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Section 1: NDC Commitments and projections 
 

Table S1. NDC for selected countries.1,2  

Country / Sector NDC key actions 
Overall Energy Agriculture and diet Transport 

China Projected 7%–15% 
emissions increase above 
2015 levels by 2030. Peak 
emissions by 2030. 60 -
65% below 1990 carbon 
intensity of GDP.  

Increase the share of 
non-fossil fuels in 
primary energy 
consumption to 
around 20% by 2030. 
Electricity to be 35% 
renewables by 2030. 
Industry target - Achieve 
effective control on 
emissions of HFC-23 by 
2020 

Emissions to be 
‘controlled’.  
 
Afforestation to be 
‘vigorously enhance[d]’ 

Improved gasoline 
quality by 2020. 
Promote the walking and 
cycling in cities 

Brazil Projected 93% emissions 
increase above 1990 by 
2030. Unconditional target 
58% increase above 1990 
(excluding LUC) 

45% of renewables in 
the energy mix by 2030. 

Increasing the share of 
sustainable biofuels to 
approximately 18% by 
2030.  
 
Restoring an additional 
15 million hectares of 
degraded pasturelands 
by 2030 and enhancing 5 
million hectares of 
integrated cropland-
livestock-forestry 
systems (ICLFS) by 
2030. 

Promote efficiency 
measures 

Germany 41% - 43% below 1990 
level by 2030 
55% emissions reduction 
target for 2030 from 1990 
baseline 

Proposed phasing out 
coal by 2038 

Emit no more than 58-61 
MtCO2e/year by 2030 

7-10 million electric 
vehicles by 2030 

India >50% increase in 
emissions by 2030. 
Unconditional target 33-
35% below 2005 emissions 
intensity of GDP by 2030 

Improve the efficiency 
of coal power plants. 
40% of electricity to be 
non-fossil fuel by 2030. 

“[The] long-term goal is 
to bring 33% of its 
geographical area under 
forest cover eventually”.  
 
Create a carbon sink of 
2.5-3.0 GTCO2e through 
additional forest and tree 
cover by 2030. 

Reducing emissions 
from transportation 
sector. Facilitate 
transition to electric 
vehicles. 

Indonesia Approximately 400% 
above 1990 levels 
Unconditional target 535% 
above 1990 levels 

Renewable energy at 
least 23% of TPES in 
2025 and at least 31% in 
2050 
 
Oil to be less than 25% 
of TPES in 2025 and 
less than 20% in 2050 

N/A N/A 

Nigeria 20% unconditional (45% 
conditional) reduction 
below BAU. (not covered 
by CAT) 

Work towards ending 
gas flaring by 2030 
 
Work towards Off-grid 
solar PV of 13GW 
(13,000MW) 
 
Improve efficiency 

N/A N/A 
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South Africa Unconditional target 17%-
78% above 1990. 33% to 
39% increase above 1990 
level. 

Decarbonised electricity 
by 2050 
 
23 Mt CO2 CCS from 
the coal-to-liquid plant 
 
Additional 15.8 GW for 
wind and 7.4 GW for 
solar by 2030 
 
Decommission 35GW of 
coal by 2050 

N/A N/A 

United States of 
America 

Indicated intent to 
withdraw from Paris 
Agreement on November 
5th 2020. Previous 
commitment 26%-28% 
reduction below its 2005 
level in 2025 
 
Emissions unchanged by 
2030 

Previous commitment to 
reduce emissions from 
the power sector by 32% 
below 2005 levels by 
2030. 

N/A N/A 

United Kingdom UK Climate Change Act 
2008 (2050 Target 
Amendment) Order 2019 
requires target for at least a 
100% net reduction of 
greenhouse gas emissions 
(compared to 1990 levels) 
by 2050 

Coal phased out by 2025 
 
Oil and gas over 70% of 
TPES in 2030 

11% fall between 2019 
and 2030. 
 

Ban on petrol/diesel cars 
by 2035 
 
Cycling/walking 
infrastructure upgrades 

Key: colour 
indicates source  
 

CAT projection 
 

CAT NDC ratified 
excluding LULUCF 
 

CAT policy description 
(usually post NDC) 
 

NDC directly  
N/A = no clear pledges 
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Section 2: Model methods 
IEA World Energy Model (Energy and CO2): 
The International Energy Agency (IEA) maintain the World Energy Model (WEM),3 which is a simulation 
model designed to replicate how energy markets function and is the main tool by which the IEA generate 
detailed sector-by-sector and regional projections for the World Energy Outlook scenarios. 

The WEM is an energy supply, transformation and demand energy model that provide global estimates of the 
dynamics of the global energy system. The model relies on different end use sector models to estimate demand 
functions that are linked to the global energy balances supply and primary energy demand flows (see Figure S1). 

The main assumptions of the model related to economic growth, demographics and technological developments. 
A range of dynamically linked sectoral models for electricity, oil and overall primary energy demand are 
interlinked with the latest country-level statistical inputs and observed market trends. 

The output of the model is typically measured in the SI unit of Joules (e.g. Exajoules or Petajoules) or as an oil 
equivalent (i.e. Toe).  Energy balances are produced and reported at a regional level. CO2 emissions for those 
regions based on internationally agreed CO2 factors. 

The model outputs at the annual level over the scenario period, with historic data being updated to the latest 
available reported statistics, which typically include a 1 or 2 year lag.  

 

Figure S1. World Energy Model structure.3  
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GAINS 
The GAINS (Greenhouse gas-Air pollution Interactions and Synergies) model explores cost-effective multi-
pollutant emission control strategies that meet environmental objectives on air quality impacts (on human health 
and ecosystems) and greenhouse gases. GAINS, developed by the International Institute for Applied Systems 
Analysis (IIASA), brings together data on economic development, the structure, control potential and costs of 
emission sources, the formation and dispersion of pollutants in the atmosphere and an assessment of 
environmental impacts of pollution. 

GAINS has been used to address air pollution impacts on human health from fine particulate matter and ground-
level ozone, vegetation damage caused by ground-level ozone, the acidification of terrestrial and aquatic 
ecosystems and excess nitrogen deposition to soils, in addition to the mitigation of greenhouse gas emissions. 
GAINS describes the interrelations between these multiple effects and the pollutants (SO2, NOx, PM, NMVOC, 
NH3, CO2, CH4, N2O, F-gases) that contribute to these effects at the regional scale.  

The global version of the GAINS model which is used for this study employs a spatially disaggregated 
representation of the world in 180 source regions, which are either countries, provinces or sub-national 
aggregates. Among the countries considered in this study, China is represented at provincial level (35 
provinces), India in 23 aggregates of states/union territories, the USA as mainland + Alaska, and all other 
countries as countries. 

Activity projections are supplied by IEA’s WEM in the WEM native region, sector and fuel disaggregation.3 
They are translated into the GAINS region, sector and fuel classification using the proportional downscaling 
algorithm reported by Rafaj et al (2013 and 2018).4,5 The WEM model provides information on the future 
evolution of the energy system under various climate and energy policies for the following subsectors: power 
generation, fuel extraction and conversion, industry, transport and buildings. Not only combustion-related 
activities are modelled in WEM, also projections for industrial processes, e.g., iron and steel production, cement 
and aluminium manufacturing are developed. If some of the emission sources are not explicitly represented in 
WEM, they are derived from the socio-economic drivers such as population and economic growth, sectoral 
value added trends, etc. Examples of emitting sectors in GAINS not covered explicitly by WEM include 
livestock numbers, burning of agricultural residues, waste generation, brick production and other industrial 
process activities. 

Energy consumption data from the WEM projections is distributed across the GAINS sub-regions (countries, 
states, provinces) based on shares derived from international and national energy and industrial statistics (see 
referenced examples).6-9 The downscaling procedure also allocates energy consumption to detailed subsectors 
and fuel types in GAINS that are not explicitly provided by the energy model. These include various transport 
sub-categories, industrial demand activities split into furnaces/boilers as well as fuel conversion and processing.  

For each of the source regions considered in GAINS, emission estimates for a particular emission control 
scenario consider (1) the detailed sectoral structure of the emission sources that emerges from the downscaling 
of the activity projection described above, (2) their technical features (e.g., fuel quality, plant types, etc.), and 
(3) applied emission controls (GAINS includes a database of over 1000 technical measures).  

For each key source sector, the spatial patterns of PM and its precursors emissions are then estimated at a 0.5⁰ × 
0.5⁰ longitude–latitude resolution, based on relevant proxy variables (updated from Klimont et al 2017).10 These 
estimates rely on the most recent updates of data on population distribution, road networks, plant locations, open 
biomass burning, etc. that were originally developed within the Global Energy Assessment project.11 For the 
residential sector, a finer resolved emission distribution map has been developed at 0.1⁰ resolution, combining 
fine resolved gridded population with urban-rural classification, and estimates of prevalence of different fuel use 
in urban and rural areas. 

