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Supplementary Note 1 – From mammalian phylogenetic, ecological, and geo-spatial 

traits to mammalian similarity 

Phylogeny: Mammalian phylogenetic distance has been linked to sharing of viruses1–3. We 

calculated pair wise phylogenetic similarity between each mammal-mammal pair based on 

phylogenetic distances extracted from a recent mammalian supertree4.  

 

Ecological traits: We compiled data on morphological and life-history traits, diet and habitat for 

our mammal species from online databases and literature1,5–9. We selected the following traits for 

their known correlation with host-pathogen associations, and their wide availability: Body mass 

(g), maximum age (months), proxied key features of metabolism and adaption to environment; 

activity cycle, and migration6 presented key aspects of mammalian behaviour. We utilised the 

following reproductive traits: age at sexual maturity (days), gestation period length (days), litters 

per year, litter size and weaning age (days). Reproductive traits could be viewed as proxies to 

within-host virus-dynamics and therefore may influence the viruses harboured by the host. 

We incorporated the above traits to calculate traits-based pairwise distance between each two 

mammalian species. We based these distance calculations a generalised form of Gower’s distance 

matrices10,11. We then transformed these distances into similarities (similarity between two 

mammals = 1- normalised distance). 

Mammals utilising similar habitats might encounter similar coronaviruses and this in turn would 

increase the chances of being infected with these coronaviruses. We therefore incorporated habitat 

utilisation8 as multiple binary indicators of whether a species uses one or more of 14 natural and 

artificial habitats. We transformed these habitat utilisations into similarity matrix following same 

procedure as above. 

In addition to habitat, similar diet preference, expressed in terms of proportional use of 10 diet 

categories7, could potentially associate with similar viral assemblage. We transformed these diet 

categories into a similarity matrix as per above. 
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The above steps we resulted in the following pair-wise ecological similarities between each pair 

of mammals in our study: 

1. Life-history and reproductive traits similarity 

2. Habitat utilisation similarity 

3. Diet similarity 

 

Geospatial traits: The geographical distribution of mammalian species influences the coronaviruses 

with which they might come into contact. Geographical spread correlates with other factors such 

as climate, natural environment, and agricultural practices (including potential contact with 

livestock). Climate has been shown to influence a number of human and domestic mammal 

pathogens (including viruses)12–14. Other geographical factors such as biodiversity (species 

richness), land cover type, agriculture and farming practices, urbanisation and human population 

have been found to influence certain categories of host-pathogen associations15,16. 

 

Species-presence maps: We obtained species-presence maps for majority of our mammalian 

species from IUCN8. We extrapolated livestock (including horses – Equus caballus) species-

presence maps from most recent global distribution maps17. Finally, we inferred presence-maps for 

three domesticated species - dogs (Canis lupus familiaris), cats (Felis catus) and guinea pigs (Cavia 

porcellus) from Gridded population of the world maps18, by assuming they co-exist with humans 

where there is sufficient human populations (n>100). We used the same gridded population maps 

to extrapolate human species-presence map (n>0). 

 

Presence overlap: we intersected the above curated maps using the R Package raster to compute 

whether the presence of any two mammalian species in our input overlapped (binary, 1=yes, 0=no), 

and to calculate the area of this overlap (in km2).  

Vectorised geospatial features: We supplemented species-presence maps with grids expressing 

climate19, mammalian diversity20, human population18, land cover (including urbanisation)21, 

agriculture21,22, and distribution of livestock17. This allowed to generate the following geospatial 

feature vectors for each mammalian species (Supplementary Figure 2): 

1. Climate: we expressed climate in two vectorised features as follows: 

a. Mean temperature: we computed mean of monthly temperatures recorded in each grid 

(Supplementary Table 1) in the species-presence area, averaged between years: 1900-

201019. WE transformed this gridded temperature in to an 11-points quantile vector 
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representing the probabilities: 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 

and 95%.  

b. Mean precipitation: Sum of monthly rainfall (precipitation) recorded in each grid in the 

species-presence area, averaged between years: 1900-201019. Gridded precipitation was 

transformed into quantile vector as above. 

2. Natural land-cover type (not directly associated with humans): we computed vectorised 

features (above) for each of the land-cover types in this category (Supplementary Table 1). 

