
SDC1 

 

Supplementary Digital Content 

Division of TEGs into analyses performed 

The division of data into analyses is shown below in a CONSORT type diagram. The 

explicit procedure for removing discontinuous TEGs is in the next section (Procedure for 

removing discontinuous TEGs). 

 

Figure S1: Diagram showing the filtering of TEG data for analysis.  
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Procedure for removing discontinuous TEGs 

A procedure was developed to determine and remove all TEGs with large jumps, and 

extremely low amplitudes (taking the total down from 1044 to 873 TEGs for full analysis). Two 

examples of TEGs removed from each category are shown. The process is as follows: 

1. Remove all TEGs with less than 1000 seconds (~16 min) of data. This was to allow there 

to be enough data to work with for the algorithm, in addition to the fact that operators 

will stop a TEG early if there is something wrong (i.e. incorrect reagent added, someone 

hit the table during the TEG). Number removed for this reason: n=60. 

 

Figure S2: Examples of TEG data removed for containing < 1000 seconds of data. 

2. Remove all TEGs with average amplitude of ≤1mm for the top half of the TEG (or ≤2mm 

for the full TEG). This removes all TEGs that never “kick-off”. Number removed for this 

reason: n=62. 

 

Figure S3: Examples of TEG data removed for averaging < 1 mm. 
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3. Remove all TEGs with average amplitude of ≤5mm for the top half of the TEG (or 

≤10mm for the full TEG) AND the MA <7mm for the top half of the TEG (or ≤14mm for 

the full TEG). This removes those with relatively low magnitudes that partially kick off, 

but never reach a reasonable MA. Number removed for this reason: n=22. 

 

Figure S4: Examples of TEG data removed for averaging < 5 mm and MA < 7 mm. 

4. Remove all TEGs with large negative jumps between datapoints of a magnitude less than 

the maximum jump between any two data points (and negative jumps occur after 1000 

seconds). Number removed for this reason: n=19. 

 

Figure S5: Examples of TEG data removed with negative jumps of magnitude less than 

the maximum jump in the data. 
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5. Remove all TEGs with a large jump in any direction >2.5 mm for the top half of the TEG 

(or 5 mm for the full TEG) and contains negative jumps after 1000 seconds. These TEGs 

challenge the model in terms of fitting these discontinuities. Number removed for this 

reason: n=7. 

 

Figure S6: Examples of TEG data removed with large negative jumps and the maximum 

jump between two data points > 2.5 mm. 
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Optimizing the number of nearest neighbors’ effects 

It was necessary to analyze the effect of the KNN to pull from the over 160,000 simulations 

in the virtual library.  This analysis was completed using the top 100 KNN and averaging the SSE 

for all RapidTEGs available.  For five minutes of data, all SSE averages using the top 37 or less 

resulted in an average per point error of less than 0.5 mm.  The maximum KNN to use was set at 

20 and was chosen because of the increase in standard deviation of error for higher sample numbers 

(see below in Figure S1).  However, it is of note that overall the differences in average resulting 

AUC's was <1% for the top 1, 10, 20, and 30 KNN.  The top 10 KNN are shown in results. 

 

 

Figure S7: Plot showing the (left) average SSE and (right) standard deviation versus the number 

of top fits (KNN). 

 

Additionally, comparing the variable changes in models built with different KNN was 

analyzed.  The method to determine variables to include was stepwise LR.  Stepwise LR 

parameters that improve the Akaike Information Criterion (AIC) for the top 1, 10 and 20 KNN are 

shown in Table S1.  The result shows that adding additional neighbors results in more variables 
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being selected.  As there are minimal differences between top 10 KNN and 20 KNN, the smaller 

of the two is used. 

Table S1: Model parameters that are significant for predicting maximum amplitude of the TEG 

(MA), as calculated by stepwise logistic regression.   

