

Diet

 Δ Food intake, kcal/3d

Figure S1, related to Figure 1: The gut microbiome is dispensable for both cold- and diet-induced thermogenesis.

(A and B) The deficiency of the gut microbiome in commensal depleted (CD) and germ-free (GF) mice was confirmed by qPCR for fecal bacteria (A) and fungi (B) (n = 4-8).

(C) Representative images of the peritoneal cavity in chow fed mice housed at 22 °C (n = 8).

(D-F) Lengths of (D) small and (E) large intestines and (F) masses of intestinal contents in mice housed at 22 °C or acclimated to different ambient temperatures (n = 5-8).

(G) Lean and fat masses of mice housed at 22 °C (n = 7-8).

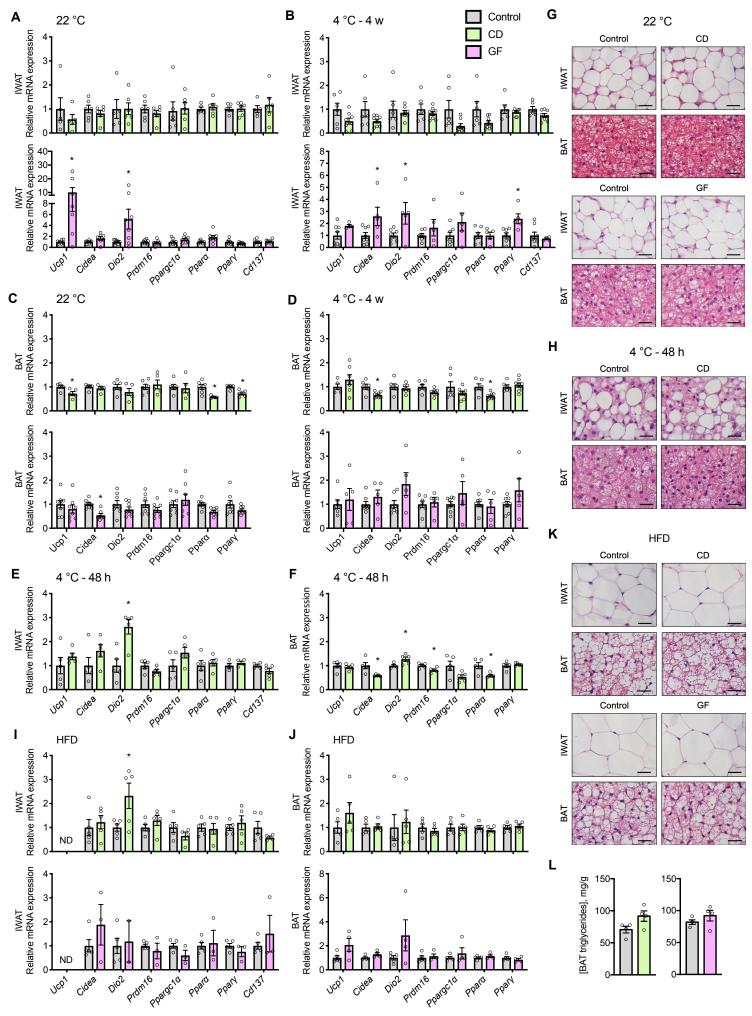
(H) Efficiency of nutrient absorption over 24 h in mice housed at 22 °C (n = 5-10).

(I) Values of energy expenditure adjusted by ANCOVA for corrected body mass (Corr BM) or total body mass (TBM) in mice housed at 22 °C following cecectomy or sham surgery (n = 5-7).

(J) Total and corrected body mass in mice housed at 22 °C (n = 7-8).

(K and L) Total food intake (K) and average RER values (L) during the light and dark phases (n = 5-8).

(M) Core body temperatures in mice housed at 22 °C (n = 3-8).


(N) Correlation between the changes (Δ) in food intake and energy expenditure in response to 3 d palm oil-based HFD feeding. Solid and dashed lines represent linear regression and 95% confidence intervals respectively (n = 4-5).

(O) Average daily food intake during 3 d prior to and following HFD feeding (related to Figure 1F) (n = 4-5).

(P and Q) Corrected body mass (P) and average daily food intake (Q) measured over 3 d in mice following palm oil-based HFD feeding for 4 w while housed at 30 °C (related to Figure 1G) (n = 4-8).