3. Agricultural land-cover type (including land-cover associated with humans e.g., managed 

vegetation) and farming practices (expressed in number of domesticated livestock and poultry 

in the species presence area) were also quantified into vectorised features as above. 

4. Urbanisation and human population18 vectorised features were computed form species-

presence maps. 

5. Mammalian diversity20 in the species presence area was transformed into vectorised features. 

We transformed the above vectors into pair-wise mammal-mammal similarity matrices by 

calculating cosine similarity between the vectorised features (as per the viral similarities calculated 

in manuscript). 

 

Similarity network fusion (SNF): We applied similarity network fusion (SNF)32 to integrate the 

following similarity matrices calculated above in order to reduce our mammalian feature space: 

1. Climate similarities: temperature and precipitation similarities were integrated using SNF.  

2. Geo-spatial traits: the 7 similarities derived from natural land-cover type (Supplementary 

Table 1), the 11 similarities derived from agricultural land-cove type and farming (livestock 

and poultry); the 2 similarities based on urbanisation and human population, and the 

mammalian diversity similarity were integrated using SNF. 
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Category layers(s)/geo-attributes Source Res Reason 

(Natural) 

Land-cover 

Evergreen/deciduous 

needle-leaf trees (%) 

EarthEnv21 0°0′30″ Type of land cover has been 

associated with distribution of 

various mammals23. It potentially 

increases chances of contact 

between mammalian reservoirs of 

different viruses. 

Evergreen broad-leaf 

trees (%) 

Deciduous broad-leaf 

trees (%) 

Mixed/other trees (%) 

Shrubs (%) 

Herbaceous vegetation 

(%) 

Barren land (%) 

Agriculture 

& farming 

Managed/Cultivated 

Vegetation (%) 

EarthEnv21 0°0′30″ 

Regularly flooded 

vegetation (%) 

Cropland (%) HYDE24 0°5′ 

Pasture (%) 

Cattle (head count) Global 

livestock17 

0.0833°  Livestock farming is linked to 

cross-species transmission of 

number of viruses25. 
Sheep (head count) 

Buffalo (head count) 

Pigs (head count) 

Horses (head count) 

Chicken (head count) 

Duck (head count) 

Human Human population SEDAC18 0°5′ Urbanisation and human 

population density have been 

shown to be drivers of viral spill-

over through wildlife-domestic-

human interface16,26,27.  

Urban land (%) EarthEnv21 0°0′30″ 

Climate Mean temperature CRUTS319  0°5′ Climate could potentially 

influence the spread and 

emergence of viruses12–14.  
Mean precipitation 

Mammalian 

diversity 

Number of different 

mammalian species in a 

grid cell. 

SEDAC20 0°5′ Mammalian species present in 

mammal rich areas might be 

exposed to diverse viruses28–31. 

 

Supplementary Table 1. List of geographical predictor layers integrated within our framework. 
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Supplementary Note 2 – DeepWalk 

We adopted DeepWalk33 to compute vectorised representations for our coronaviruses and hosts 

from the network connecting them. DeepWalk uses truncated random walks to get latent 

topological information of the network and obtains the vector representation of its nodes (in our 

case coronaviruses, and their hosts) by maximising the probability of reaching a next node (i.e., 

probability of a virus-host association) given the previous nodes in these walks. 

DeepWalk comprises three steps (Supplementary Figure 3): 

1. Sampling: For each node 𝑛𝑖 (virus or host) in our network, DeepWalk conducts γ random 

walks with length t starting from 𝑛𝑖. 

2. Training skip-gram: by treating walks as the equivalent of sentences, DeepWalk updates the 

node representation using the skip-gram algorithm34 for each walk (Supplementary Figure 3). 

Here, skip-gram is used to maximise the cooccurrence probability among nodes which appear 

within a window w using an independent assumption as follows: 

Pr ({𝑛𝑖−𝑤, … , 𝑛𝑖+𝑤}\𝑛𝑖|ϕ(𝑛𝑖) =  ∏ Pr(𝑛𝑖|ϕ(𝑛𝑖))

𝑖+𝑤

𝑗=𝑖−𝑤,𝑗≠𝑖

 (S1) 

where Φ denotes the latent topological representation associated with every vertex 𝑛𝑖. Φ is 

represented by an |N| × d matrix, where |N| is the cardinality of node set N, and d is the 

dimension of the node vector.  

