties of ionic channels used in the SC models. For each ionic channel type,  

the columns specify the maximum ionic conductance (Gi-max), ionic channels reversal potential (Erev). The  

corresponding gating equations were written either in Hodgkin-Huxley (HH) style or in Markovian style.  

  

Supplementary Table 2. Electrotonic compartments in stellate cell models  

  

  

 

The table shows the morphological analysis with NEURON software of the four morphologies used for the 

multi-compartment SC models. The table reports the sections of the multi-compartment SC model along with 

their number, their length and the soma area.  

 

Supplementary Table 3.  Synaptic model parameters 

  

  

  

The table summarizes the parameters used for modeling the AMPA, NMDA and GABAA receptors 
41-43

.  
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Supplementary Table 4, 5. Spike features  

  

  

  

The tables show exemplar values of features, obtained from experimental traces (n = 9 used for the  

spontaneous firing recordings and n = 5 used for the current injection experimental protocols) and from  

simulations (n = 4) using eFEL and Clampfit software.   
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SUPPLEMENTARY FIGURES  

Supplementary Figure 1. Ionic currents in stellate cell model sections  
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The traces show the ionic currents and calcium concentration changes generated by membrane channels in  

the SC model when a spike occurs during autorhythmic firing. Note the localization of channels in different  

sections and the different calibration scales.   

  

Supplementary Figure 2. Ionic currents in the somatic compartment in response to current injection   
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The traces show the model response recorded from the soma during alternated phases of pacemaking,  

hyperpolarization and depolarization. The upper traces shows membrane potential (Vm) and [Ca
2+

]i , the  

other traces show the ionic currents. It should be noted that marked changes in current size are correlated  

with rebound bursts, adaptation and pauses.  

  

Supplementary Figure 3. AMPA-NMDA-GABAA receptors  

  

  

  

(A) The traces show simulated AMPA EPSC and EPSP. The AMPA receptor-channels kinetic  

scheme is shown on the left. (B) The traces show simulated NMDA EPSC and EPSP. The NMDA receptor- 

channels kinetic scheme is shown on the left. (C) The traces show simulated GABA-A IPSC and IPSP. The  

GABA-A receptor-channels kinetic scheme is shown on the left.  
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Supplementary Figure 4. Dendritic currents in response to current injection  

  

  

  

 The figure shows the main dendritic mechanisms correlated with injected current pulses of different  

duration.   

(A) The trace shows the model response during alternated phases of pacemaking, hyperpolarization and  

depolarization (as in Supplementary Fig. 2).   

(B) The 3D plots show that the pause increases with the duration of the depolarizing step, the increase in  

[Ca
2+

]i and the size of the KCa1.1 current.   

(C) The 3D plots show that adaptation increases during the 2000ms-depolarizing step along with [Ca
2+

]i and  

KCa1.1 current.  

(D) The 3D plot shows that the rebound burst (ISI2/ISI1) increases with the duration of the hyperpolarizing  

step and the size of the Cav3.2 current.   
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Supplementary Figure 5. Dendritic currents in response to repetitive synaptic transmission  

  

  

 

 The figure shows the main dendritic mechanisms correlated with bursts of synaptic activity.  

(A) After a short burst (10 pulses @ 100 Hz; the trace is replotted from Fig. 6A), the SC model does not 

make any pause. After a long duration burst (50 pulses @ 100 Hz), the SC model shows a pause. These 

properties resemble those appearing at the end of a prolonged depolarizing current injection of the same 

duration (cf. Fig. 3 and Supplementary Fig. 4). For comparison, the figure compares the PC model, which 

shows a pause following bursts of both short and long duration demonstrating that the behavior of stellate 

cells reflects the specific balance, composition and localization of their ionic channels.  

(B) The 3D plots show that the pause increases with burst duration (@100Hz , 3 synapses PF→SC), the 

increase in [Ca
2+

]i and the size of the KCa1.1 current.  

(C) The 3D plots show that the adaptation increases during the 500ms-burst (@100Hz , 3 synapses PF→SC), 

along with [Ca
2+

]i and KCa1.1 current.  
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(D) Top, the trace shows the SC model response during inhibitory burst duration (@100Hz , 32 synapses  

SC→  SC). Bottom, the 3D plots show rebound burst (ISI2/ISI1) increases with the inhibitory burst duration  

(@100Hz , 32 synapses SC→SC) and the size of the Cav3.2 current.   

  

Supplementary Figure 6. Simulation of long-duration EPSC trains in SCs   

  

  

  

Simulated synaptic currents in a SC evoked by activation of 3 PF-SC synapses with long input bursts. Note  

that, at all tested frequencies, the spike amplitude decreases after the initial increase but remains over the  

control level.     
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Supplementary Figure 7.  

  

  

  

Enlargement of voltage traces showed in Fig. 2A, 3A and 3C.  
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Supplementary Movie 1. Stellate cell morphology 

The movie shows a SC morpho-electrical equivalent (morphology 1 in Fig. 1). The dendritic tree was flatted 

on the sagittal plane of the folium and the axon, after an initial part travelling parallel to the dendrite, 

advanced along the transverse plane. 

 

Supplementary Movie 2. Stellate cell pacemaker activity 

The movie shows the SC model spontaneous activity (membrane potential in the soma). 

 

Supplementary Movie 3. Parallel fibers – stellate cell – Purkinje cell activity 

SC model activation by a PF burst (10 impulses @ 200 Hz). The PC receives SC inhibition and generates a 

pause. The plots show membrane potential traces taken in the SC and PC soma. 

 

Supplementary Movie 4. Parallel fibers – stellate cell – Purkinje cell activity 

SC and PC models activation by a PF burst (10 impulses @ 200 Hz). The PC model receives both SC 

inhibition and PF excitation and generates a burst-pause. The plots show membrane potential traces taken in 

the SC and PC soma. 
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