Circles represent individual mice; Barplots represent means \pm s.e.m. Statistical analyses were conducted using Student's *t*-test or 2-way ANOVA with repeated measures where appropriate. **P* < 0.05 control *vs.* CD or GF mice, ^*P* < 0.05 within group comparisons.

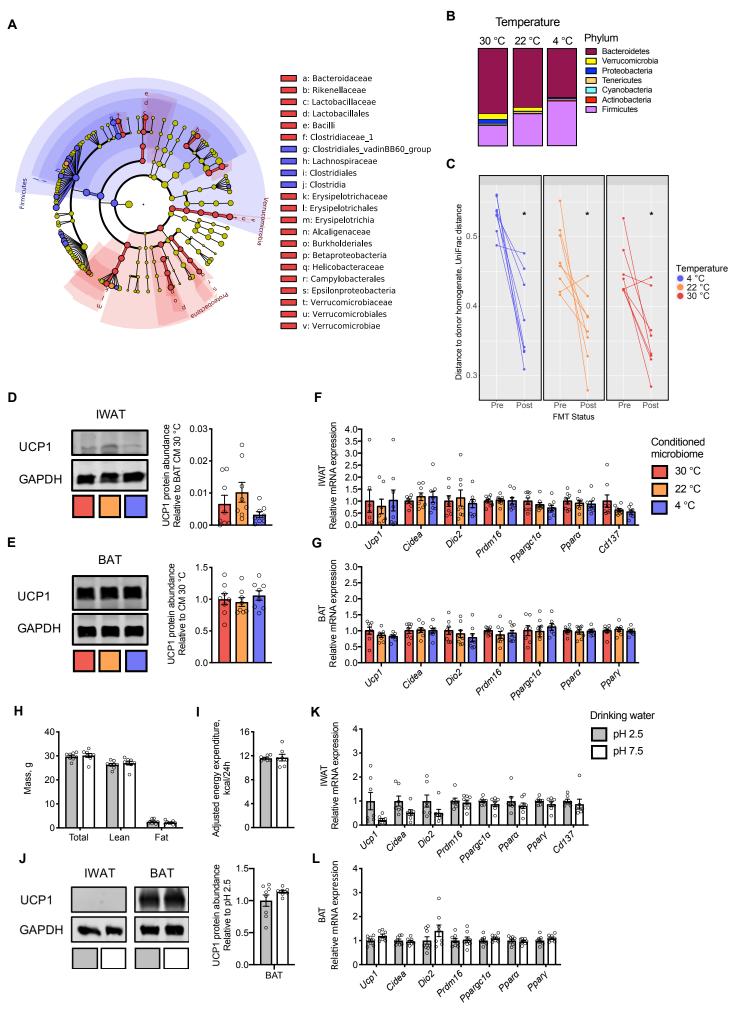
Figure S2, related to Figure 2.

Figure S2, related to figure 2: The gut microbiome is not required for recruitment and activation of thermogenic tissues.

(A and B) Steady state mRNA levels of transcription factors and other thermogenic gene markers in IWAT of CD (40 d antibiotics) and GF mice, (A) housed at 22 °C or (B) acclimated to 4°C (4 w) (n = 5-8).

(C and D) Steady state mRNA levels of transcription factors and other thermogenic gene markers in BAT of CD (40 d antibiotics), and GF mice, (C) housed at 22 °C or (D) acclimated to 4°C (4 w) (n = 5-8).

(E and F) Steady state mRNA levels of transcription factors and other thermogenic gene markers in (E) IWAT and (F) BAT of CD mice exposed to 4° C for 48 h (n = 4-5).


(G and H) Representative H&E staining of IWAT and BAT from mice fed a chow diet and acclimated to (G) 22 °C or (H) housed at 4 °C for 48h; Scale bar = 50 μ M (*n* = 4-5).

(I and J) Steady state mRNA levels of transcription factors and other thermogenic gene markers in (I) IWAT and (J) BAT of mice acclimated to 30 °C and fed a palm oil-based HFD for 4 w (n = 3-5).

(K) Representative H&E staining of IWAT and BAT from mice acclimated to 30 °C and fed a palm oil-based HFD for 4 w; Scale bar = 50 μ M (*n* = 3-5).