Pr(𝑛𝑖|ϕ(𝑛𝑖)) is approximated with Hierarchial Softmax35 by assigning the nodes to the leaves 

of a Huffman tree, and Pr(𝑛𝑖|ϕ(𝑛𝑖)) can be computed as: 

Pr(𝑛𝑖|ϕ(𝑛𝑖)) =  ∏
1

(1 + 𝑒−ϕ(𝑛𝑖)ψ(𝑏𝑙))

⌈log|𝐍|⌉

𝑙=1

 (S2) 

where 𝑏𝑙 ∈  (𝑏0, 𝑏21, . . , 𝑏⌈log|𝐍|⌉), and ψ(𝑏𝑙) is the representation assigned to the parent of node 𝑏𝑙. 

(𝑏0, 𝑏21, . . , 𝑏⌈log|𝐍|⌉) is a sequence of tree nodes to identify the node 𝑛𝑖, such that 𝑏0 is the root of 

this tree and 𝑏⌈log|𝐍|⌉ =  𝑛𝑖. 

3. Computing embeddings: After completing the above step, the latent topological representation 

of nodes in the network is the output of a hidden layer of the network. 

DeepWalk performs its walks at random which means that embeddings do not preserve the local 

neighbourhood of the nodes well. However, other components of our pipeline, capture these local 

information from the virus and the mammalian perspectives. 
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Supplementary Note 3 – Changes in network structure with addition of predicted 

links 

Definitions 

L Realised links in the network. For our original network, this number equals knowns 

associations between our Coronaviruses (CoVs) and their mammalian hosts. In our 

predicted networks L contains known and predicted links at the given probability cut-

off.  

M Mammalian species in the network.  

V CoVs in the network 

A Adjacency matrix of dimensions |V| × |𝐌|, such that for each 𝑣𝑖 ∈ 𝐕 and 𝑚𝑗 ∈ 𝐌, 𝑎𝑖𝑗 =

1 if an association exists (or is predicted at given cut-off) between the coronavirus and 

the mammal, and 0 otherwise. 

𝐀𝑖  Mammals associated with coronavirus 𝑣𝑖 ∈ 𝐕. Such that, 𝐀𝑖 =  ∑ 𝐀𝑎𝑖𝑗
|𝑀| 
𝑗=1 . Corresponds 

to degree centrality (from the viral perspective).  

𝐀𝑗  CoVs associated with mammal 𝑚𝑗 ∈ 𝐌. Such that, 𝐀𝑗 =  ∑ 𝐀𝑎𝑖𝑗
|V| 
𝑖=1 . Corresponds to 

degree centrality (from the viral perspective). 

 

Given the above definitions we computed the following structural properties at the level of the 

whole network, and the group (i.e., CoVs or mammals).  

• Mean degree –  𝐷 =  
|𝐋|

|𝐕|+|𝐌|
 : mean number of associations per CoV and mammal. 

• Connectance – 𝐶 =  
|𝐋|

|𝐕|×|𝐌|
 : realised proportion of possible associations (links). 

Deterministically increases with addition of new associations. 

• Cluster coefficient: mean per-node (CoV or mammal) connectance, equals to mean, across all 

CoVs and mammals, of the number of realised associations (i.e., known and/or predicted) 

divided by the number of possible links for each node (CoV or mammal). 

• Cluster coefficient (CoVs): mean, across all CoVs, of the number of realised associations 

divided by the number of possible links for each CoV. 

• Cluster coefficient (mammals): mean, across all mammals, of the number of realised 

associations divided by the number of possible links for each mammal. 

• Mean number of shared partners (CoVs): simple measure of co-occurrence, captures mean 

number of shared hosts of CoVs. 

• Mean number of shared partners (mammals): simple measure of co-occurrence. Capture mean 

number of shared CoVs between mammalian hosts. 

• Togetherness (CoVs): measures the tendency of CoVs to be found in the same mammalian hosts. 

