Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium *Salinispora tropica*.

Audam Chhun^{1,#}, Despoina Sousoni¹, Maria del Mar Aguiló-Ferretjans², Lijiang Song³, Christophe Corre^{1,3,#}, Joseph A. Christie-Oleza^{1,2,4,#}

¹School of Life Sciences, University of Warwick, Coventry, UK

² University of the Balearic Islands, Palma, Spain

³ Department of Chemistry, University of Warwick, Coventry, UK

⁴ IMEDEA (CSIC-UIB), Esporles, Spain

*Corresponding authors: a.chhun@warwick.ac.uk, c.corre@warwick.ac.uk and joseph.christie@uib.eu

Supplementary Figures

Supplementary Figure S1 | *Synechococcus* inhibition by *S. tropica* is not mediated by iron depletion. Monitoring of *Synechococcus* population grown axenically or in co-culture with *S. tropica*, in media supplemented with 3, 10, 50 or 100 mg l⁻¹ Fe(III). Graph shows mean ± standard deviation of three biological replicates.

Supplementary Table S1 | Molecular ions detected by LC-MS in *S. tropica-Synechococcus* co-culture only. Table shows molecular ions detected by high-resolution LC/(+)ESI-MS. Peak numbering is based on HPLC retention time and colors indicate groups of related compounds. Observed *m/z* values and predicted chemical formulae for [M+H]⁺ are provided. Observed mass of main ions obtained after MS2 fragmentation are given.

MS Peak	Observed <i>m/z</i>	Chemical formulae for [M+H] ⁺ (calculated <i>m/z</i> ; err [ppm])	MS/MS
1	399.2135	$[C_{19} H_{31} N_2 O_7]^+$ (399.2126; -2.4)	296.1498 271.1295 186.0765 168.0659
2	401.2294	[C ₁₉ H ₃₃ N ₂ O ₇] ⁺ (401.2292; -2.8)	298.1657 273.1453 255.1348 152.0712
3	438.1701	[C ₂₈ H ₂₄ N O ₄] ⁺ (438.1700; -0.3)	194.0817 177.1279
4	464.2509	[C ₂₂ H ₃₄ N ₅ O ₆] ⁺ (464.2504; -1.2)	276.16 171.088 154.0615
5	296.1499	[C ₁₅ H ₂₂ N O ₅] ⁺ (296.1492; -2.1)	296.1499 318.132 168.066
6	435.2609	[C ₂₂ H ₃₅ N ₄ O ₅]⁺ (435.2602; -1.7)	372.229 276.1599 142.0979
7	449.2764	[C ₂₃ H ₃₇ N ₄ O ₅] ⁺ (449.2758; -1.3)	156.1135
8	298.1653	[C ₁₅ H ₂₄ N O ₅] ⁺ (298.1649; -1.5)	320.1447 298.1654 170.0815

Supplementary Figure S2 | Chemical structure of salinosporamide A and B, with their respective degradation products. Salinosporamide A ($C_{15}H_{20}^{35}CINO_4$; mass 313.11) hydrolyzes to form the molecule NPI-0065 (5) ($C_{15}H_{21}NO_5$; mass 295.14) or reacts with Tris to form the hypothetical molecule (1) ($C_{19}H_{30}N_2O_7$; mass 398.21). Salinosporamide B ($C_{15}H_{21}NO_4$; mass 279.15) hydrolyzes to form the molecule (8) ($C_{15}H_{23}NO_5$; mass 297.16) or reacts with Tris to form the hypothetical molecule (2) ($C_{19}H_{32}N_2O_7$; mass 400.22).

Supplementary Figure S3 | Extracted Ion chromatograms of molecules 1 and 5 in the supernatant of *S. tropica* cultures in marine broth. A. Culture supernatant of *S. tropica* grown in marine broth supplemented with trizma base. B. Culture supernatant of *S. tropica* grown in marine broth. Graphs show molecules detected with a retention time between 8.8 and 11.1 minutes. In red is shown the extracted ion chromatogram for m/z 399 (± 0.5). In orange is shown the extracted ion chromatogram for m/z 296 (± 0.5).