Time 

Significant Parameters 

1 KNN 10 KNN 20 KNN 

3 P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE 

4 P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE 

5 P0, k1, k2, SSE P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE 

7.5 P0, k1, k2 P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE 

10 P0, k1, k2, k3 P0, k1, k2, k3 P0, k1, k2, k3 

15 P0, k1, k2, k3 P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE 

20 P0, k1, k2, k3 P0, k1, k2, k3, SSE P0, k1, k2, k3, SSE 

 

 

 

 

 

 

 

 

 



SDC7 

 

Highlighted PRBC and PLT Predictions 24 hours after TEG start time 

Predictions were performed for 24 hours after TEG start time with similar performance to 

the 24 hours after admission.  Figure S2A shows the predictions of PRBC transfusion after the 

TEG has started, and the accuracy approaches that of using the full TEG parameters with 

indistinguishable mean accuracy by 10 minutes.  Clinically, this could provide useful estimates 

of imminent transfusion need.  The case for this is strong for PLT transfusion shown in Figure 

S2B.  Dynamic model parameters using the first 4 minutes of TEG data yield a predicted AUC 

outperforming that of the entire TEG tracing for predicting PLT transfusion in the first 24 hours 

(Figure S2B) with a median AUC of 0.75 using parameters established at four minutes versus 

median AUC of 0.64 for the full TEG parameters (p-value<0.0001).  
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Figure S8: Accuracy (AUC of the ROC) of predictions of transfused blood products using the 10 

KNN for the model parameters at 3, 4, 5, and10 minutes, and using traditional TEG predictions 

(labeled: TEG), for: A) PRBC within the 24 hours after the TEG, and B) PLT within the 24 hours 

after the TEG. Lines are drawn at 50 percent accuracy to emphasize the points where estimates 

lose their clinical utility. P-value codes: **: < 0.01, ***: < 0.001, ****: < 0.0001 comparing all 

distributions to the distribution generated using TEG parameters.  
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Full transfusion predictions using model parameters (P), instantaneous amplitude 

(A), and a combined model (PA) 

While not all predictions result in useful or improved transfusion prediction, the full set of 

prediction AUCs are shown here in Figure S3.  A subset is shown in the full text to highlight the 

relevant utility of the work.  For PRBC transfusion, amplitude outperforms or equally performs 

compared to parameters from the model, or the combined model.  However, the best performance 

is at longer time points or with full TEG parameters.  For predicting PLT transfusion, initial 

performance using the 3, 4, and 5 minutes is particularly relevant. The model parameters at 4 

minutes (P4) result in the prediction for an imminent (with 24 hours), and overall PLT transfusion 

with median AUCs of 0.66, and 0.57, respectively.  Paired Wilcoxon tests were performed between 

each AUC distribution mean and the mean AUC distribution generated from using all TEG 

parameters (MA, TMA, alpha, k, R, TEGACT, LY30). 
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Figure S9: The full set of model parameters (P), instantaneous amplitude (A), and combined (PA) 

are shown at all time points (3, 4, 5, 7.5, 10, 15, 20 minutes). For predicting transfusion of PRBC, 

PRBC 24 hours after baseline TEG, PLT, and PLT 24 hours after baseline TEG, from top to 

bottom, respectively. P-value codes: **: < 0.01, ***: < 0.001, ****: < 0.0001. 
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Model Performance: Highest SSE fits to RapidTEG data 

To highlight the model’s performance and more specifically the weaknesses, Figure S4 shows 

the top half the TEG along with the model fits to that data for the 4 highest SSE RapidTEGs. The 

SSE for Figure S4A is 21400 mm2 and represents the worst fit RapidTEG in the set. This is 

primarily because the data shows two distinct rises, a structure that the model is incapable of 

capturing, therefore the optimal solution splits the difference. Figure S4B shows a RapidTEG 

with SSE of 8100 mm2.  The model splits the middle of the data with the irregularities that occur 

around 2500 seconds. While generally, the model captures lysis well, Figure S4C and S4D show 

TEGs with 5500 and 4400 mm2, representing that there is a potential the model could capture 

high lysis patient TEGs better. 
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Figure S10: The worst 4 fit TEGs using the dynamic model optimization defined in the methods.  