A high level (1)  of togetherness (CoVs) suggests that the availability of a common trait or 
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characteristics in these mammals (e.g. common receptor) might important in ability of CoVs to 

infect/association with them, whereas lower level (0) indicates the  opposite36,37. 

• Togetherness (mammals):  captures the tendency of mammalian species to shares CoVs. High 

values (max=1) of togetherness (mammals) suggest that similarities between mammalian 

species (e.g., habitat or diet requirements) might be more important driver of sharing of CoVs 

(community structure) than competition. Smaller values (min=0) indicate the opposite36,37. 

• C-Score - Checkerboard score38 (averaged across all nodes in level, i.e. CoVs or mammals):  

this score measures non-independence in interaction patterns across the network.  

o Larger values of C-Score (CoVs) indicates mammalian communities with little or no 

overlap in shared CoVs.  

o Larger values of C-Score (mammals) suggest CoVs communities with little or no overlap 

in host preferences (e.g., tendencies of CoVs to be shared amongst certain host 

communities, defined, for example by phylogeny or geographical distribution). 

• V-ratio  –  variance-to-mean ratio: Larger values of V-ratio (CoVs) indicate a more skewed host 

range of our CoVs.  Larger values of V-ratio (mammals) indicate a more skewed richness of 

CoVs in our mammalian hosts. 

• Nestedness - NODF (nestedness metric based on overlap and decreasing fill)39: nestedness 

captures the tendency of specialists (e.g., CoVs with few hosts) to interact with (e.g., infects) 

subsets of mammals with which generalists (e.g., CoVs with many hosts) interact. It has been 

linked to network stability and functionality40,41. 

• Niche overlap (CoVs): mean similarity in interaction pattern between CoVs (in relation to 

mammalian species). Here we calculate this similarity via Horn’s index (default implementation 

in the R package bipartite42). Niche overlap ranges from 0 (indicating no common pattern in 

how CoVs associate with mammalian species, to 1 indicating perfect overlap). 

• Niche overlap (mammals): mean similarity in interaction pattern between mammals (in relation 

to CoVs), see above. 

• Robustness –  area below the “secondary extinction” curve.  

o Robustness (CoVs): CoVs are deleted at random, and area under the “second extinction” 

curve is calculated42.  

o Robustness (mammals): mammalian species are deleted at random, and area under the 

“second extinction” curve is calculated42. Large values of robustness (max = 1) indicate a 

curve that decreases very mildly until the point at which almost all mammalian species are 

eliminated. This suggests a very robust system in which, for instance, circulation of CoVs 

continues even if large fraction of mammalian host species is eliminated. On the other hand 
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low values of robustness correspond to a curve that decreases abruptly as soon as any host 

species is lost. This is consistent with a fragile system in which, for instance, even if a very 

small fraction of the mammalian host is eliminated, most of CoVs lose their preferred hosts 

and drop from network.
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Metric original cut-off>=0.9821 cut-off>0.75 cut-off>0.5 

Mammalian diversity per virus 0.057 0.093 (0.085 - 0.51) / 1.632-fold (1.491 - 

8.947) 

0.543 (0.131 - 0.548) / 9.526-fold 

(2.298 - 9.614) 

0.519 (0.331 - 0.595) / 9.11-fold (5.81 

- 10.44) 

Viral diversity per mammal 0.241 0.501 (0.27 - 0.73) / 2.079-fold (1.12 - 

3.029) 

0.731 (0.666 - 0.729) / 3.033-fold 

(2.763 - 3.025) 

0.73 (0.73 - 0.72) / 3.03-fold (3.03 - 

2.99) 

Mean degree (associations per 

CoV or mammal) 

1.055 2.052 (1.306 - 9.178) / 1.945-fold (1.238 

- 8.699) 

6.785 (3.433 - 11.41) / 6.431-fold 

(3.254 - 10.815) 

9.398 (5.718 - 13.683) / 8.91-fold 

(5.42 - 12.97) 

Connectance 0.011 0.017 (0.011 - 0.073) / 1.524-fold (1.022 

- 6.626) 

0.054 (0.027 - 0.091) / 4.909-fold 

(2.455 - 8.273) 

0.075 (0.045 - 0.108) / 6.82-fold (4.09 

- 9.82) 

