## Supporting information

## Low temperature nitridation of Fe<sub>3</sub>O<sub>4</sub> by reaction with NaNH<sub>2</sub>

Sarah E. O'Sullivan<sup>1</sup>, Shi-Kuan Sun<sup>1\*</sup>, Sebastian M. Lawson<sup>1</sup>, Martin C. Stennett<sup>1</sup>, Feihong Chen<sup>1</sup>, Yuji Masubuchi<sup>2</sup>, Claire L. Corkhill<sup>1</sup>, Neil C. Hyatt<sup>1\*</sup>.

 Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science & Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.

2. Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan

\*Corresponding author e-mail: <a href="mailto:shikuan.sun@sheffield.ac.uk">shikuan.sun@sheffield.ac.uk</a>; <a href="mailto:n.sun@sheffield.ac.uk">n.sun@sheffield.ac.uk</a>; <a href="mailto:n.sun@sheffield.ac.uk">n.sun@sheffield.ac.uk</a>; <a href="mailto:n.sun@sheffield.ac.uk">n.sun@sheffield.ac.uk</a>; <a href="mailto:n.sun@sheffield.ac.uk">n.sun@sheffield.ac.uk</a>; <a href="mailto:n.sun@sheffield.ac.uk">n.sun@sheffield.ac.uk</a>; <a href="mailto:n.sun@sheffield.ac.uk">n.sun@sheffield.ac.uk</a>

| Collection<br>Code | Space<br>Group             | Formula                            | Volume<br>(Å <sup>3</sup> ) | Temperature<br>(K) | Year | Quality<br>Data | DOI                               |
|--------------------|----------------------------|------------------------------------|-----------------------------|--------------------|------|-----------------|-----------------------------------|
| 79982              | <i>P</i> 6 <sub>3</sub> 22 | Fe₃N                               | 84.24                       | 298                | 1995 | *               | 10.1016/0925-<br>8388(95)01610-4  |
| 79983              | <i>P</i> 6322              | Fe₃N                               | 83.71                       | 295                | 1995 | *               | 10.1016/0925-<br>8388(95)01610-4  |
| 80930              | <i>P</i> 6322              | Fe₃N                               | 83.63                       | 293                | 1995 | *               | No DOI                            |
| 93173              | <i>P</i> 6 <sub>3</sub> 22 | Fe <sub>3</sub> N <sub>1.107</sub> | 84.48                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 93174              | <i>P</i> 6 <sub>3</sub> 22 | Fe <sub>3</sub> N <sub>1.239</sub> | 85.69                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 93175              | <i>P</i> 6 <sub>3</sub> 22 | Fe <sub>3</sub> N <sub>1.3</sub>   | 86.63                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 93176              | <i>P</i> 6322              | Fe <sub>3</sub> N <sub>1.33</sub>  | 87.05                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 93177              | <i>P</i> 6322              | Fe <sub>3</sub> N <sub>1.39</sub>  | 87.60                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 93183              | <i>P</i> 6322              | Fe <sub>3</sub> N <sub>1,1</sub>   | 84.49                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 93195              | <i>P</i> 6322              | Fe <sub>3</sub> N <sub>1,235</sub> | 85.59                       | 293                | 2001 |                 | 10.1016/S0925-<br>8388(00)01435-3 |
| 162698             | <i>P</i> 6322              | Fe <sub>3</sub> N <sub>1,2</sub>   | 84.77                       | 293                | 2009 |                 | 10.1021/cm802721k                 |
| 163929             | <i>P</i> 6322              | Fe <sub>3</sub> N <sub>0.97</sub>  | 83.00                       | 293                | 2009 | *               | 10.1016/j.jallcom.2008.09.178     |
| 420214             | <i>P</i> 6 <sub>3</sub> 22 | Fe <sub>3</sub> N <sub>1,47</sub>  | 88.39                       | 293                | 2009 | *               | 10.1002/ejic.200801222            |

Table S1: Cell volume and formula data for  $\varepsilon$ -Fe<sub>2+x</sub>N mined from the ICSD [28] and used to build the calibration and subsequent stoichiometry estimation shown in Figure S1. Note – quality data highlights with an asterisk data considered to be of highest quality by ICSD.



Figure S1: Dependence of unit cell volume on stoichiometry x in  $\varepsilon$ -Fe<sub>2+x</sub>N assuming a linear dependence. Black crosses indicate data for  $P6_322 \varepsilon$ -Fe<sub>2+x</sub>N data sourced from the ICSD (Table S1), normalised to the Fe<sub>2+x</sub>N composition. The applied linear fit was then used to calculate the estimated x values for the data points in this work shown in red.



Figure S2: SEM images of raw and Fe<sub>3</sub>O<sub>4</sub> powders reacted with NaNH<sub>2</sub> at 170 °C for 24, 48 and 96 h. Top row L-R: untreated Fe<sub>3</sub>O<sub>4</sub>, 24 h product. Bottom row L-R: 48 h product, 96 h product.



Figure S3: EDX spectra for starting Fe<sub>3</sub>O<sub>4</sub> reagent (black) and products of amide reactions at 170 °C for 24 / 48 / 96 h (red/blue/green). Note the presence of N K $\alpha$  emission only in the reaction products. C K $\alpha$  emission is attributed to the adhesive tab used for securing the powder during SEM measurement.



Figure S4: d spacing data integrated from electron diffraction linescans for (bottom) 170 °C / 24 h and (top) 190 °C / 24 h samples. Indexed are allowed reflections for  $\varepsilon$ -Fe<sub>2+x</sub>N (blue), FeO<sub>1-x</sub>N<sub>x</sub> (red) and  $\gamma$  ~FeN (green) confirming the findings from recrystallisation data of the presence of the oxynitride and nitride phases.



Figure S5: Thermogravimetry (TG, black) curve and mass spectrometry (MS) signals of 190  $^{\circ}$ C / 24 h product (mass numbers 18 and 28 represent H<sub>2</sub>O and N<sub>2</sub>).