 

CO2 
Computation of CO2 emissions in GAINS follows the approach documented in Amann et al (2008) and is based 
on combining the exogenous activity data (e.g., the energy scenarios developed in WEM) and corresponding 
emission factors.12 Removal efficiency of carbon capture and storage (CCS) installations are considered in the 
emission factors in power and industrial sectors. CO2 emissions are computed with a bottom-up approach, for 
each economic sector in each GAINS region (subregion, country, province). Emission for historic years are 
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calibrated to the national GHG inventories reported by Parties to the UNFCCC, while also the emission factors 
are derived from the UNFCCC guidelines.12  

Non-CO2 greenhouse gases 
The non-CO2 greenhouse gases covered in the GAINS model framework are methane (CH4), nitrous oxide 
(N2O) and the fluorinated gases hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexaflouride 
(SF6). Internally consistent analyses of technical mitigation potentials for global non-CO2  greenhouse gases in 
the 2050 timeframe have been described in Höglund-Isaksson et al. (2020), Winiwarter et al. (2018), and 
Purohit and Höglund-Isaksson (2017).13-15  The GAINS model relies on importing externally produced 
projections for activities in the energy and agricultural sectors, while projections for the generation of waste and 
wastewater and the use of F-gases in cooling and other applications are generated internally in GAINS in 
consistency with the macroeconomic projections of the energy scenario implemented. For this particular 
exercise, three alternative scenarios were developed for future non-CO2 greenhouse gas emissions. All three use 
macroeconomic and energy sector activity specific drivers to 2040 that are consistent with the IEA World 
Energy Outlook 2018.16 The current pathways scenario is developed in consistency with the energy projections 
of the associated New Policies Scenario (NPS), while an alternative low-emission scenario (sustainable 
pathways scenario) is developed in consistency with energy projections of the Sustainable Development 
Scenario (SDS) and assuming maximum implementation of existing technical mitigation potential for non-CO2 
greenhouse gases. A third emission scenario, the health in all climate policies scenario, builds on the latter 
scenario, but assumes in addition that widespread shifts towards more plant-based human diets take place. For 
the Baseline and low emission scenarios, projections of livestock numbers, fertilizer use, and crop area are 
developed in consistency with FAO long-term trends.17 To reflect shifts in human diets, we use an alternative 
agricultural scenario developed by IIASA’s GLOBIOM model for the 2019 report of the Food and Land Use 
Coalition.18 This scenario simulates a shift towards an EAT Lancet diet under a constraint of global food 
security. 

Assessment of fluorinated greenhouse gases (F-gases: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and 
sulfur hexafluoride (SF6)) emissions in the GAINS model follows the approach documented in Purohit and 
Höglund-Isaksson (2017) and Höglund-Isaksson (2017).14,19 Activity data used to estimate HFC emissions in the 
years 2005, 2010 and 2015 is derived from HFC consumption reported by industrialized countries (Germany, 
UK and USA) to the UNFCCC. For developing countries, HCFC and HFC consumption data is extracted from 
available literature14,20 and HFC inventories prepared by Climate and Clean Air Coalition (CCAC).21 In 
addition, for each HFC emission source, the fraction of HCFC in the HFC/HCFC use is identified from reported 
baselines of parties to the Montreal Protocol and modelled in consistency with the phase-out schedule of HCFCs 
in the latest revision of the  Montreal Protocol and including later baseline up-dates reported by the parties to the 
UNEP Ozone Secretariat and in the HCFC Phase-out Management Plans. For the development of the baseline 
scenarios in the timeframe to 2040, we use the existing model setup in GAINS, which for global scenarios uses 
drivers consistent with macroeconomic and energy sector projections from the IEA World Energy Outlook 
2017.22 Further details on model assumptions for estimating HFC, PFC and SF6 emissions are provided in 
Purohit et al. (2017).14  

Ambient PM2.5 and health impact calculations 
The general principle of ambient PM2.5 calculations in GAINS has been discussed by Amann et al. (2011).23 
Owing to the history and evolution of the GAINS model over time, slightly different versions have been 
implemented in the European domain and in the global domain outside Europe. All versions rely on perturbation 
simulations of atmospheric chemistry transport models, in which emissions from a given source region and 
pollutant are reduced from base case, and the change in ambient concentration levels is used to calculate a linear 
transfer coefficient. Source pollutants considered for the formation of PM2.5 are primary PM2.5 (PPM), SO2, 
NOx, NH3, and VOC. For PPM, the transfer coefficients are split into one describing low-level emissions from 
residential combustion and traffic, and one for all other sources, to account for different atmospheric dispersion 
characteristics of emissions injected at different heights.  

Ambient PM2.5 calculations for Europe have been described by Kiesewetter et al.24,25 Linear transfer coefficients 
were derived based on EMEP model simulations (5 met years 2006-10) from region-pollutant specific emissions 
to 0.5⁰ x 0.25⁰ grid, then downscaling of low-level PPM within the grid cell to a finer 0.125⁰ x 0.0625⁰ grid 
(“7km”) and urban polygons inside the 7km grid, using a linear relationship between sub-grid PPM emission 
density and calculated PM2.5 concentrations derived from a full-year simulation of the CHIMERE CTM.26 Low-
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level emissions considered for the downscaling include the domestic (SNAP 2), road transport (SNAP 7), and 
off-road transport (SNAP 8) sectors. Urban-rural split of emissions is done at the level of sub-7km grid, to 
redistribute the 7km emissions into the urban polygon and the rest of the grid cell. This sub-7km split is done by 
population density for SNAP 2 and 7 except heavy duty trucks. 

Ambient PM2.5 calculations outside Europe have been described by Amann et al. (2020).27 They follow a very 
similar approach, however using slightly different resolution and CTM model versions. Also, they are more 
explicit in terms of differentiating urban and rural low-level emission sources. Base case and reduction 
simulations (15% reduction runs for pollutants PPM total, PPM low-level (SNAP 2+7), SO2, NOX, NH3, VOC, 
with met year 2015) have been run with the EMEP CTM at 0.5⁰ resolution, with either an Asia-wide domain as 
used in the UNEP-CCAC Assessment of Air Pollution in Asia and the Pacific, or a global domain for all other 
regions. On top of these ordinary transfer coefficient calculations, two global simulations with 0.1⁰ resolution 
were conducted for the meteorological year 2015: a base case simulation, and a simulation in which all 
residential emissions from located urban areas (all pollutants) were reduced by 30% simultaneously. This 
additional reduction run was used to split the PPM low-level transfer coefficient into urban and non-urban, and 
to split the SO2 and NOx transfer coefficients into low-level urban and the rest, and to increase the resolution of 
ambient PM2.5 calculations from all low-level sources to 0.1° globally outside Europe. 

Deaths attributable to ambient PM2.5 for regions other than Europe are calculated using the methodology of the 
WHO assessment on the burden of disease from ambient air pollution,28 which relies on disease specific 
integrated exposure response relationships (IERs) developed within the Global Burden of Disease 2013 study 
and are presented in Figure S2.29  

The population attributable fraction 𝑃𝐴𝐹!"# of air-pollution related deaths from disease 𝑑 in region 𝑗 and age 𝑎 
are calculated as 

 𝑃𝐴𝐹!"# =
∑ 𝑝𝑜𝑝"$
𝑝𝑜𝑝"

(𝑅𝑅!#$ − 1)$

1 + ∑
𝑝𝑜𝑝"$
𝑝𝑜𝑝"

(𝑅𝑅!#$ − 1)$

 (1) 

 

where 𝑖 represent the 0.1° grid cells hosting population 𝑝𝑜𝑝"$ belonging to region 𝑗. 𝑅𝑅!#$ is the disease and 
(possibly) age specific relative risk as calculated from the integrated exposure response functions for PM2.5 
concentration levels in that spatial unit.  

Deaths attributable to ambient PM2.5 exposure are calculated by multiplying the 𝑃𝐴𝐹!"# from Eq. (1) with age 
specific baseline cases of deaths 𝑑!"# from disease 𝑑 in region 𝑗: 

 

 𝑝𝑑!"# = 𝑃𝐴𝐹!"# ⋅ 𝑑!"# (2) 

 

Age-specific numbers of deaths from individual diseases are estimated from published numbers for the year 
2010 in the Global Burden of Disease 2013 project, which were obtained from the GBD data query tool. Age-
specific projected total deaths for each GAINS region are taken from the UN World Population Prospects 
2017.30 We assume that while total age-specific deaths vary according to the UN projections, the relative shares 
of individual diseases contributing to age-specific deaths remain unchanged in the future. 

For Europe, calculations for deaths attributable to ambient PM2.5 follow the WHO Europe methodology and 
apply exposure-response relationships for all-cause mortality among population over 30 years of age as reported 
under the REVIHAAP assessment.31 Equations (1) and (2) are applied without further age differentiation to total 
deaths above 30 years of age, using the approximation  

𝑝𝑑" ≈ 𝛽 ⋅ 𝑃𝑀" ⋅ 𝑑" 
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with 𝛽 = 0.00588, 𝑃𝑀	population-weighted mean anthropogenic PM2.5 and 𝑑" the number of non-accidental 
deaths over 30 years of age in each country 𝑗. 

 

 

Figure S2. Disease-specific integrated exposure-response curves (mean and 95% confidence interval) for 
ambient PM2.5 exposure. 
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Diet Model (Diet, Health): 
The estimates of the diet-related health co-benefits were based on estimates by Springmann and colleagues.32,33 
The estimates differed by degree of technological progress, reduction in food loss and waste, and dietary 
change. For this analysis, we adopted the following scenario combinations: 

- Current pathways scenario: business-as-usual projections for technological progress, food loss and 
waste, and dietary change 

- Sustainable pathways scenario: business-as-usual projections for technological progress, halving of 
food loss and waste, and dietary changes towards flexitarian diets 

- Health in all climate policies scenario: ambitious levels of technological progress, reducing food loss 
and waste by three quarters, and dietary changes to a combination of flexitarian diets (50%) and vegan 
diets (50%)  

Diet projections and scenarios 
We estimated baseline and projected food intake by adapting food demand projections from the International 
Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) that were based on a harmonised 
dataset of country-specific food availability data, and we adjusted those for food waste at the household 
level.34,35 Future projections of food demand were income-dependent and followed a middle-of-the-road socio-
economic development pathway (shared socio-economic pathway 2, SSP2), as developed by the climate change 
research community36-38 and are in line with other projections.39,40 For estimating the prevalence of underweight 
(BMI<18), overweight (25<BMI<30) and obesity (BMI>30) in each country, we fitted log-normal distributions 
to WHO estimates of mean BMI and the prevalence of overweight and obesity using a cross-entropy method 
that jointly minimised the deviation of the prevalence data, and we projected weight changes by using 
correlations between changes in mean BMI and changes in food availability.41  
 
The flexitarian and vegan scenarios were based on recommendations of the EAT-Lancet Commission on 
Healthy Diets from Sustainable Food Systems. The flexitarian dietary patterns contain no processed meat, low 
amounts of red meat (including beef, lamb, pork) and sugar, moderate amounts of poultry, dairy and fish, and 
generous amounts of fruits, vegetables, legumes, and nuts. In the vegan dietary pattern, all animal source foods 
were replaced to one third by fruits and vegetables and to two thirds by legumes. The dietary patterns were 
regionalised for each country by preserving the current national preferences for types of grains, fruits, red meat 
and fish.  
 