Cluster coefficient 0.005 0.004 (0.004 - 0.017) / 0.712-fold (0.8 - 

3.333) 

0.041 (0.023 - 0.074) / 8.2-fold (4.6 - 

14.8) 

0.06 (0.037 - 0.088) / 12-fold (7.4 - 

17.6) 

Cluster coefficient (CoVs) 0.041 0.044 (0.037 - 0.123) / 1.078-fold (0.912 

- 2.995) 

0.096 (0.056 - 0.153) / 2.341-fold 

(1.366 - 3.732) 

0.125 (0.08 - 0.182) / 3.05-fold (1.95 - 

4.44) 

Cluster coefficient (mammals) 0.096 0.205 (0.159 - 0.529) / 2.138-fold (1.652 

- 5.516) 

0.483 (0.318 - 0.539) / 5.031-fold 

(3.313 - 5.615) 

0.53 (0.447 - 0.549) / 5.52-fold (4.66 - 

5.72) 

Nestedness (NODF) 6.065 24.599 (12.979 - 61.513) / 4.056-fold 

(2.14 - 10.142) 

56.856 (38.165 - 65.653) / 9.374-fold 

(6.293 - 10.825) 

61.705 (51.99 - 68.843) / 10.17-fold 

(8.57 - 11.35) 

Mean number of shared partners 

(CoVs) 

0.207 0.736 (0.379 - 8.35) / 3.556-fold (1.83 - 

40.338) 

5.627 (1.876 - 10.567) / 27.184-fold 

(9.063 - 51.048) 

8.555 (4.39 - 12.849) / 41.33-fold 

(21.21 - 62.07) 

Mean number of shared partners 

(mammals) 

0.072 0.187 (0.093 - 2.596) / 2.601-fold (1.286 

- 36.059) 

1.488 (0.419 - 4.056) / 20.667-fold 

(5.819 - 56.333) 

2.711 (1.026 - 5.855) / 37.65-fold 

(14.25 - 81.32) 

Niche overlap (CoVs) 0.13 0.233 (0.222 - 0.564) / 1.79-fold (1.708 - 

4.335) 

0.505 (0.318 - 0.579) / 3.885-fold 

(2.446 - 4.454) 

0.564 (0.459 - 0.589) / 4.34-fold (3.53 

- 4.53) 

Niche overlap (mammals) 0.053 0.056 (0.053 - 0.185) / 1.06-fold (1 - 

3.488) 

0.149 (0.065 - 0.225) / 2.811-fold 

(1.226 - 4.245) 

0.187 (0.11 - 0.254) / 3.53-fold (2.08 - 

4.79) 

Togetherness (CoVs) 0.007 0.02 (0.012 - 0.137) / 2.828-fold (1.766 - 

19.572) 

0.094 (0.042 - 0.175) / 13.429-fold (6 - 

25) 

0.14 (0.078 - 0.195) / 20-fold (11.14 - 

27.86) 

Togetherness (mammals) 0.002 0.002 (0.001 - 0.017) / 1.172-fold (0.693 

- 8.334) 

0.01 (0.004 - 0.026) / 5-fold (2 - 13) 0.017 (0.007 - 0.036) / 8.5-fold (3.5 - 

18) 

C-score (CoVs) 0.811 0.56 (0.666 - 0.125) / 0.69-fold (0.821 - 

0.154) 

0.165 (0.381 - 0.117) / 0.203-fold (0.47 

- 0.144) 

0.124 (0.213 - 0.104) / 0.15-fold (0.26 

- 0.13) 

C-score (mammals) 0.931 0.877 (0.92 - 0.53) / 0.942-fold (0.988 - 

0.569) 

0.61 (0.81 - 0.437) / 0.655-fold (0.87 - 

0.469) 

0.531 (0.689 - 0.378) / 0.57-fold (0.74 

- 0.41) 

V-ratio (CoVs) 7.207 7.489 (6.744 - 23.017) / 1.039-fold 

(0.936 - 3.194) 

17.781 (9.083 - 29.415) / 2.467-fold 

(1.26 - 4.081) 

23.29 (13.412 - 35.652) / 3.23-fold 

(1.86 - 4.95) 

V-ratio (mammals) 16.459 55.402 (38.269 - 156.159) / 3.366-fold 

(2.325 - 9.488) 

