Supporting Information

GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics

Christina de Bruyn Kops¹, Martin Šícho², Angelica Mazzolari³, Johannes Kirchmair^{1,4}*

¹ Center for Bioinformatics (ZBH), Department of Informatics, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20146 Hamburg, Germany

² CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic

³ Facoltà di Scienze del Farmaco, Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Università degli Studi di Milano, I-20133 Milan, Italy

⁴ Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria

* Correspondence: johannes.kirchmair@univie.ac.at; Tel.: +43 1-4277-55104

TABLES

Table S1. Enzymes Excluded From Consideration When Extracting Relevant Metabolites From DrugBank.

Enzyme

Cocaine esterase		
Thymidine phosphorylase		
Serum albumin		
Ribulose-phosphate 3-epimerase		
UDP-galactose 4-epimerase		
cGMP-specific 3'5'-cyclic phosphodiesterase		
Dihydropyrimidinase-related protein 2		
Aromatic-L-amino-acid decarboxylase		
Elongation of very long chain fatty acids protein 4		
Elongation of very long chain fatty acids protein 5		
Hemoglobin subunit beta		
Hemoglobin subunit alpha		
Selenocysteine lyase		
Lysosomal protective protein		
Enoyl-CoA hydratase mitochondrial		
NADPHcytochrome P450 reductase		
Cytochrome b		

Name	Description (1)
a_acc	Hydrogen bond acceptor atom count
a_acid	Acidic atom count
a_aro	Aromatic atom count
a_base	Basic atom count
a_don	Hydrogen bond donor atom count
a_heavy	Heavy atom count
a_hyd	Hydrophobic atom count
a_nB	Boron atom count
a_nBr	Bromine atom count
a_nC	Carbon atom count
a_nCl	Chlorine atom count
a_nF	Fluorine atom count
a_nH	Hydrogen atom count
a_nI	Iodine atom count
a_nN	Nitrogen atom count
a_nO	Oxygen atom count
a_nP	Phosphorus atom count
a_nS	Sulfur atom count
b_ar	Number of aromatic bonds
b_count	Number of bonds
b_double	Number of double bonds
b_rotN	Number of rotatable bonds
b_rotR	Fraction of rotatable bonds ^a
b_single	Number of single bonds
b_triple	Number of triple bonds
chiral	Number of chiral centers

Table S2. Descriptors Used for Principal Component Analysis.

FCharge	Total charge of the molecule
logP(o/w)	Log of the octanol/water partition coefficient
logS	Log of the aqueous solubility (mol/L)
mr	Molecular refractivity
PC+	Total positive partial charge
PC-	Total negative partial charge
rings	Number of rings
TPSA	Polar surface area ($Å^2$)
vdw_area	Area of van der Waals surface ($Å^2$)
vdw_vol	van der Waals volume (Å ³)
vsa_acc	Approximation of the sum of VDW ^b surface areas (Å ²) of pure hydrogen bond acceptors ^c
vsa_acid	Approximation of the sum of VDW surface areas of acidic atoms (\AA^2)
vsa_base	Approximation of the sum of VDW surface areas of basic atoms $(Å^2)$
vsa_don	Approximation of the sum of VDW surface areas of pure hydrogen bond donors ^d
vsa_hyd	Approximation of the sum of VDW surface areas of hydrophobic atoms (Å ²)
vsa_other	Approximation of the sum of VDW surface areas $(Å^2)$ of atoms typed as "other"
vsa_pol	Approximation of the sum of VDW surface areas $(Å^2)$ of polar atoms
Weight	Molecular weight

^a b_rotN divided by the number of bonds between heavy atoms

^b \overline{VDW} = van der Waals

° Not counting acidic atoms and atoms that are both hydrogen bond donors and acceptors

^d Not counting basic atoms and atoms that are both hydrogen bond donors and acceptors

Number of molecules	ClassID(s) from MetaQSAR
440 + 153 = 593	14, 15
243	17
148	16
94	20
83	18
	Number of molecules 440 + 153 = 593 243 148 94 83

Table S3. Number of Molecules Used to Train the FAME 3 Reaction Type-Specific SoM Prediction Models.

^aRSH = protein thiol

Table S4. Ranking Performance of Phase 2 Metabolite Prediction using the Reaction Rules from SyGMa and Various Formulas for Combining the Predicted SoM Probabilities^a with SyGMa's Reaction Probabilities.

Score equation ^b	AUC of rank-based ROC curve
S x R	0.85
(S + R) / 2	0.82
(2S + R) / 3	0.81
(3S + R) / 4	0.80
(5S + R) / 6	0.80
(10S + R) / 11	0.80
(S + 2R) / 3	0.82
(S + 3R) / 4	0.82
(S + 5R) / 6	0.82
(S + 10R) / 11	0.83

^a The SoM probabilities were predicted with FAME 3 model P2

 b S = SoM probability, R = reaction probability

FIGURES

Figure S1. PCA loading plot for the PCA plot shown in Figure 1D. The PCA compares parent molecules from DrugBank and MetXBioDB using 44 physicochemical descriptors (Table S2). The percentage of the total variance explained by each of the first two principal components is 35.81% for PC1 and 10.69% for PC2.

Figure S2. Score-based ROC curves for the evaluation of metabolite prediction performance on the reference dataset. (A) Comparison of GLORYx, which scores its predicted metabolites based on predicted SoM probability, to SyGMa, which uses reaction probability-based scoring, for phase 1 metabolite prediction. Weighted rules refer to the weighting of the SoM probability-based score based on whether the reaction type is designated common or uncommon. (B) Comparison of the ranking performance of GLORYx with different scoring approaches and rule sets, as well as a direct comparison to SyGMa's performance, for phase 2 metabolite prediction. The scoring approach that is based on both SoM probability and reaction probability is achieved by a simple multiplication of the two components. (C) Comparison of the ranking performance of GLORYx for combined prediction of metabolites for phases 1 and 2 metabolism, using different SoM probability. The rule set in both cases is the same and is made up of the final phase 1 rule set (SyGMa and GLORY rules) and final phase 2 rule set (SyGMa and GSH conjugation rules). Note that the score-based ROC curves for SyGMa should be viewed cautiously because SyGMa's scoring approach was only intended to compare scores among predicted metabolites of the same parent molecule (i.e. a rank-based comparison).

Figure S3. Variability in the ranking performance of SyGMa and GLORYx on the test set based on the rank and the score of the predicted metabolites. The data points were calculated by systematically removing one parent molecule from the test set at a time and calculating the AUC from the remaining predictions. There are therefore 37 AUC data points for each combination of tool and AUC type, corresponding to the size of the test set.

REFERENCES

(1) Chemical Computing Group ULC. *MOE User Guide, MOE 2018.01*. Chemical Computing Group ULC: Montreal, Canada, 2018.