Health analysis 
To analyse the implications of dietary change for chronic disease mortality, we constructed a comparative risk 
assessment framework nine risk factors and five disease endpoints.42 The risk factors included high consumption 
of red meat, low consumption of fruits, vegetables, nuts and seeds, fish, and legumes, as well as being 
underweight (BMI<18.5), overweight (25<BMI<30), and obese (BMI>30). The disease endpoints included 
coronary heart disease (CHD), stroke, type-2 diabetes mellitus (T2DM), cancer (in aggregate and as colon and 
rectum cancers), and respiratory disease (which is associated with changes in weight).  
 
We estimated the mortality and disease burden attributable to dietary and weight-related risk factors by 
calculating population impact fractions (PIFs) which represent the proportions of disease cases that would be 
avoided when the risk exposure was changed from a baseline situation to a counterfactual situation. For 
calculating PIFs, we used the general formula:29,42,43 
  

 
𝑃𝐼𝐹 =

∫𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥 − ∫𝑅𝑅(𝑥)𝑃%(𝑥)𝑑𝑥
∫𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥

  

 
where 𝑅𝑅(𝑥) is the relative risk of disease for risk factor level 𝑥, 𝑃(𝑥) is the number of people in the population 
with risk factor level 𝑥 in the baseline scenario, and 𝑃%(𝑥) is the number of people in the population with risk 
factor level 𝑥 in the counterfactual scenario. We assumed that changes in relative risks follow a dose-response 
relationship,43 and that PIFs combine multiplicatively, i.e. 𝑃𝐼𝐹 = 1 − ∏ (1 − 𝑃𝐼𝐹$)$  where the i’s denote 
independent risk factors.43,44  
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The number of avoided deaths due to the change in risk exposure of risk i, Δdeathsi, was calculated by 
multiplying the associated PIF by disease-specific death rates, DR, and by the number of people alive within a 
population, P:   
 

 Δ𝑑𝑒𝑎𝑡ℎ𝑠$(𝑟, 𝑎, 𝑑) = 𝑃𝐼𝐹$(𝑟, 𝑑) ∙ 𝐷𝑅(𝑟, 𝑎, 𝑑) ∙ 𝑃(𝑟, 𝑎)  

where PIFs are differentiated by region r and disease/cause of death d; the death rates are differentiated by 
region, age group a, and disease; the population groups are differentiated by region and age group; and the 
change in the number of deaths is differentiated by region, age group and disease. 
 
We used publicly available data sources to parameterize the comparative risk analysis. Mortality data were 
adopted from the Global Burden of Disease project,45 and projected forward by using data from the UN 
Population Division.46 Baseline data on the weight distribution in each country were adopted from a pooled 
analysis of population-based measurements undertaken by the NCD Risk Factor Collaboration.47  
 
The relative risk estimates that relate the risk factors to the disease endpoints were adopted from meta-analyses 
of prospective cohort studies.48-54 In line with the meta-analyses, we included non-linear dose-response 
relationships for fruits and vegetables, nuts and seeds, and fish, and assumed linear dose-response relationships 
for the remaining risk factors. As our analysis was primarily focused on mortality from chronic diseases, we 
focused on adults aged 20 year or older, and we adjusted the relative-risk estimates for attenuation with age 
based on a pooled analysis of cohort studies focussed on metabolic risk factors,55 in line with other 
assessments.29,56  
 
Table S2 provides an overview of the relative-risk parameters used in the analysis. The selection of risk-disease 
associations used in the health analysis was supported by available criteria used to judge the certainty of 
evidence, such as the Bradford-Hill criteria used by the Nutrition and Chronic Diseases Expert Group 
(NutriCoDE),56 the World-Cancer-Research-Fund criteria used by the Global Burden of Disease project,57 as 
well as NutriGrade (Table S3).58 The certainty of evidence supporting the associations of dietary risks and 
disease outcomes as used here were graded as moderate or high with NutriGrade,51,53,59 and/or assessed as 
probable or convincing by the Nutrition and Chronic Diseases Expert Group,56 and by the World Cancer 
Research Fund.60  
 
For the different diet scenarios, we calculated uncertainty intervals associated with changes in mortality based 
on standard methods of error propagation and the confidence intervals of the relative risk parameters. For the 
error propagation, we approximated the error distribution of the relative risks by a normal distribution and used 
that side of deviations from the mean which was largest. This method leads to conservative and potentially 
larger uncertainty intervals as probabilistic methods, such as Monte Carlo sampling, but it has significant 
computational advantages, and is justified for the magnitude of errors dealt with here (<50%) (see e.g. IPCC 
Uncertainty Guidelines).  

 
Caveats 
In the comparative risk assessment, we used relative risk factors that are subject to the caveats common in 
nutritional epidemiology, including small effect sizes and potential measurement error of dietary exposure, such 
as over and underreporting and infrequent assessment.61 For our calculations, we assumed that the risk-disease 
relationships describe causal associations, an assumption supported by the existence of statistically significant 
dose-response relationships in meta-analyses, the existence of plausible biological pathways, and supporting 
evidence from experiments, e.g. on intermediate risk factors.48,49,51-54,56,59,62,63 However, residual confounding 
with unaccounted risk factors cannot be ruled out in epidemiological studies. Additional aspects rarely 
considered in meta-analyses are the importance of substitution between food groups that are associated with 
risks, and the time lag between dietary exposure and disease.  
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To address potential confounding, we omitted risk-disease associations that became non-significant in fully 
adjusted models, in particular those related to milk intake,64,65  but potential confounding might also exists for 
the association between increased fish intake and reduced CHD risk.66-69 The quality of evidence in meta-
analyses that covered the same risk-disease associations as used here was graded with NutriGrade as moderate 
or high for all risk-disease pairs included in the analysis (SI Table 3).51,53,59 In addition, the Nutrition and 
Chronic Diseases Expert Group and the World Cancer Research Fund graded the evidence for a causal 
association of ten of the 12 risk-disease associations included in the analysis as probable or convincing.56,60 The 
relative health ranking of leading risk factors found in our analysis was similar to existing rankings that relied 
on different relative-risk parameters and exposure data.57,70  
 
As exposure data, we used a proxy of food consumption that was derived from estimates of  food availability 
that were adjusted for the amount of food wasted at the point of consumption.34,71 An alternative would have 
been to rely on a set of consumption estimates that has been based on a variety of data sources, including dietary 
surveys, household budget and expenditure surveys, and food availability data.72,73 However, neither the exact 
combination of these data sources, nor the estimation model used to derive the data have been made publicly 
available. For some individual countries, using dietary surveys would also have been an alternative. However, 
underreporting is a persistent problem in dietary survey,74,75 and regional differences in survey methods would 
have meant that our results would not be comparable between countries. In contrast to dietary surveys, waste-
adjusted food-availability estimates indicate levels of energy intake per region that reflect differences in the 
prevalence of overweight and obesity across regions.47  
 
 
Table S2. Relative risk parameters (mean and low and high values of 95% confidence intervals) for 
dietary risks and weight-related risks.  

Food group Endpoint Unit RR mean RR low RR high Reference 

Red meat 

CHD 100 g/d 1.15 1.08 1.23 Bechthold et al (2019) 

Stroke 100 g/d 1.12 1.06 1.17 Bechthold et al (2019) 

Colorectal cancer 100 g/d 1.12 1.06 1.19 Schwingshackl et al (2018) 

Type 2 diabetes 100 g/d 1.17 1.08 1.26 Schwingshackl et al (2017) 

Fish CHD 15 g/d 0.94 0.90 0.98 Zheng et al (2012) 

Fruits 

CHD 100 g/d 0.95 0.92 0.99 Aune et al (2017) 

Stroke 100 g/d 0.77 0.70 0.84 Aune et al (2017) 

Cancer 100 g/d 0.94 0.91 0.97 Aune et al (2017) 

Vegetables 
CHD 100 g/d 0.84 0.80 0.88 Aune et al (2017) 

Cancer 100 g/d 0.93 0.91 0.95 Aune et al (2017) 

Legumes CHD 57 g/d 0.86 0.78 0.94 Afshin et al (2014) 

Nuts CHD 28 g/d 0.71 0.63 0.80 Aune et al (2016) 

Underweight 

CHD 15<BMI<18.5 1.17 1.09 1.24 Global BMI Collab (2016) 

Stroke 15<BMI<18.5 1.37 1.23 1.53 Global BMI Collab (2016) 

Cancer 15<BMI<18.5 1.10 1.05 1.16 Global BMI Collab (2016) 

Respiratory disease 15<BMI<18.5 2.73 2.31 3.23 Global BMI Collab (2016) 

Overweight 

CHD 25<BMI<30 1.34 1.32 1.35 Global BMI Collab (2016) 

Stroke 25<BMI<30 1.11 1.09 1.14 Global BMI Collab (2016) 

Cancer 25<BMI<30 1.10 1.09 1.12 Global BMI Collab (2016) 

Respiratory disease 25<BMI<30 0.90 0.87 0.94 Global BMI Collab (2016) 