Supplementary Figure S4 | Extracted ion chromatograms of molecules 1, 2, 5 and 8 in the culture supernatant of *S. tropica* wild-type (top panel), and the salinosporamide mutants salA- (middle panel) and salL- (bottom panel). The salA- strain does not produce salinosporamide A or any derivatives, while the salL- strain still produces salinosporamide B. Graphs show molecules detected with a retention time between 8.0 and 9.4 minutes.

Supplementary Figure S5 | Monitoring of *Synechococcus* grown in axenic culture and in co-culture with the wild-type, salA- or salL- S. tropica strains. Graph shows mean of triplicates ± standard deviation.

Supplementary Figure S6 | MS/MS fragmentation spectra of the cryptic molecules. High-resolution LC/(+)ESI-MS/MS spectra obtained for molecule 4 (A), 6 (B), and 7 (C).

Supplementary Figure S7 | The cryptic molecules 4, 6 and 7 are related. Schematic of the cryptic compounds and their corresponding daughter ions generated by MS/MS. Observed m/z values detected by high-resolution LC/(+)ESI-MS and predicted chemical formulae for $[M+H]^+$ are provided. N/A indicate chemical formulae that could not be generated by the DataAnalysis software.

Supplementary	Table S2	l Summary	v of the	proteomics	dataset.
Jupplementary		Juilliar		proteonics	ualasel

Strain studied (No. of proteins)	Growth medium	Detected proteins (% of total proteins)	Detected proteins related to BGCs (% of total detected)	Relative abundance ^a (%)
<i>S. tropica</i> CNB-440 (4,522)	Marine Broth (MB) Artificial Seawater (ASW) Phototroph supernatant (SUPSYN)	1,869 (41.3)	179 (9.6)	9.6 ± 0.9
		1,797 (39.7)	172 (9.6)	11.4 ± 0.4 +**
		1,831 (40.5)	181 (9.9)	15.0 ± 1.2

^a Table shows the cumulated relative abundance of the detected proteins linked to biosynthetic gene clusters, indicated as mean \pm standard deviation of three biological replicates. Tukey HSD test, ** significant at *q*-value < 0.01; *** significant at *q*-value < 0.001.

Supplementary Table S3 | Detected proteins from the *pks3* **orphan BGC in** *S. tropica* **CNB-440.** Table shows protein identifiers, annotation and relative abundance (expressed as the abundance of the protein over the abundance of the total proteome normalized to 1).

Protein ID	Gene name	Locus tag	Annotation	Relative abundance
A4X7T4	Strop_2488	STROP_RS12520	DUF3050 domain-containing protein	0.000750547
A4X7T5	Strop_2489	STROP_RS12525	phytanoyl-CoA dioxygenase	0.130375917
A4X7T6	Strop_2490	STROP_RS12530	4-hydroxyphenylpyruvate dioxygenase	0.002402502
A4X7T7	Strop_2491	STROP_RS12535	beta-ketoacyl	0.001818263
A4X7T8	Strop_2492	STROP_RS12540	acylCoA ligase	0.031677582
A4X7U0	Strop_2494	STROP_RS12550	3-ketoacyl-ACP synthase	0.014597734
A4X7U3	Strop_2497	STROP_RS12570	long-chain fatty acidCoA ligase	0.034956859
A4X7U4	Strop_2498	STROP_RS12575	antibiotic biosynthesis monooxygenase	0.129801561
A4X7U5	Strop_2499	STROP_RS12580	actinorhodin polyketide beta-ketoacyl synthase	0.006074535
A4X7U6	Strop_2500	STROP_RS12585	beta-ketoacyl	0.00502919
A4X7U7	Strop_2501	STROP_RS12590	cupin domain-containing protein	0.146326909
A4X7U8	Strop_2502	STROP_RS12595	cyclase	0.495965212
A4X7U9	Strop_2503	STROP_RS12600	acetyl-CoA carboxylase biotin carboxylase subunit	0.006262552
A4X7V0	Strop_2504	STROP_RS12605	acetyl-CoA carboxylase biotin carboxyl carrier protein	0.10444248
A4X7V1	Strop_2505	STROP_RS12610	acetyl-CoA carboxylase carboxyltransferase subunit alpha	0.000773389
A4X7V2	Strop_2506	STROP_RS12615	Tcml family type II polyketide cyclase	0.117717019
A4X7V4	Strop_2508	STROP_RS12625	Tcml family type II polyketide cyclase	0.229200995