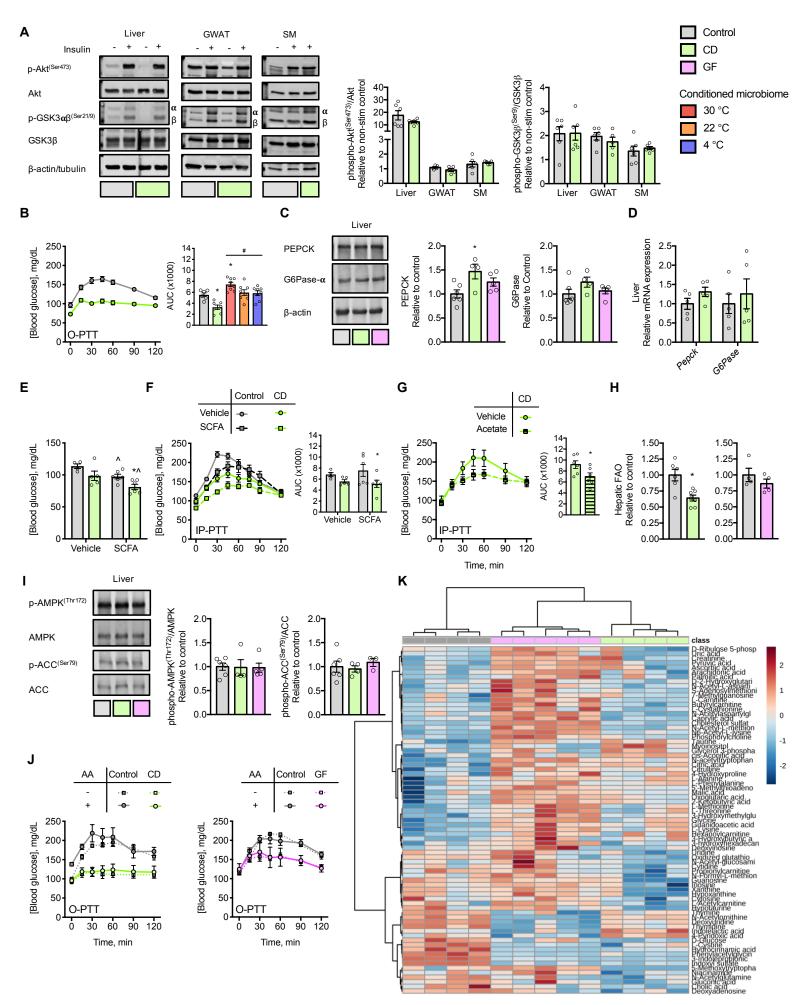
(L) Triglyceride concentrations in BAT (n = 4).

Circles represent individual mice; Barplots represent means \pm s.e.m. Statistical analyses were conducted using Student's *t*-test; **P* < 0.05 control *vs*. CD or GF mice.

Figure S3, related to Figure 3: Temperature-conditioned gut microbiota do not influence cold- or dietinduced thermogenesis.

(A) Fecal microbiota cladogram showing taxa associated via LEfSe with each temperature group of donors (red, 30 °C; blue, 4 °C) (n = 4-8).

(B) Predominant phyla of fecal gut microbiota from donor mice fed chow and acclimated to different ambient temperatures (n = 4-8).


(C) The change in UniFrac distance between microbiota of recipient mice and their respective temperatureconditioned donor homogenate as a function of FMT status (n = 8).

(D-G) Recipient mice were housed at 22 °C and fed chow for 4 w following FMT. Representative immunoblots and quantification of UCP-1 protein in (D) IWAT and (E) BAT, and steady state mRNA levels of transcription factors and other thermogenic gene markers in (F) IWAT and (G) BAT (n = 7-8).

(H-L) Chow fed mice housed at 22 °C and receiving acidified (pH 2.5) or neutral (7.5) water. (H) Total, lean and fat mass and (I) energy expenditure. (J) Representative immunoblots of UCP1 protein expression in IWAT and BAT and quantification of Ucp-1 in BAT (not detected in IWAT). Steady state mRNA levels of transcription factors and other thermogenic gene markers in (K) IWAT and (L) BAT (n = 7-8).

Circles represent individual mice; Barplots represent means \pm s.e.m; Statistical analyses were conducted using paired (C) or unpaired (H-L) Student's *t*-test or (D-G) 1-way ANOVA; **P* < 0.05 pre-*vs.* post-FMT.