142.419 (90.995 - 158.811) / 8.653-

fold (5.529 - 9.649) 

156.054 (131.029 - 163.227) / 9.48-

fold (7.96 - 9.92) 

Robustness (CoVs) 0.538 0.559 (0.547 - 0.808) / 1.039-fold (1.017 

- 1.502) 

0.724 (0.578 - 0.856) / 1.346-fold 

(1.074 - 1.591) 

0.818 (0.671 - 0.896) / 1.52-fold (1.25 

- 1.67) 

Robustness (mammals) 0.586 0.69 (0.609 - 0.926) / 1.178-fold (1.04 - 

1.58) 

0.896 (0.785 - 0.941) / 1.529-fold (1.34 

- 1.606) 

0.926 (0.878 - 0.948) / 1.58-fold (1.5 - 

1.62) 

Supplementary Table 2. Network measures calculated for four bipartite networks (as presented in Figure 3): original network (3A), 

predicted network at probability cutoffs: ≥0.9821 (3B), >0.75 (3C), and >0.5 (3D), respectively. Values in bracket SD from ensemble mean.   
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Supplementary Figure 1. Computing genomic-features similarity matrices of coronaviruses. 

First genomic traits were extracted from complete genome sequences of coronaviruses– step 1. 

Then the vector representations of each trait were used to compute cosine similarity between two 

genomes for the trait (e.g., dinucleotide biases) and the mean was taken when computing similarity 

between two coronaviruses represented by one or more genome each – step 2. The resulting 

similarity matrices were integrated using SNF32 to generate two integrated similarity matrices: 

genome biases similarity and secondary structure similarity. 
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Supplementary Figure 2. Vectorised geospatial features extraction. Mammalian species-

presence maps were first extracted from our sources8,17,18; these maps were then intersected with 

our geospatial layers (Supplementary Table 1) – step1. This enabled us to derive quantile vectors 

of our geospatial attributes (Supplementary Table 1) for majority of our mammalian species – step2, 

which we then transformed into vectors expressing quantile distribution of these attributes in the 

species presence area – step 3. Finally, we computed cosine similarity between these vectors to 

generate a pair-wise similarity matrix (between mammalian species) for each of our geospatial 

attributes – step 4. 
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Supplementary Figure 3. Network embeddings using DeepWalk. A – DeepWalk process. B 

Skip-gram neural network: the network is composed of input layer, hidden layer(s) and output 

layer. The network accepts one-hot encoded vector. One-hot encoding is a vector with length same 

= number of nodes in network (or words in dictionary in the original implementation). The hidden 

layer has no activation function, its output presents an embedding of the node. The output layer is 

a SoftMax classifier that predicts neighborhoud nodes. V represent viruses and H represent 

mammalian hosts in this figure.  
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Supplementary Figure 4. Visualisation of training and performance assessment (20 repeats). 

Step 1 – observed associations between CoVs and their hosts is split into training set comprising 

85% of all observed associations – and test-set comprising 15% of these associations. Step 2 – 

training set is used to generate similarity learners in three categories: coronaviruses, mammalian 

hosts and networks. Network perspective learners are recomputed for each test run (from the 

reduced network). Step 3 – GBM is applied to generate meta-ensembles integrating the meta-

learners. The ensembles comprise 100 replicate models trained with balanced samples drawn from 

the combined learners results.   Step 4 – the model performance of the GBM ensemble is assessed 

by taking the mean probability of the 100 replicate models as applied to the test set. V represent 

viruses and H represent mammalian hosts in this figure. 
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Supplementary Figure 5. Relative influence (variable importance) of the included learners to 

the final GBM ensembles (trained with all available associations). Boxplots indicate median 

(center), the 25th and 75th percentiles (bounds of box) and inter quantile range (whiskers). Points 

represent the relative influence of the learner in individual runs.  (100 runs in total). Boxplots and 

points are coloured by learner’s point of view (perspective): network, mammalian or viral. Relative 

influence of each learner to each run (n=100) of our GBM meta-ensemble was obtained using 

varImp function in R package caret. Learners are ordered by their median relative influence over 

the 100 runs.  
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Supplementary Figure 6. Partial dependence plots showing the influence on coronavirus-

mammal associations for all similarity learners in all runs of our meta-ensemble (GBM). X-

axes show the range of values of our similarity learners (0 to 1). Y-axes show the effect on the 

probability of coronavirus-mammal association (0 to 1) from that learner. Individual lines show the 

partial dependence per each run of the ensemble. The smoothed line (smoothed conditional means) 

indicates the overall trend of partial dependence between our response variable and the learner. 