Type 2 diabetes 25<BMI<30 1.88 1.56 2.11 Prosp Studies Collab (2009) 

Obesity (grade 1) 
CHD 30<BMI<35 2.02 1.91 2.13 Global BMI Collab (2016) 

Stroke 30<BMI<35 1.46 1.39 1.54 Global BMI Collab (2016) 



11 
 

Cancer 30<BMI<35 1.31 1.28 1.34 Global BMI Collab (2016) 

Respiratory disease 30<BMI<35 1.16 1.08 1.24 Global BMI Collab (2016) 

Type 2 diabetes 30<BMI<35 3.53 2.43 4.45 Prosp Studies Collab (2009) 

Obesity (grade 2) 

CHD 30<BMI<35 2.81 2.63 3.01 Global BMI Collab (2016) 

Stroke 30<BMI<35 2.11 1.93 2.30 Global BMI Collab (2016) 

Cancer 30<BMI<35 1.57 1.50 1.63 Global BMI Collab (2016) 

Respiratory disease 30<BMI<35 1.79 1.60 1.99 Global BMI Collab (2016) 

Type 2 diabetes 30<BMI<35 6.64 3.80 9.39 Prosp Studies Collab (2009) 

Obesity (grade 3) 

CHD 30<BMI<35 3.81 3.47 4.17 Global BMI Collab (2016) 

Stroke 30<BMI<35 2.33 2.05 2.65 Global BMI Collab (2016) 

Cancer 30<BMI<35 1.96 1.83 2.09 Global BMI Collab (2016) 

Respiratory disease 30<BMI<35 2.85 2.43 3.34 Global BMI Collab (2016) 

Type 2 diabetes 30<BMI<35 12.49 5.92 19.82 Prosp Studies Collab (2009) 
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Table S3. Overview of existing ratings on the certainty of evidence for a statistically significant 
association between a risk factor and a disease endpoint. The ratings include those of the Nutrition and 
Chronic Diseases Expert Group (NutriCoDE),56 the World Cancer Research Fund,60 and NutriGrade.51,53,59  The 
ratings relate to the risk-disease associations in general, and not to the specific relative-risk factor used for those 
associations in this analysis.    

Food group Endpoint Association Certainty of evidence 

Fruits CHD 
reduction 

NutriCoDE: probable or convincing;  

    NutriGrade: moderate quality of meta-evidence 

  Stroke 
reduction 

NutriCoDE: probable or convincing 

    NutriGrade: moderate quality of meta-evidence 

  Cancer 
reduction 

WCRF: strong evidence (probable) for some cancers 

    NutriGrade: moderate quality of meta-evidence for colorectal cancer 

Vegetables CHD 
reduction 

NutriCoDE: probable or convincing 

    NutriGrade: moderate quality of meta-evidence 

  Cancer 
reduction 

WCRF: strong evidence (probable) for non-starchy vegetables and some cancers 

    NutriGrade: moderate quality of meta-evidence for colorectal cancer 

Legumes CHD 
reduction 

NutriCoDE: probable or convincing 

    NutriGrade: moderate quality of meta-evidence 

Nuts and seeds CHD 
reduction 

NutriCoDE: probable or convincing 

    NutriGrade: moderate quality of meta-evidence 

Fish CHD 
reduction 

NutriCoDE: probable or convincing 

    NutriGrade: moderate quality of meta-evidence 

Red meat CHD increase NutriGrade: moderate quality of meta-evidence 

  Stroke increase NutriGrade: moderate quality of meta-evidence 

  Cancer 
increase 

WCRF: strong evidence (probable) for colorectal cancer 

    NutriGrade: moderate quality of meta-evidence for colorectal cancer 

  Type-2 
diabetes increase 

NutriCoDE: probable or convincing 

  NutriGrade: high quality of meta-evidence 

NutriCoDE: Nutrition and Chronic Diseases Expert Group 

NutriGrade: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tailored to nutrition research 

WCRF: World Cancer Research Fund   
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Active Travel (Travel, Health): 
We conducted a rapid review of active travel in nine countries (listed below) to assess the percentage of 
population who regularly walk and cycle, and to inform scenario development.  

We reviewed recent data on active travel, extrapolated to a 2018 baseline and projected forward to 2040 under 
different scenarios.   

The pre-baseline active travel data was taken from: 

• The USA was based on the National Household Travel Survey data.76 

• Germany was based on the Mobility in Germany.77  

• The UK was based on the National Travel Survey data of England and Wales.78  

• Brazil was based on São Paulo Metropolitan Region data (2012).79,80  

• China was based on the Chinese Nutrition and Health Surveillance (2010–2012) data.81  

• South Africa was based on the National Household Travel Survey (2013).82  

• Indonesia was based on the Greater Jakarta data (2018).83  

• India was based on Census 2011 data.84  

• Nigeria was based on Lagos Metropolitan Area (2015).85  

 

We assessed the Current Pathways Scenario (CPS) of active travel in 2040 and compared it against the two 
alternative scenarios: 

• Health in all climate policies scenario (HPS): under this scenario it was assumed that in 2040, 75% 
of the population will be active (walk and/or cycle). This was assumed based on Germany’s active 
travel pattern77 – about 72% of population age between 70 and 79 do any cycling and/or at least 30 
minutes of main-mode walking in a week. The mean walking duration was assumed as 210 
minutes per pedestrian per week; and mean cycling duration was assumed as 180minutes per 
cyclists per week; this mean distance is assumed based on German data. 77 

• Sustainable pathways scenario (SPS): In 2040, the additional percentage of people who are active 
(walk and/or cycle) in this scenario will be half of the net change (HPS-CPS) in the HPS. The 
mean walking duration (210minutes) and cycling duration (180minutes) are assumed same as the 
HPS. 

The HPS and SPS were assessed against the CPS, to calculate the net change in number of people who walk 
and/or cycle and associated health impacts in 2040 only. 

The step-by-step approach/process which have been adopted for each country is discussed in the ‘Lancet – 
Active Travel Appraisal Method’ spreadsheet. Overall method is discussed in the next section. 

Overall Method 
Overall, we adopted a data hierarchy and calibrated other data set to that. The data hierarchy is (in descending 
order):  

• Individual level trip data over a year.  

• Individual level trip data over 1 week.  

• Individual level trip data over 1 day 

• Summary statistics from travel survey on mode share on 1 day 

• Summary statistics on commuting only on 1 day 

Traditionally, transport planning/modelling processes are largely used to assess the number of trips by mode and 
purpose, rather than number of people who are active. Thus, active travel mode share was more readily 
published than the number of people who are active. 
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The pre-baseline data on percentage of people who are active in India, Indonesia and South Africa was assessed 
by converting active travel commuting mode share in these countries based on an Indian medium sized city 
(Visakhapatnam) data.86 Nigeria’s mode share was converted to people who are active based on Accra data.79 
The number of people who are active in the UK, China, Germany and Brazil was available (per-baseline year). 

Daily active travel pattern was converted to weekly as a week of active travel is more representative of 
typical/habitual physical activity e.g. person who doesn’t travel 1 day but are active on other days of the week. 
Data on weekly active travel pattern was not available for most of the countries, expect for Germany and the 
UK.  

Ratio of daily to weekly active pattern was assessed based on the UK active travel data. This ratio was applied 
to convert a day active travel data to a week – in the USA, Brazil, China, South Africa, Indonesia, India and 
Nigeria. Germany active travel data on a day to a week active pattern was not applied to other countries as the 
UK data was more representative/applicable to other countries than Germany.  

Weekly active travel data was then converted to the pre-baseline year. This was then extrapolated to the 2018 
baseline and 2040 CPS based on annual growth factors – it was assumed that there will be no change in 
percentage of people who are active in the USA, the UK, Germany and Brazil; whilst, based on available 
evidence a small annual decrease in active travel was assumed China, South Africa, India, Nigeria and 
Indonesia. In the HP scenario it was assumed that in 2040, 75% of the population will be active (walk and/or 
cycle). In the SP scenario it was assumed that in 2040, the additional percentage of people who are active will 
be half of the net change (HPS-CPS) in the HPS. The mean walking duration will be 210minutes and cycling 
duration be 180minutes) in both the HP and SP scenarios. 

We calculated the percentage of people who ‘walk’, ‘cycle’ and ‘walk or/and cycle’ in each of the three 
scenarios (CPS; HPS; SPS) in 2040 and in CPS in 2018 by age band. The percentage of people active by age 
band was available for Germany, England and the USA; for other countries, an equal percentage of active 
population within each age band was assumed. This assumption likely overestimates the baseline and thus 
underestimates the potential gain. 

Using the percentage of the population active, active travel duration, and standard Marginal Metabolically 
Equivalent Task (MMET) rates for walking and cycling, we calculated increases in population levels of physical 
activity. Using dose response relationships from Kelly et al. (2014),87 we calculated the potential impact fraction 
for each age band. These data was used to calculate number of deaths avoided due to increases activity (walk 
and/or cycle) in the HPS and SDS scenarios as compared to the CPS in 2040.  

Limitations and exclusions 
Some of the key limitations and exclusions underpinning this active travel appraisal are as follows: 

• There is considerable uncertainty about the possible impacts of the COVID-19 on future travel 
pattern, which are not considered as part of this work. In future, sensitivity tests can be undertaken 
when evidence is available on post COVID-19 travel pattern to show a higher/ lower active travel 
scenarios and associated health benefits. 

• Impact of emerging technologies such as micromobility on active travel is not considered as part 
of this work. 

• Limited active travel data is available for middle-income countries.  

• Only ‘main-mode’ walking and/or cycling trips were considered. 
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Section 3: Uncertainties 
 

Table S4. Uncertainties across the models and scenarios. 