Figure S4, related to Figure 4.

Figure S4, related to Figure 4: The gut microbiome promotes hepatic gluconeogenesis.

(A) Mice fasted for 6 h were administered insulin (1 U/kg) via inferior vena cava and sacrificed after 4 min for the quantification of insulin signaling proteins in the liver, GWAT and skeletal muscle (SM). Representative immunoblots are displayed. β -actin (liver and GWAT) and β -tubulin (SM) were used as controls for unequal loading (n = 6).

(B) Mice housed at 22 °C were subjected to O-PTT. Inset barplots represent AUC values. Not displayed are curves for mice with temperature-conditioned gut microbiota (n = 6-8).

(C and D) Hepatic protein levels (C) and mRNA expression (D) of the gluconeogenic enzymes PEPCK and G6Pase in mice fasted for 6 h. Representative immunoblots are displayed with β -actin used as a control for unequal loading (*n* = 5-6).

(E-G) Mice were supplemented with SCFAs or acetate alone in their drinking water for 1 w, fasted for 6 h, and then subjected to measurements of (E) blood glucose concentrations and (F and G) IP-PTT. Inset barplots represent AUC values (n = 5-6).

(H) Rates of hepatic FAO (n = 4-7).

(I) Representative immunoblots and quantification of phosphorylated and total AMPK and ACC, which regulate FAO (n = 3-6).

(J) O-PTT in mice prior to and following amino acid (AA) supplementation (n = 4-7).

(K) Unsupervised Ward/Pearson cluster heat map of portal vein serum (PVS) samples based on top 75 metabolites ranked by ANOVA. Heatmap color scale represents the highest (red) and lowest (blue) metabolite peak intensities following log transformation and auto-scaling (n = 4-5).

All mice were fed a chow diet and housed at 22 °C. Circles represent individual mice; Barplots and points joined by lines represent means \pm s.e.m. Statistical analyses were conducted via Students *t*-test, 1- or 2-way ANOVA where appropriate; **P* < 0.05 control *vs*. CD or GF mice, ^*P* < 0.05 within group comparisons.

°C	Measurement	Control	CD	P-value	Control	GF	<i>P</i> -value		
Cho	Chow diet: Related to Figure 1 and S1								
	Total body mass, g	26.7 ± 0.4	$\textbf{27.3} \pm \textbf{0.5}$	0.298					
	Corrected body mass, g	25.5 ± 0.3	$\textbf{22.0} \pm \textbf{0.6}$	0.000					
	Corrected body mass, % TBM	95.6 ± 0.2	80.4 ± 1.4	0.000					
30	Lean mass, g	22.3 ± 0.3	19.7 ± 0.5	0.001					
	Fat mass, g	2.51 ± 0.16	1.55 ± 0.09	0.000					
	Core body temperature, °C	35.4 ± 0.2	34.4 ± 0.1	0.001					
	Total body mass, g	26.7 ± 0.6	26.8 ± 0.4	0.794					
	Corrected body mass, g	25.4 ± 0.6	21.9 ± 0.3	0.000					
45	Corrected body mass, % TBM	95.4 ± 0.8	81.6 ± 1.0	0.000					
15	Lean mass, g	22.9 ± 0.6	19.5 ± 0.2	0.000					
	Fat mass, g	1.86 ± 0.06	1.49 ± 0.07	0.002					
	Core body temperature, °C	35.7 ± 0.2	34.4 ± 0.2	0.002					
	Total body mass, g	28.7 ± 1.0	31.1 ± 0.4	0.035	25.8 ± 0.3	$\textbf{28.6} \pm \textbf{1.2}$	0.892		
	Corrected body mass, g	$\textbf{27.3} \pm \textbf{0.9}$	$\textbf{22.9} \pm \textbf{0.4}$	0.000	24.6 ± 0.3	$\textbf{22.1}\pm0.6$	0.002		
	Corrected body mass, % TBM	95.1 ± 0.3	73.4 ± 0.5	0.000	95.1 ± 0.1	$\textbf{77.3} \pm \textbf{1.6}$	0.000		
4	Lean mass, g	24.8 ± 0.89	20.6 ± 0.32	0.000	21.9 ± 0.3	19.6 ± 0.5	0.002		
	Fat mass, g	2.32 ± 0.15	1.69 ± 0.04	0.001	2.09 ± 0.1	1.74 ± 0.1	0.006		
	Core body temperature, °C	36.1 ± 0.4	35.4 ± 0.3	0.173	35.1 ± 0.3	34.6 ± 0.4	0.329		
	Physical activity, m/24h	239 ± 23	114 ± 9	0.000	196 ± 18	153 ± 20	0.141		