Partial dependence measures the response for an individual variable in a machine-learning model 

(here GBM), while holding all other variable constant. Partial dependence plots visualise the non-

linear relationships between each similarity-learner in our meta-ensemble and the response variable 

(whether a given coronavirus could potentially be found in a focal mammalian host).
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Supplementary Figure 7. Performance assessment over the held-out test sets (n =20) at 0.5 probability cut. Boxplots indicate median (center), 

the 25th and 75th percentiles (bounds of box) and minimum and maximum (whiskers).  Violin plots show the kernel probability density of the data 

at different values. Points represent results from individual runs (100 runs per test). Boxplots, violin plots and points are coloured by test number. 

In each test we created a held-out test comprising 15% of all data (including 15% of all observed associations, and 15% of all unknown associations). 

Our learners were trained with the remainder 85% of the observed (and unknown) associations, and our meta-ensemble was then trained with 

predictions of these learners (10-fold cross validation, 100 repeats).  Performance metrics were then computed against the held-out test set and 

reported here. 
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Supplementary Figure 8. Performance assessment over the held-out test sets (n =20) at 0.75 probability cut-off. Boxplots indicate median 

(center), the 25th and 75th percentiles (bounds of box) and minimum and maximum (whiskers).  Violin plots show the kernel probability density of 

the data at different values. Points represent results from individual runs (100 runs per test). Boxplots, violin plots and points are coloured by test 

number. In each test we created a held-out test comprising 15% of all data (including 15% of all observed associations, and 15% of all unknown 

associations). Our learners were trained with the remainder 85% of the observed (and unknown) associations, and our meta-ensemble was then 

trained with predictions of these learners (10-fold cross validation, 100 repeats).  Performance metrics were then computed against the held-out test 

set and reported here. 
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Supplementary Figure 9. Performance assessment over the held-out test sets (n =20) at 0.9821 probability cut-off. Boxplots indicate median 

(center), the 25th and 75th percentiles (bounds of box) and minimum and maximum (whiskers).  Violin plots show the kernel probability density of 

the data at different values. Points represent results from individual runs (100 runs per test). Boxplots, violin plots and points are coloured by test 

number. In each test we created a held-out test comprising 15% of all data (including 15% of all observed associations, and 15% of all unknown 

associations). Our learners were trained with the remainder 85% of the observed (and unknown) associations, and our meta-ensemble was then 

trained with predictions of these learners (10-fold cross validation, 100 repeats).  Performance metrics were then computed against the held-out test 

set and reported here. 
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Supplementary Figure 10. Confusion matrices produced over the held-out test sets (n =20) at 

0.5 probability cut-off. Confusion matrices were generated by taking the mean probability (across 

100 runs) of our GBM meta-ensemble, predicted values>0.5 where considered positive (Yes), and 

those <=0.5 were considered negative (No). Colours in the above matrices indicate agreement 

between the predicted and the known associations (blue), or no agreement (blue). Transparency 

(alpha) indicates probability of agreement (the more times the two sets agreed, in relation to the 

total space (of yes or no) the more opaque the matrix cell.  
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Supplementary Figure 11. Confusion matrices produced over the held-out test sets (n =20) at 

0.75 probability cut-off. Confusion matrices were generated by taking the mean probability 

(across 100 runs) of our GBM meta-ensemble, predicted values>0.75 where considered positive 

(Yes), and those <=0.75 were considered negative (No). Colours in the above matrices indicate 

agreement between the predicted and the known associations (blue), or no agreement (blue). 