Sector and 
exposure 
pathway 

Uncertainty 
component 

Description  

All pathways Population and 
demographic 
projections for 
estimating 
exposure 

We use the UN Department of Economic and Social Affairs World Population Prospects (2012 
and 2017 Revisions)30,46 data for population by age group in 2040. These estimates are based 
on all available sources of data on population size, levels of fertility, mortality and 
international migration. The greatest difference in the population projections for 2040 is for 
South Africa which has been revised from 61 million (2012) to 69 million (2017) and 
subsequently 70 million (2019). Across all countries considered 2017 projections for 2040 
were 2% higher than 2012 projections. Probabilistic Projections including median, 80% and 
95% prediction intervals are available here: 
https://population.un.org/wpp/Download/Probabilistic/Population/  
 

Energy and 
air pollution 

Policy uptake of 
the three scenarios 
(CPS, SPS, HPS) 

The World Energy Model scenarios model the impact of specific policies and measures on 
energy demand, production, trade, investment needs, supply costs and emissions. The 
scenarios are based on the implementation of current commitments and plans (Stated Policies 
Scenario) and a least-cost implementation of policies for the achievement of SDG 7, SDG 3.9 
and the Paris Agreement (Sustainable Development Scenario). The IEA modelling makes use 
of the RCP2.6. The policies database (https://www.iea.org/policies) is used to inform these 
scenarios. Governments will likely to continue to intervene in energy markets in the coming 
decades, but there is much uncertainty regarding what policies and measures will be 
introduced and the success of these.3 

Projections of 
energy demand 

The IEA uses population and economic projections to drive the energy demand projections in 
the World Energy Model. The population assumptions do not differ between the scenarios.  
The population numbers within the World Energy Model scenarios are well aligned (within 
2%) of the UN World Population Prospects.30 

Greenhouse gas 
emissions and 
exposure to air 
pollutants 

The Greenhouse gas-Air Pollution Interactions and Synergies model was used to provide these 
estimates. Uncertainties exist in the emission inventories and related input parameters 
(emission factors, fuel quality), the estimates of emission factors, control potentials, 
characteristics and uptake of future abatement technologies, enforcement of air quality 
legislation, the atmospheric dispersion calculations and the impact assessment as well as the 
models that feed into GAINS.  A discussion of uncertainty within the GAINS model is 
provided in Amann et al. (2011).23  Modelling of  PM2.5 concentrations and associated 
uncertainties are described by Kiesewetter et al.(2015)24,25 for Europe and for regions outside 
Europe by Amann et al. (2020).27 

Exposure-outcome 
associations 

For regions outside of Europe, disease-specific integrated exposure response (IER) 
relationships developed within the Global Burden of Disease 2013 study.29 The disease-
specific IER curves and the 95% confidence intervals are presented in Figure S2. However, 
these ranges are likely to underestimate true uncertainty ranges: In recent years different 
exposure response relationships have been published which result in much higher attributable 
mortality numbers (Burnett et al., 2018),92 while other assessments such as GBD 2017 (GBD 
Risk Factors collaborators 2018)93 give estimates similar to ours. The Exposure-response 
relationships for Europe are applied to all-cause mortality among population over 30 as 
reported under the REVIHAAP assessment. The risk increase of all-cause mortality per 
10µg/m3 PM2.5 is 6.2% with a 95% confidence interval of 4.1-8.4%.94 

Agriculture 
and diet 

Model 
uncertainties 

Model uncertainties have been described by Springmann et al. (2018)32,33 and include the 
values of planetary boundaries, feedback effects between different measures of change and the 
uptake of technologies that currently have large uncertainties. 

Projections of food 
demand 

Future projections of food demand were income-dependent and followed a middle-of-the-road 
socio-economic development pathway (shared socio-economic pathway 2, SSP2), as 
developed by the climate change research community.36,37 The population and development 
projections and uncertainties are described in Samir and Lutz (2017).38 The resulting 
projections on food demand in this model are in line with other projections of food 
demand.39,40 

Policy uptake of 
the three scenarios 
(CPS, SPS, HPS) 

These scenarios rely on changes across three areas: technological progress, food loss and waste 
and dietary change. As presented in Table S1, few NDCs currently specify emissions 
reductions in the agriculture sector and none specify dietary change, which could yield health 
co-benefits. There is much uncertainty regarding the policy measures governments will use to 
address this. A wide range of policy measures are required to improve population dietary 
habits, including education, labelling, quality standards, economic incentives, availability of 
food options and school and workplace interventions95 but all the changes in this model are 
considered attainable.32 

Exposure-outcome 
associations 

The relative risk parameters used in the comparative risk assessment were taken from meta-
analyses where the risk-disease associations were graded as moderate or high. The relative risk 
parameters and 95% confidence intervals are presented in Table S2.  

Transport and 
physical 
activity 

Active travel 
forecasts 
uncertainties  

Data at baseline are likely reasonably robust for the UK and Germany, and to a lesser extent 
the USA but come with considerable uncertainty for the other countries. National travel survey 
data was used for each country where available. For Brazil, Indonesia, and Nigeria, no national 
travel data are available and so data for São Paulo, Greater Jakarta and Lagos were used. 
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Percentage of people who are active in India, Indonesia and South Africa was assessed by 
converting active travel commuting mode share in these countries based on an Indian medium 
sized city (Visakhapatnam) data. Nigeria’s mode share was converted to people who are active 
based on Accra data.  
 
There is considerable uncertainty regarding the future travel patterns in all countries. Climate 
change itself could affect mobility patterns; with increases in temperature in some areas 
making walking and cycling more difficult and dependent on adaptation (greening) measures. 
In the CPS/ business as usual case it was assumed that there will be no change in percentage of 
people who are active in the USA, the UK, Germany and Brazil; whilst, based on available 
evidence a large decrease in active travel was assumed for China, South Africa, India, Nigeria 
and Indonesia; but levels could fall further still. 
The upper limit of the proportion of the population walking 210 minutes or cycling 180 
minutes per week was assumed to be 75% for all age groups below 80 and 70% for the 
population over 80 years, based on active travel patterns in Germany. This is not a strict upper 
limit and a higher value would have the greatest relative difference in Germany. However, we 
developed the two future scenarios (HPS, CPS; including the baseline case) which provide a 
range on health benefits and helps in understanding the impact of uncertainty on results. 

Policy uptake of 
the three scenarios 
(CPS, SPS, HPS) 

As presented in SI Table 1, few countries mention walking and cycling in their NDCs or 
related policies and there is uncertainty regarding the policy measures governments will 
introduce to increase active travel or the effects of such policies on walking and cycling rates.96 
Policies measures include society-level policies (speed limits and fuel prices), regional and 
city-level policies (including densification and mixed land use), route-level policies 
(improving accessibility, connectivity, safety and quality of routes) and individual-oriented 
policies (such as cycle lessons). 
Countries with high pollution (air and noise) and active travel related injuries (such as India) 
are likely to result in lower health benefits for the same dose of physical activity as compared 
to other countries (such as Germany). 
Policies that simultaneously reduce air pollution97  and road traffic injury risk will lead to 
greater benefits and are likely to be more effective at increasing uptake.  

Exposure-outcome 
associations 

Benefits of physical activity are well established with an evidence base that continues to 
improve with more robust instruments and studies e.g. Pearce et al. (2020).98 Dose response 
relationships were taken from the meta-analysis of reduction in all-cause mortality for walking 
and cycling by Kelly et al. (2014).87 Risk reduction for an additional 11.25 Metabolically 
Equivalent Task (MET) hours per week of walking is 0.89 with a 95% confidence interval of 
0.83-0.96 and the risk reduction for an additional 11.25 MET hours per week of cycling is 0.90 
with a 95% confidence interval of 0.87-0.94. These CIs do not fully represent the underlying 
uncertainties as the risks are based on largely on self-report that come with considerable 
measurement error at one point, and exposure is typically measured at only one point in time. 
Projecting forward the relationship may change over time based on changing disease burdens 
(including Covid-19), and treatments, including preventive treatment (e.g. a polypill). 

All Feedback These models do not consider feedback that could occur between the emissions that come from 
different sectors and resulting health outcomes. For example, physical activity is more 
beneficial without accounting for potential harms from more air pollution. However, the 
scenarios have been designed with synergies in mind, i.e. air pollution is lower in the SPS 
alongside increased physical activity. The models, however, are not directly linked. 
Additionally, the models do not consider climate feedback, such as the effect of climate 
change on crop yields and freshwater availability, on ambient PM2.5 concentrations or the 
effect of higher temperatures on people’s ability to engage in active travel. However, the 
climate has been included as a forcing driver within both the IEA energy model, the IIASA 
model and the agricultural model separately. 
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Section 4: Country evaluations 
The following tables provide details and data on each country considered in the paper.

 

Figure S3. Countries considered in this study 

The location of each country considered in this study is given in Figure S3, with relevant characteristics given in 
Table S5. The countries selected in this study account for 54% of the world population in 2018. The age 
dependency ratio is defined as the ratio of total working age population (15-64 years) to the total population of 
all other ages. 