°C	Measurement	30 °C CM	22 °C CM	4 °C CM	<i>P</i> -value			
Cho	Chow diet-fed recipient mice: Related to Figure 3 and S3							
	Total body mass, g	26.6 ± 0.4	26.8 ± 0.4	27.2 ± 0.4	0.581			
	Lean mass, g	22.2 ± 0.3	22.5 ± 0.3	22.8 ± 0.4	0.472			
22	Fat mass, g	$\textbf{2.75} \pm 0.17$	$\textbf{2.72}\pm0.10$	$\textbf{2.87} \pm \textbf{0.12}$	0.712			
	Core body temperature, °C	$\textbf{36.4} \pm \textbf{0.1}$	36.0 ± 0.1	$\textbf{36.2}\pm0.1$	0.200			
	Small intestine length, cm	42.6 ± 1.2	42.0 ± 0.8	43.7 ± 0.7	0.415			
HFC	HFD-fed recipient mice: Related to Figure 3							
	Total body mass, g	39.1 ± 1.8	38.5 ± 1.3	$\textbf{38.4} \pm \textbf{1.4}$	0.939			
	GWAT, g	1.95 ± 0.14	1.88 ± 0.11	2.05 ± 0.12	0.662			
30	Core body temperature, °C	35.4 ± 0.2	35.2 ± 0.2	$\textbf{35.5} \pm \textbf{0.2}$	0.753			
	Small intestine length, cm	$\textbf{37.0} \pm \textbf{0.7}$	36.9 ± 0.3	$\textbf{36.2}\pm0.5$	0.514			

Table S1, related to Figure 1 and S1 and Figure 3 and S3: Mouse characteristics.

(Top) Control, CD and GF mice were fed a chow diet and acclimated (4 w) to ambient temperatures. Corrected body mass (body mass without intestinal contents) is provided in grams and as a percentage of TBM (total body mass).

(Bottom) Mice received a FMT with conditioned microbiome (CM) from mice acclimated (4 w) to 30, 22 or 4 °C, and were then fed either chow or lard-based HFD and housed at 22 °C or 30 °C, respectively. Blank cells indicate that experiments were not conducted. Values represent means \pm s.e.m (*n* = 6-8).

Statistical analyses were conducted using Student's *t*-test (top) or 1-way ANOVA (bottom); P < 0.05 control *vs*. CD or GF mice (bold and italicized).