Transparency (alpha) indicates probability of agreement (the more times the two sets agreed, in 

relation to the total space (of yes or no) the more opaque the matrix cell.  
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Supplementary Figure 12. Confusion matrices produced over the held-out test sets (n =20) at 

0.9821 probability cut-off. Confusion matrices were generated by taking the mean probability 

(across 100 runs) of our GBM meta-ensemble, predicted values>=0.9821 where considered 

positive (Yes), and those <0.9 were considered negative (No). Colours in the above matrices 

indicate agreement between the predicted and the known associations (blue), or no agreement 

(blue). Transparency (alpha) indicates probability of agreement (the more times the two sets agreed, 

in relation to the total space (of yes or no) the more opaque the matrix cell. 
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Supplementary Figure 13. Comparison of performance metrics of 7 classification algorithms 

over the held-out test sets (n = 5) at 0.5 probability cut-off. Notched boxplots indicate median 

(center), the 25th and 75th percentiles (bounds of box), and minimum and maximum (whiskers). 

Points represent results from individual runs (100 runs per test, and per algorithm). Boxplots and 

points are coloured by algorithm. We trained 7 classification algorithms: Model Averaged Neural 

Network (avNNet), Stochastic Gradient Boosting (GBM), Random Forest (RF), Support Vector 

Machines with radial basis kernel and class weights (SVM-RW), Linear SVM with Class Weights 

(SVM-LW), SVM with Polynomial Kernel (SVM-P), and Naive Bayes. These algorithms were 

selected due to their robustness, scalability, availability, and over-all performance. All models were 

trained and tested via caret R package. While no one algorithm performed best across all five tests, 

GBM performed well across the 5 tests, thus it was selected to perform the stacking of our 

similarity-based learners. 
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Supplementary Figure 14. Model predictions for potential hosts of SARS-Cov-2 – including 

humans and lab rodents. Predicted hosts are grouped by order (inner circle). Middle circle 

presents probability of association between host and SARS-CoV-2 (Grey scale indicates predicted 

associations with probability in range >0.5 - ≤0.75. Red scale indicates predicted associations with 

probability in range >0.75 - <0.9821. Blue to purple scale present indicates associations with 

probability ≥0.9821). Yellow bars represent number of coronaviruses (species or strains) observed 

to be found in each host. Blue stacked bars represent other coronaviruses predicted to be found in 

each host by our model. Predicted coronaviruses per host are grouped by prediction probability into 

three categories (from inside to outside): ≥0.9, >0.75 - <0.9821, and >0.5 - ≤0.75. 
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Supplementary Figure 15. Observed and predicted mammalian hosts for coronaviruses 

Including humans and lab rodents. Columns present mammalian hosts in four categories: 

Artiodactyla & Perissodactyla (top 10 hosts by number of predicted coronaviruses that could be 

found in each host); Carnivora (top 15 hosts), Chiroptera (top 15 hosts, each predicted to host 50 

or more coronavirus species or strain), and others (top 5). Rows present viruses ordered into five 

taxonomic groups: Alphacoronaviruses, Betacoronaviruses, Deltacoronaviruses, 

Gammacoronaviruses and unclassified Coronavirinae. Yellow cells represent observed 

associations between the host and the coronavirus. Grey/red/blue cells indicate the probability of 

predicted associations in three increasing probability ranges. White cells indicate no known or 

predicted association between host and virus (beneath cut-off probability of 0.5). 
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Supplementary Figure 16. Final model predictions and observed coronavirus-mammalian 

associations. Yellow circles present observed associations (known) between coronaviruses and 

mammalian hosts. Grey circles indicate associations predicted by the final model with probability 

>0.5 and <0.7. Red circles indicate associations predicted with probability <0.7 and <0.9. Blue-

purple circles indicate associations predicted with probability ≥0.9. Y-axis represent the probability 

produced by the final model (trained with all available data, with 10-fold cross validation) – ranging 

from 0 to 1. X-axis represent the order of the mammalian host, as follows (clockwise): Artiodactyla, 

Carnivora, Chiroptera, Eulipotyphla, Lagomorpha, Perissodactyla, Pholidota, Primates, and 

Rodentia. Mammalian order silhouettes were obtained from phylopic.org.  The percent of observed 

associations (known to exist between the focal mammal and the focal coronavirus) were predicted 

by the final model (trained with all available data) were as follows: 95.25% were predicted with 

probability cut-off≥0.9, whereas 97.37% were predicted with cut-offs: >0.75, and >0.5. 
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