 

Table S5. Country characteristics sourced from the World Bank for the year 2018, unless otherwise 
stated.99  

Country 
Name 

Land 
area 
(thousand 
sq. km) 

Population 
(millions) 

2040 
population 
projection 
(millions) 

Urban 
population 
(% of total 
population) 

Urban 
population 
growth 
(annual %) 

Age 
dependency 
ratio (% of 
working-
age 
population) 

Life 
expectancy 
at birth 
(years) 

GDP per 
capita, PPP 
(constant 
2017 
international 
$) 

Human 
Development 
Index 

 

Brazil 8,358 209.5 229.5 86.6 1.1 43.4 75.7 14,596 
0.76  

China 9,388 1,392.70 1444.3 59.2 2.5 40.4 76.7 15,011 
0.74  

Germany 349 82.9 76.3 77.3 0.4 54 81 53,660 
0.93  

India 2,973 1,352.60 1566.7 34 2.3 49.8 69.4 6,538 
0.63  

Indonesia 1,811 267.7 311.7 55.3 2.3 47.9 71.5 11,370 
0.70  

Nigeria 910 195.9 350.7 50.3 4.2 87.3 54.3 5,156 
0.53  

South 
Africa 1,213 57.8 61.1 66.4 2.1 52.4 63.9 12,631 

0.70  

United 
Kingdom 241 66.5 71.0 83.4 0.9 56.4 81.4 46,330 

0.92  

United 
States 9,147 326.7 383.4 82.3 0.8 52.7 78.5 61,391 

0.92  
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Table S6. Greenhouse gas emissions and energy use for 2015 baseline year by country 

Country Name 
Total CO2 
(GtCO2) 

Total GHG 
(GtCO2e) 

Total energy 
use (EJ) 

CO2e/cap 
(tonne) 

Brazil 0.52 1.21 12.9 2.5 

China 10.23 12.52 132.4 9.1 

Germany 0.70 0.80 12.9 8.6 

India 2.17 3.54 31.1 1.7 

Indonesia 0.47 0.89 7.4 1.8 

Nigeria 0.13 0.39 2.0 0.7 

South Africa 0.45 0.54 5.5 8.2 

United Kingdom 0.39 0.49 7.6 5.9 

United States 5.16 6.55 87.5 16.1 
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Section 5: Scenario Assumptions and results 
 

 

 

Figure S4. Total primary energy supply (TPES) by sector for each country in 2015 and under future 
(2040) scenarios 

 

 

Figure S5. CO2 emissions by sector for each country in 2015 and under future (2040) scenarios 
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Figure S6. PM2.5 concentration by sector for each country (excluding natural sources) 

 

Table S7: Greenhouse gas emissions, and PM2.5 concentration by country and sector. 

Country Sector Scenario CO2 (Gt) 

Non-CO2 
GHGs 
(GTCO2e) 

Total 
(GHGCO2e) 

Total 
Primary 
energy (EJ) 

PM25 
concertation 
(μg/m3) 

Brazil 

Power Sector 

Baseline 0.078 0.002 0.080 3.1 0.09 

CPS 0.045 0.002 0.046 4.6 0.06 

SPS 0.022 0.001 0.023 3.9 0.04 

HPS 0.022 0.001 0.023 3.9 0.02 

Agriculture 

Baseline 0.018 0.505 0.523 0.5 1.11 

CPS 0.019 0.583 0.603 0.7 2.68 

SPS 0.017 0.487 0.503 0.6 0.75 

HPS 0.017 0.341 0.358 0.6 0.30 

Transport 

Baseline 0.212 0.005 0.217 3.5 1.34 

CPS 0.237 0.007 0.244 4.6 0.97 

SPS 0.186 0.005 0.191 3.5 0.33 

HPS 0.186 0.005 0.191 3.5 0.30 

Residential 
Commercial 

Baseline 0.002 0.004 0.007 1.6 0.73 

CPS 0.003 0.003 0.006 2.4 0.54 

SPS 0.002 0.001 0.002 1.9 0.04 

HPS 0.002 0.001 0.002 1.9 0.01 

Industry 

Baseline 0.204 0.021 0.225 5.8 1.29 

CPS 0.271 0.025 0.296 8.1 1.41 

SPS 0.197 0.009 0.206 6.4 0.43 

HPS 0.197 0.009 0.206 6.4 0.27 
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Waste 

Baseline 0.000 0.080 0.080 0.0 1.46 

CPS 0.001 0.105 0.106 0.0 1.91 

SPS 0.000 0.044 0.044 0.0 0.03 

HPS 0.000 0.044 0.044 0.0 0.03 

China 

Power Sector 

Baseline 4.217 0.022 4.239 51.6 2.74 

CPS 4.876 0.033 4.909 87.9 2.33 

SPS 1.296 0.008 1.304 70.2 0.85 

HPS 1.296 0.008 1.304 70.2 0.59 

Agriculture 

Baseline 0.192 0.808 1.000 2.3 11.52 

CPS 0.125 0.955 1.080 2.6 13.14 

SPS 0.061 0.652 0.714 1.7 6.73 

HPS 0.061 0.686 0.747 1.7 2.22 

Transport 

Baseline 0.824 0.021 0.845 12.2 3.83 

CPS 1.291 0.031 1.322 21.8 2.99 

SPS 0.755 0.019 0.774 16.8 0.92 

HPS 0.755 0.019 0.774 16.8 0.53 

Residential 
Commercial 

Baseline 0.150 0.036 0.186 18.7 6.16 

CPS 0.093 0.035 0.128 27.1 2.33 

SPS 0.033 0.002 0.034 20.7 0.59 

HPS 0.033 0.002 0.034 20.7 0.05 

Industry 

Baseline 4.851 0.783 5.635 66.3 8.79 

CPS 3.973 0.796 4.769 76.7 6.83 

SPS 2.746 0.181 2.927 57.1 3.49 

HPS 2.746 0.181 2.927 57.1 1.91 

Waste 

Baseline 0.001 0.308 0.309 0.0 3.49 

CPS 0.001 0.573 0.574 0.0 4.73 

SPS 0.000 0.218 0.218 0.0 0.74 

HPS 0.000 0.218 0.218 0.0 0.73 

Germany 

Power Sector 

Baseline 0.328 0.005 0.334 5.7 0.84 

CPS 0.047 0.002 0.049 2.3 0.26 

SPS 0.080 0.001 0.081 2.9 0.28 

HPS 0.080 0.001 0.081 2.9 0.21 

Agriculture 

Baseline 0.006 0.062 0.068 0.1 2.80 

CPS 0.003 0.057 0.060 0.1 2.29 

SPS 0.002 0.044 0.046 0.0 1.55 

HPS 0.002 0.040 0.042 0.0 0.49 

Transport 

Baseline 0.144 0.001 0.145 2.6 0.98 

CPS 0.081 0.001 0.082 1.8 0.34 

SPS 0.042 0.001 0.042 1.3 0.20 

HPS 0.042 0.001 0.042 1.3 0.22 

Residential 
Commercial 

Baseline 0.049 0.004 0.053 3.9 1.01 

CPS 0.019 0.002 0.021 2.8 0.70 

SPS 0.008 0.001 0.009 2.4 0.50 

HPS 0.008 0.001 0.009 2.4 0.38 

Industry Baseline 0.176 0.010 0.186 4.4 1.59 

CPS 0.147 0.005 0.152 3.7 1.37 
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SPS 0.116 0.008 0.123 3.4 0.85 

HPS 0.116 0.008 0.123 3.4 0.59 

Waste 

Baseline 0.000 0.009 0.009 0.0 0.07 

CPS 0.000 0.005 0.005 0.0 0.07 

SPS 0.000 0.004 0.004 0.0 0.07 

HPS 0.000 0.004 0.004 0.0 0.07 

India 

Power Sector 

Baseline 1.071 0.005 1.076 13.2 7.42 

CPS 1.945 0.011 1.956 32.5 3.18 

SPS 0.444 0.004 0.448 22.8 0.53 

HPS 0.444 0.004 0.448 22.8 0.32 

Agriculture 

Baseline 0.055 0.747 0.801 1.0 3.82 

CPS 0.047 0.846 0.894 2.2 6.18 

SPS 0.029 0.641 0.670 1.8 2.51 

HPS 0.029 0.729 0.758 1.8 2.21 

Transport 

Baseline 0.246 0.006 0.252 3.6 4.23 

CPS 0.672 0.016 0.688 11.1 3.23 

SPS 0.463 0.010 0.473 8.5 1.16 

HPS 0.463 0.010 0.473 8.5 0.54 

Residential 
Commercial 

Baseline 0.042 0.055 0.098 8.8 8.61 

CPS 0.065 0.039 0.105 13.3 7.20 

SPS 0.024 0.002 0.026 8.9 0.39 

HPS 0.024 0.002 0.026 8.9 0.20 

Industry 

Baseline 0.756 0.095 0.851 13.2 6.43 

CPS 2.107 0.235 2.342 34.7 11.79 

SPS 1.592 0.073 1.665 18.2 2.67 

HPS 1.592 0.073 1.665 18.2 2.08 

Waste 

Baseline 0.001 0.228 0.230 0.0 4.77 

CPS 0.001 0.374 0.375 0.0 8.81 

SPS 0.000 0.236 0.236 0.0 0.50 

HPS 0.000 0.236 0.236 0.0 0.50 

Indonesia 

Power Sector 

Baseline 0.169 0.001 0.171 2.8 3.58 

CPS 0.391 0.003 0.394 7.8 4.88 

SPS 0.089 0.001 0.089 8.5 0.33 

HPS 0.089 0.001 0.089 8.5 0.29 

Agriculture 

Baseline 0.004 0.144 0.148 0.2 5.40 

CPS 0.008 0.158 0.166 0.1 7.81 

SPS 0.006 0.115 0.121 0.1 3.69 

HPS 0.006 0.119 0.126 0.1 1.87 

Transport 

Baseline 0.123 0.004 0.127 1.7 9.49 

CPS 0.234 0.005 0.239 3.5 11.99 

SPS 0.157 0.004 0.161 2.7 3.32 

HPS 0.157 0.004 0.161 2.7 1.56 

Residential 
Commercial 

Baseline 0.003 0.017 0.020 2.9 9.52 

CPS 0.002 0.009 0.010 3.2 5.71 

SPS 0.001 0.000 0.002 1.8 0.12 

HPS 0.001 0.000 0.002 1.8 0.01 
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Industry 

