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Supplementary Results

Controlling for region volume

The cortical parcellation used here displays large variation in region size, from 49–4570 voxels. As well
as our main analyses, where this variation is controlled for as a partial Spearman correlation, ρV , we
conducted an additional analysis that randomly sampled 49 voxels from every region, circumventing the
need to correct for volume. Even after this dramatic loss in data, we still measured a significant correlation
between node strength, s, and relative low-frequency power, RLFP, ρ = 0.43 (p < 1 × 10−3).

Diverse rs-fMRI time-series features are informative of connectivity strength

We used a data-driven method, hctsa [1, 2], to compare the performance of a comprehensive library of
time-series analysis methods, and thereby contextualize the performance of RLFP. As well as highlighting
the usefulness of time-series features derived from the linear autocorrelation function and power-spectrum
to analyze neural timescales, the comparison highlighted a range of novel metrics related to these properties
and others. All features are listed in Supplementary File 1. Some notable examples are summarized below:

Stationarity Measures of stationarity (loosely: how the time-series properties change across the recording
period) featured heavily amongst the most informative time-series properties of connectivity strength, s.
High-performing features captured this in different ways, including: (i) how the standard deviation predicted
by time-series models reproduced the standard deviation in the real data across subsegments of the time
series (ρV = −0.69 to ρV = −0.67); and (ii) SY_SlidingWindow_sampen_ent10_2, ρV = −0.65, which
measures how local estimates of SampEn(2, 0.1) vary across the time series.

The flagging of stationarity features by hctsa is interesting given that these types of properties may
only be measurable in long time series like those analyzed here: HCP rs-fMRI data are unique in their
length (1200 samples) and relatively high sampling rate (TR = 720 ms).
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Fourier power spectrum Classical features related to properties of the autocorrelation function and the
Fourier power spectrum were flagged by our analysis. For example, SP_Summaries_fft_linfitloglog_mf_a2,
ρV = −0.59, measures the gradient of the Fourier power spectrum represented as a log-log plot (fitted ex-
cluding the lower and upper quarter of frequencies).

Symbolic motifs Symbolic motifs symbolize a time series, e.g., coding stepwise increases as ‘U’ (up) and
decreases as ‘D’ (down), turns a time series into a string of letters (e.g., ‘UUDUDDDUD...’). Measuring the
proportion of different motifs in this string provides a simple, intuitive, and noise-robust way of capturing
recurring patterns, with repeats of words like ‘UUUU’ and ‘DDDD’ reflecting a slow-varying process, and
words like ‘UDUD’ reflecting a fast-varying process. Node strength was highly correlated to features
like SB_MotifThree_diffquant_bbcc, ρV = 0.66: the frequency of the ‘bbcc’ motif in a difference-based
symbolization of the data into an equiprobable three-letter alphabet (with the largest negative deviations
coded as ‘a’, moderate deviations coded as ‘b’ and large positive deviations coded as ‘c’). Similar results
were obtained for conceptually similar features, with positive correlations for symbolic motifs representing
slow fluctuations, e.g., SB_MotifThree_diffquant_aabb, ρV = 0.62, and negative correlations for symbolic
motifs representing faster fluctuations, e.g., SB_MotifTwo_diff_uduu, ρV = −0.62 (the ‘up-down-up-up’
motif in a two-letter alphabet).

Visibility graph Visibility graphs convert a time series into a network, representing each time point as
a node, and constructing edges using visibility rules [3]. Connectivity strength, s, was highly correlated to
a simple measure of outliers in the degree distribution of visibility graphs extracted from the fMRI time
series [3, 4], NW_VisibilityGraph_norm_ol90, ρV = 0.66. Many other properties of the visibility graph
(and horizontal visibility graph) were predictive of connectivity strength, s, including extreme value fits to
the degree distribution (e.g., NW_VisibilityGraph_horiz_evparm2, ρV = −0.58) and goodness of fit of a
Gaussian distribution (NW_VisibilityGraph_horiz_gaussnlogL, ρV = −0.58) and the standard deviation
of the degree distribution (NW_VisibilityGraph_horiz_stdk, ρV = −0.58).
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Supplementary Figures
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Figure S1: Relative low-frequency power (RLFP) is strongly correlated to region volume.
Scatter plots of RLFP as a function of: A region volume, B Node strength, s, C Node strength rank
residuals (controlling for region volume), and D Node strength using a parcellation in which each region’s
time-series are averaged over 49 randomly selected voxels.
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Figure S2: The relationship between relative low-frequency power (RLFP) and node strength,
s holds in the Glasser et al. [5] parcellation. We plot a scatter plot of the rank residuals of RLFP
and s in the left hemisphere using a 360-region parcellation [5] (180 regions in left hemisphere): ρV = 0.43,
p = 3 × 10−9.
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Figure S3: The relationship between node strength, s and relative low-frequency power, RLFP,
holds similarly in both the left and right hemispheres. Here we regenerate plot of Fig. 2A in the
right hemisphere, showing rank residuals of relative low-frequency power (RLFP) and node strength, s,
across 34 right-hemisphere cortical regions of the Desikan-Killiany Atlas [6], after regressing out region
volume. The plot reveals a positive relationship, partial Spearman’s ρV = 0.57 (p = 6 × 10−4).

4