Showing A) the worst fit patient TEG, B) second worst fit patient TEG, C) third worst fit patient 

TEG, and D) fourth worst fit patient TEG, as measured by the sum of squared error (SSE). 
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Predicting lysis at all time points 

Using models with model parameters (P), instantaneous amplitude (A), and a 

combination (PA), the lysis prediction accuracy metrics are shown in Figure S4.

 

Figure S11: Plot showing the distribution of the AUCs predicting high lysis (LY30≥3%) from 

using model parameters (P), instantaneous amplitude (A), and both (PA), at all time points (3, 4, 

5, 7.5, 10, 15, 20 minutes. 
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Predicting plasma transfusion at all time points 

Using models with model parameters (P), instantaneous amplitude (A), and a 

combination (PA), the prediction accuracy metrics are shown in Figure S5 for predicting fresh 

frozen plasma (FFP) transfusion.  Paired Wilcoxon tests were performed between each AUC 

distribution mean and the mean AUC distribution generated from using all TEG parameters 

(MA, TMA, alpha, k, R, TEGACT, LY30).  This plot primarily shows plasma predictions 

significantly less than the TEG parameters. 

 

Figure S12: Plot showing the distribution of the AUCs predicting FFP transfusion from using 

model parameters (P), instantaneous amplitude (A), and both (PA), at all time points (3, 4, 5, 7.5, 

10, 15, 20 minutes, along with the prediction using TEG parameters (MA, TMA, alpha, k, R, 

TEGACT, LY30). P-value codes: **: < 0.01, ***: < 0.001, ****: < 0.0001. All distributions 

have means significantly less than the TEG parameter prediction of plasma transfusion need. 
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Predicting MA: ROCs and Tuning Sensitivity and Specificity 

For predicting MA using model parameters P(0), k1, k2, k3, SSE and the instantaneous 

amplitude (at 3, 4, 5, 7.5, 10, 15, 20 minutes), the ROC curves from the test set for all the timespans 

with a randomized two-thirds train, one-third test split is shown in Figure S7A. Also, for the same 

time points the precision versus recall plot is shown in Figure S7B.  

 

Figure S13: Plot of the A) Receiver Operating Characteristic (ROC) curves and the B) Precision 

vs. Recall curve from the LR using the following features: the model parameters (P(0), k1, k2, k3), 

the Sum of Squared Error (SSE) between the simulation and data up the time the test is performed 

(3, 4, 5, 7.5, 10, 15, 20 minutes), and instantaneous amplitude at 3, 4, 5, 7.5, 10, 15, 20 minutes. 

Thus, totaling the number of features used in the predictions as six.  

Further analysis of the LR model looks at the LR predicted estimate of risk for each TEG 

and how the implementation of a threshold can be altered to affect the sensitivity and specificity 

from the resulting predictions.  Depending on the application and desired outcome, a tuned 

threshold can be established to minimize false positive or false negatives, or to strike a balance 

between the two.  In this way, varying threshold can change specificity and sensitivity for MA 
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predictions which is shown in Figure S5.  At a threshold of 0.2, the specificity has been raised 

above 70 percent and the sensitivity remains above 90 percent, striking a desired balance between 

the false positive and negatives. 

 

 

Figure S14: Plot of the sensitivity (left) and specificity (right) versus the specified time window 

(3, 4, 5, 7.5, 10, 15 or 20 minutes) used in the algorithm. In the legend, the different cutoff values 

used to distinguish patients with MA problem or not from their predicted risk from the LR are 

shown by the different colors.  
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Parameter differences versus MA 

Changes in parameters motivate the choice of LR as a model structure to attempt to classify MA 

problems. Plots of parameters versus MA for the RapidTEGs is shown in Figure S6 using only 3 

minutes of data and the nearest neighbor. 

 

Figure S15: Plot showing the dynamic parameters versus the actual MA from 3 minutes of data, 

with the colors showing the predictions. Points in black were predicted above the clinical threshold 

and points in grey were predicted below the clinical threshold. The four plots show the four 

different parameters (P0 – top left, k1 – top right, k2 – bottom left, and k3 – bottom right). 

 