Baseline 0.167 0.147 0.314 2.6 4.00 

CPS 0.328 0.174 0.501 5.2 5.60 

SPS 0.240 0.028 0.269 4.0 1.20 

HPS 0.240 0.028 0.269 4.0 0.82 

Waste 

Baseline 0.001 0.055 0.056 0.0 4.03 

CPS 0.000 0.101 0.102 0.0 7.46 

SPS 0.000 0.046 0.046 0.0 0.66 

HPS 0.000 0.046 0.046 0.0 0.66 

Nigeria  

Power Sector 

Baseline 0.024 0.001 0.025 0.3 0.62 

CPS 0.068 0.001 0.069 1.0 1.17 

SPS 0.039 0.000 0.039 0.8 0.19 

HPS 0.039 0.000 0.039 0.8 0.07 

Agriculture 

Baseline 0.006 0.079 0.085 0.0 0.66 

CPS 0.008 0.086 0.093 0.1 0.21 

SPS 0.006 0.071 0.077 0.1 0.26 

HPS 0.006 0.075 0.081 0.1 0.18 

Transport 

Baseline 0.044 0.001 0.045 0.7 0.92 

CPS 0.078 0.002 0.081 1.1 0.32 

SPS 0.078 0.001 0.079 1.2 0.40 

HPS 0.078 0.001 0.079 1.2 0.08 

Residential 
Commercial 

Baseline 0.001 0.041 0.042 4.3 15.50 

CPS 0.005 0.046 0.050 5.4 18.43 

SPS 0.002 0.003 0.004 1.3 0.80 

HPS 0.002 0.003 0.004 1.3 0.12 

Industry 

Baseline 0.057 0.101 0.158 1.0 0.78 

CPS 0.089 0.109 0.198 1.4 1.31 

SPS 0.057 0.009 0.066 0.7 0.33 

HPS 0.057 0.009 0.066 0.7 0.26 

Waste 

Baseline 0.000 0.018 0.018 0.0 1.71 

CPS 0.000 0.037 0.037 0.0 4.44 

SPS 0.000 0.023 0.023 0.0 0.03 

HPS 0.000 0.023 0.023 0.0 0.03 

South 
Africa 

Power Sector 

Baseline 0.245 0.001 0.246 2.6 2.19 

CPS 0.129 0.001 0.130 2.4 0.23 

SPS 0.027 0.000 0.028 1.7 0.05 

HPS 0.027 0.000 0.028 1.7 0.03 

Agriculture 

Baseline 0.006 0.029 0.035 0.1 0.75 

CPS 0.003 0.036 0.039 0.1 0.90 

SPS 0.002 0.031 0.033 0.1 0.64 

HPS 0.002 0.031 0.033 0.1 0.45 

Transport 

Baseline 0.051 0.001 0.053 0.8 1.26 

CPS 0.076 0.001 0.078 1.2 0.88 

SPS 0.059 0.001 0.060 0.9 0.18 

HPS 0.059 0.001 0.060 0.9 0.16 

Residential 
Commercial 

Baseline 0.007 0.004 0.012 0.7 4.89 

CPS 0.012 0.002 0.014 0.9 3.49 
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SPS 0.008 0.000 0.008 0.6 0.47 

HPS 0.008 0.000 0.008 0.6 0.23 

Industry 

Baseline 0.142 0.024 0.166 2.1 1.78 

CPS 0.163 0.019 0.182 2.6 1.74 

SPS 0.146 0.010 0.156 2.2 0.95 

HPS 0.146 0.010 0.156 2.2 0.46 

Waste 

Baseline 0.000 0.014 0.014 0.0 1.45 

CPS 0.000 0.020 0.020 0.0 2.17 

SPS 0.000 0.009 0.009 0.0 0.02 

HPS 0.000 0.009 0.009 0.0 0.02 

UK 

Power Sector 

Baseline 0.157 0.002 0.160 3.2 0.36 

CPS 0.032 0.002 0.033 2.9 0.22 

SPS 0.025 0.001 0.026 2.9 0.17 

HPS 0.025 0.001 0.026 2.9 0.13 

Agriculture 

Baseline 0.003 0.052 0.055 0.1 1.14 

CPS 0.001 0.049 0.051 0.0 1.16 

SPS 0.001 0.041 0.042 0.0 0.86 

HPS 0.001 0.039 0.040 0.0 0.38 

Transport 

Baseline 0.118 0.001 0.119 2.3 0.66 

CPS 0.064 0.001 0.065 1.6 0.30 

SPS 0.032 0.000 0.033 1.1 0.18 

HPS 0.032 0.000 0.033 1.1 0.24 

Residential 
Commercial 

Baseline 0.022 0.004 0.026 2.3 1.10 

CPS 0.011 0.001 0.012 1.6 0.54 

SPS 0.004 0.000 0.004 1.1 0.34 

HPS 0.004 0.000 0.004 1.1 0.26 

Industry 

Baseline 0.084 0.009 0.093 2.0 0.84 

CPS 0.053 0.003 0.056 1.5 0.68 

SPS 0.038 0.004 0.043 1.4 0.37 

HPS 0.038 0.004 0.043 1.4 0.25 

Waste 

Baseline 0.001 0.018 0.018 0.0 0.08 

CPS 0.000 0.014 0.014 0.0 0.09 

SPS 0.000 0.007 0.007 0.0 0.08 

HPS 0.000 0.007 0.007 0.0 0.08 

USA 

Power Sector 

Baseline 1.959 0.015 1.974 36.9 0.57 

CPS 1.336 0.014 1.350 33.0 0.27 

SPS 0.579 0.003 0.581 31.0 0.13 

HPS 0.579 0.003 0.581 31.0 0.04 

Agriculture 

Baseline 0.052 0.428 0.480 0.9 1.58 

CPS 0.037 0.452 0.489 0.7 1.72 

SPS 0.020 0.332 0.353 0.7 1.04 

HPS 0.020 0.275 0.295 0.7 0.54 

Transport 

Baseline 1.772 0.041 1.813 25.7 1.57 

CPS 1.492 0.037 1.529 23.6 0.90 

SPS 0.871 0.023 0.894 16.1 0.59 

HPS 0.871 0.023 0.894 16.1 0.61 
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Residential 
Commercial 

Baseline 0.211 0.029 0.240 20.0 1.03 

CPS 0.167 0.027 0.194 20.8 1.01 

SPS 0.058 0.002 0.060 16.6 0.38 

HPS 0.058 0.002 0.060 16.6 0.26 

Industry 

Baseline 1.169 0.511 1.680 24.0 0.96 

CPS 1.336 0.603 1.939 29.8 0.96 

SPS 1.093 0.330 1.423 25.7 0.49 

HPS 1.093 0.330 1.423 25.7 0.34 

Waste 

Baseline 0.001 0.180 0.182 0.0 0.07 

CPS 0.001 0.215 0.215 0.0 0.07 

SPS 0.000 0.083 0.083 0.0 0.02 

HPS 0.000 0.083 0.083 0.0 0.02 
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Table S8. Avoided 
deaths due 
exposure to 
ambient PM2.5, by 
sector  Deaths Avoided 

Deaths Avoided Per 100,000 
population 

  SPS HPS SPS HPS 

Brazil Agriculture 4001 5888 2 3 

Brazil Industry 4746 5601 2 2 

Brazil Power Sector 137 227 0 0 

Brazil Residential-Commercial 1619 1665 1 1 

Brazil Transport 2521 2996 1 1 

Brazil Waste 8045 8079 3 3 

China Agriculture 157434 379735 11 27 

China Industry 68026 151068 5 11 

China Power Sector 39469 51419 3 4 

China Residential-Commercial 48898 68956 3 5 

China Transport 56528 71456 4 5 

China Waste 133112 133173 9 9 

Germany Agriculture 4743 9570 6 12 

Germany Industry 2670 3941 3 5 

Germany Power Sector -110 217 0 0 

Germany Residential-Commercial 921 1447 1 2 

Germany Transport 537 430 1 1 

Germany Waste 9 9 0 0 

India Agriculture 26435 48508 2 3 

India Industry 121106 141434 8 9 

India Power Sector 36441 41711 2 3 

India Residential-Commercial 103062 104951 6 7 

India Transport 15670 25547 1 2 

India Waste 130835 129605 8 8 

Indonesia Agriculture 15741 26263 5 8 

Indonesia Industry 21523 25123 7 8 

Indonesia Power Sector 16905 17668 5 6 

Indonesia Residential-Commercial 25352 25808 8 8 

Indonesia Transport 25224 37118 8 12 

Indonesia Waste 25796 27149 8 9 

Nigeria Agriculture 1181 1362 0 0 

Nigeria Industry 1618 1813 0 1 

Nigeria Power Sector 1650 1952 0 1 

Nigeria Residential-Commercial 31780 33345 10 10 

Nigeria Transport -480 355 0 0 

Nigeria Waste 8090 8088 2 2 

South Africa Agriculture 1105 1390 2 2 
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South Africa Industry 1296 1752 2 3 

South Africa Power Sector 193 211 0 0 

South Africa Residential-Commercial 3112 3328 5 5 

South Africa Transport 584 649 1 1 

South Africa Waste 2119 2127 3 3 

United Kingdom Agriculture 1188 2939 2 4 

United Kingdom Industry 1145 1572 2 2 

United Kingdom Power Sector 154 282 0 0 

United Kingdom Residential-Commercial 664 905 1 1 

United Kingdom Transport 283 49 0 0 

United Kingdom Waste 24 24 0 0 

United States Agriculture 11429 14315 3 4 

United States Industry 6398 7496 2 2 

United States Power Sector 1654 2045 0 1 

United States Residential-Commercial 6332 7014 2 2 

United States Transport 4228 4953 1 1 

United States Waste 519 548 0 0 
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Figure S7. Composition of diets in terms of grams per day by country and scenario 
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Table S9. Dietary composition in grams per day by scenario and country. 

Country Scenario Total grains 

roots, fruit, 
vegetables 
and nuts sugar red meat 

poultry, 
eggs, pork, 
milk fish 

Brazil 

CPS 1,726 245 615 117 107 636 6 

SPS 1,405 220 824 31 10 296 24 

HPS 1,422 220 1,006 31 5 148 12 

China 

CPS 1,961 294 1,090 32 41 473 32 

SPS 1,623 130 1,140 30 4 286 32 

HPS 1,700 130 1,378 30 2 143 16 

Germany 

CPS 1,704 192 509 93 34 866 11 

SPS 1,407 225 821 31 3 303 24 

HPS 1,376 225 956 31 1 152 12 

India 

CPS 1,422 340 694 81 11 286 9 

SPS 1,395 208 835 31 11 284 26 

HPS 1,387 208 987 31 5 142 13 

Indonesia 

CPS 1,280 502 553 67 15 113 31 

SPS 1,142 239 749 31 10 84 31 

HPS 1,170 239 838 31 5 42 15 

Nigeria 

CPS 1,580 352 1,069 47 26 82 4 

SPS 1,239 167 931 31 10 74 26 

HPS 1,262 167 1,009 31 5 37 13 

South Africa 

CPS 1,327 478 335 88 71 349 6 

SPS 1,261 235 702 31 10 257 26 

HPS 1,262 235 850 31 5 128 13 

UK 

CPS 1,827 191 665 80 68 807 17 

SPS 1,480 204 919 31 7 299 21 

HPS 1,467 204 1,069 31 4 149 10 

USA 

CPS 1,781 169 593 68 108 829 14 

SPS 1,338 194 793 31 9 297 14 

HPS 1,341 194 956 31 4 149 7 
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Table S10. Deaths avoided by risk factor, scenario and country. Note: The health impacts associated with 
the combination of all risks is smaller than the sum of individual risks, because the former controls for 
co-exposure, i.e. each death is attributed to one risk factor only. 

Country 
Diet 
scenario 

Weight 
risk 
factors 

Dietary 
risk 
factors Underweight Overweight Obese 

Low 
fruit 

Low 
vegetables 

Low 
nuts 
seeds 

Low 
legumes 

Low 
fish 

High red 
meat 

All risk 
factors 

Brazil SPS 211,760 158,210 7,440 46,060 158,260  59,160 3,520 9,020 17,780 82,950 328,040 

Brazil HPS 211,760 170,080 7,440 46,060 158,260 9,780 57,370 3,520 23,050 8,890 87,070 336,270 

China SPS 899,940 1,663,060 293,450 317,060 289,440 444,770  107,220 270,680  963,780 2,409,640 

China HPS 899,940 2,106,030 293,450 317,060 289,440 485,540 344,510 107,220 433,920  1,008,910 2,810,400 

Germany SPS 75,930 88,430 1,140 18,620 56,170 8,320 22,760 11,810 19,710 7,250 34,040 143,770 

Germany HPS 75,930 89,050 1,140 18,620 56,170 9,180 19,940 11,810 25,720 3,620 35,540 143,710 

India SPS 1,073,890 764,200 630,850 175,960 267,080 247,410 24,560 225,590 183,580 148,510  1,741,860 

India HPS 1,073,890 910,390 630,850 175,960 267,080 278,130 113,160 225,590 287,890 74,260 30,730 1,869,300 

Indonesia SPS 209,780 107,410 44,040 62,120 103,630 5,710 58,220  40,690  9,030 301,970 

Indonesia HPS 209,780 130,500 44,040 62,120 103,630 17,460 55,720  48,710  17,820 321,630 

Nigeria SPS 59,950 34,270 9,380 15,720 34,850 1,610 7,940 5,000 7,090 8,300 7,550 88,490 

Nigeria HPS 59,950 37,860 9,380 15,720 34,850 4,410 8,370 5,000 9,450 4,150 9,800 91,550 
South 
Africa SPS 65,660 45,800 2,350 7,440 55,870 12,720 10,430 7,470 5,740 3,320 13,960 97,160 
South 
Africa HPS 65,660 48,400 2,350 7,440 55,870 14,360 10,790 7,470 7,820 1,660 15,060 98,900 

UK SPS 62,510 48,300 1,320 11,490 49,700  15,880 5,880 12,200 1,780 18,810 98,420 

UK HPS 62,510 51,090 1,320 11,490 49,700 2,820 13,610 5,880 16,130 890 19,870 100,100 

USA SPS 473,340 276,240 6,720 55,840 410,780 17,030 45,320 13,310 75,710 3,110 150,700 654,580 

USA HPS 473,340 294,310 6,720 55,840 410,780 25,140 35,060 13,310 101,030 1,560 156,530 664,050 
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Figure S8. Percentage of the population either walking or cycling on a weekly basis, by country and 
scenario. 
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Table S11. Estimates for active travel participation by country and scenario. 

 Scenario Brazil China Germany  Indonesia  India Nigeria 
South 
Africa UK  USA 

% of people who walk or 
cycle 

Baseline  
0.41 0.56 0.64 0.72 0.59 0.81 0.51 0.42 0.28 

% of people who walk 0.39 0.39 0.43 0.71 0.52 0.80 0.50 0.39 0.26 

% of people who  cycle 0.03 0.28 0.36 0.03 0.14 0.06 0.02 0.05 0.03 

Active Travel in 2040 - % 
of people who walk or 

cycle 

CPS 0.41 0.44 0.64 0.56 0.45 0.53 0.40 0.42 0.28 
SPS 0.58 0.59 0.69 0.66 0.60 0.64 0.58 0.59 0.51 
HPS 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Walking in 2040 - % 
people doing walking (as 

main-mode) 

CPS 0.39 0.39 0.43 0.56 0.41 0.50 0.39 0.39 0.26 
SPS 0.45 0.44 0.45 0.59 0.46 0.53 0.45 0.45 0.34 
HPS 0.50 0.50 0.47 0.62 0.51 0.57 0.51 0.50 0.41 

Walking in 2040 - Net 
additional people: walking 

SPS (km; in 
millions) 13 75 2 10 79 13 4 3 28 
HPS (km; 

in millions) 26 149 3 19 158 26 7 7 56 

Walking in 2040 - Net 
walking km 

SPS (km; in 
millions) 8,054 46,595 940 5,994 49,323 8,198 2,192 2,126 17,518 
HPS (km; 

in millions) 16,107 93,189 1,880 11,988 98,646 16,395 4,384 4,253 35,036 

Cycling in 2040 - % people 
doing walking (as main-

mode) 

CPS 0.03 0.08 0.36 0.01 0.06 0.06 0.02 0.05 0.03 
SPS 0.14 0.18 0.40 0.07 0.16 0.13 0.13 0.16 0.19 
HPS 0.26 0.28 0.44 0.13 0.26 0.21 0.25 0.27 0.34 

Cycling in 2040 - Net 
additional people: cycling 

SPS (km; in 
millions) 26 148 3 19 158 26 7 7 58 
HPS (km; 

in millions) 51 297 6 38 315 53 14 15 116 

Cycling in 2040 - Net 
cycling km 

SPS (km; in 
millions) 39,987 231,372 4,474 29,853 245,930 40,967 10,931 11,577 90,371 
HPS (km; 

in millions) 79,974 462,743 8,947 59,707 491,859 81,935 21,861 23,155 180,742 
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Table S12. Reduction in relative risk for each scenario for each country for given age group for active 
travel 

 
Reduction in Relative Risk (relative to 

Baseline 2018) 

Country Age CPS SPS HPS 

China 

<60 -0.03 0.04 0.07 

60-70 -0.03 0.04 0.07 

70-80 -0.03 0.04 0.07 

80+ -0.03 0.03 0.06 

Brazil 

<60 0.00 0.04 0.07 

60-70 0.00 0.04 0.07 

70-80 0.00 0.04 0.07 

80+ 0.00 0.04 0.07 

Germany 

<60 0.00 0.01 0.03 

60-70 0.00 0.01 0.01 

70-80 0.00 0.00 0.01 

80+ 0.00 0.01 0.01 

India 

<60 -0.03 0.04 0.06 

60-70 -0.03 0.03 0.06 

70-80 -0.03 0.03 0.06 

80+ -0.03 0.03 0.06 

Indonesia 

<60 -0.03 0.02 0.04 

60-70 -0.03 0.02 0.04 

70-80 -0.03 0.02 0.04 

80+ -0.03 0.02 0.03 

Nigeria 

<60 -0.05 0.02 0.05 

60-70 -0.05 0.02 0.05 

70-80 -0.05 0.02 0.05 

80+ -0.05 0.02 0.04 

South Africa 

<60 -0.02 0.04 0.08 

60-70 -0.02 0.04 0.08 

70-80 -0.02 0.04 0.08 

80+ -0.02 0.04 0.07 

UK 

<60 0.00 0.03 0.06 

60-70 0.00 0.04 0.07 

70-80 0.00 0.05 0.09 

80+ 0.00 0.07 0.12 

USA 

<60 0.00 0.06 0.11 

60-70 0.00 0.06 0.10 

70-80 0.00 0.07 0.11 

80+ 0.00 0.08 0.14 
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Table S13. Deaths avoided by active travel scenario 

 Deaths Avoided by scenario Deaths Avoided per 
100,000 population 

Country SPS HPS SPS HPS 

Brazil 56,224 102,386 24 45 
China 440,757 809,324 31 56 
Germany 2,856 5,631 4 7 
India 364,948 670,230 23 43 
Indonesia 37,759 71,762 12 23 
Nigeria 29,376 55,094 8 16 
South 
Africa 19,341 35,011 32 57 
UK 21,486 38,441 30 54 
USA 172,618 300,419 45 78 
Total 1,145,365 2,088,298 209 379 
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