	Report	Relative abundance, %			Change, %		
		Ambient temperatures, °C		29-30 vs.	29-30 vs.	17-22 vs.	
		29-30	17-22	4-12	17-22 °C	4-12 °C	4-12 °C
Abundant phyla							
Bacteroidetes	Krisko <i>et al.</i>	67.0 ± 3.9	60.7 ± 8.0	50.5 ± 4.5	-9.5	-24.7	-16.8
	Chevalier et al.		72.7 ± 4.6	35.3 ± 4.2			-51.5
	Zietak <i>et al.</i>	13.9 ± 1.5	21.7 ± 2.9	19.6 ± 3.0	56.3	40.8	-10.0
Firmicutes	Krisko <i>et al.</i>	20.7 ± 1.4	32.7 ± 7.2	45.9 ± 4.4	57.8	121.3	40.3
	Chevalier et al.		18.6 ± 5.3	60.5 ± 4.1			224.9
	Zietak et al.	80.9 ± 1.4	73.5 ± 3.4	76.8 ± 3.3	-9.1	-5.1	4.5
Tenericutes	Krisko <i>et al.</i>	1.3 ± 0.3	1.6 ± 0.6	1.3 ± 0.6	30.3	2.6	-21.3
	Chevalier et al.		0.7 ± 0.3	0.6 ± 0.3			-21.7
	Zietak et al.	0.02 ± 0.01	0.04 ± 0.02	0.12 ± 0.06	97.2	415.0	161.2
Proteobacteria	Krisko <i>et al.</i>	4.2 ± 1.0	0.8 ± 0.2	1.2 ± 0.2	-80.9	-72.0	45.6
	Chevalier et al.		1.5 ± 0.1	1.0 ± 0.1			-31.9
	Zietak et al.	$\textbf{3.6}\pm\textbf{0.6}$	4.1 ± 0.7	2.9 ± 0.3	13.9	-18.4	-28.4
Actinobacteria	Krisko <i>et al.</i>	0.2 ± 0.1	0.5 ± 0.2	1.1 ± 0.7	111.7	381.9	127.7
	Chevalier et al.		0.02 ± 0.00	0.01 ± 0.00			-40.3
	Zietak et al.	1.3 ± 0.6	0.6 ± 0.1	0.2 ± 0.1	-50.1	-80.6	-61.2
Verrucomicrobia	Krisko <i>et al.</i>	5.76 ± 3.0	3.68 ± 3.5	0.03 ± 0.03	-36.0	-99.4	-99. 1
	Chevalier et al.		5.96 ± 2.4	0.00 ± 0.00			-100.0
	Zietak <i>et al.</i>	0.39 ± 0.25	0.00 ± 0.00	0.27 ± 0.23	-99.8	-29.9	28745.6
Cyanobacteria	Krisko <i>et al.</i>	0.80 ± 0.41	0.02 ± 0.02	0.02 ± 0.02	-97.3	-97.6	-12.5
	Chevalier et al.		0.36 ± 0.09	0.54 ± 0.07			50.7
	Zietak <i>et al.</i>	ND	ND	ND			
Metabolically notable	populations						
Erysipelotrichaceae		4.8 ± 1.2	$\textbf{3.4}\pm\textbf{0.9}$	0.5 ± 0.1	-30.1	-89.0	-84.2
	Chevalier et al.		0.7 ± 0.3	0.0 ± 0.0			-95.9
	Zietak <i>et al.</i>	25.3 ± 1.0	0.6 ± 0.3	0.4 ± 0.1	-97.4	-98.4	-47.5
Lachnospiraceae	Krisko <i>et al.</i>	4.2 ± 1.0	15.8 ± 5.8	$\textbf{27.0} \pm \textbf{4.0}$	273.2	538.3	71.0
	Chevalier et al.		1.3 ± 0.3	4.7 ± 0.5			256.1
	Zietak <i>et al.</i>	39.7 ± 1.0	58.8 ± 0.3	63.6 ± 5.2	48.2	60.3	8.2
Akkermansia	Krisko <i>et al.</i>	5.8 ± 3.0	3.7 ± 3.5	0.0 ± 0.0	-36.0	-99.4	-99.1
muciniphila	Chevalier et al.		6.0 ± 2.3	0.0 ± 0.0			-100.0
	Zietak <i>et al.</i>	0.4 ± 0.2	0.0 ± 0.0	0.3 ± 0.2	-99.8	-29.9	28745.6
Lactobacillus	Krisko <i>et al.</i>	1.4 ± 0.3	0.5 ± 0.3	0.0 ± 0.0	-63.3	-100.0	-100.0
	Chevalier et al.		0.0 ± 0.0	0.0 ± 0.0			-58.1
	Zietak et al.	7.6 ± 2.6	2.6 ± 0.9	4.3 ± 1.8	-65.3	-42.5	65.6

Table S2, related to Figure 3 and S3: Microbial composition in response to altered ambient temperature.

Microbiome comparisons were made between the present study (Krisko et al., 2020) and publicly available data (Chevalier et al., 2015, Zietak et al., 2016). Mice were grouped according to exposure to thermoneutral temperatures 29-30 °C (Krisko et al., 30 °C; Zietak et al., 29 °C), and increasing cold ambient temperatures of 17-22 °C (Krisko et al., 22 °C; Chevalier et al., room temperature; Zietak et al., 17 °C) and 4-12 °C (Krisko et al., 4 °C; Chevalier et al., 6 °C; Zietak et al., 12 °C). ND, not detected. Blank cells indicate data that were not collected. Values represent means of relative abundance \pm s.e.m (n = 4-8). Bold and italicized values indicate common trends among two or more studies.

KEGG code	Dysregulated metabolites in liver	Direction of	Fold ch	Fold change		
KEGG Code	Dysregulated metabolites in liver	dysregulation	CD	GF		
Saline						
C00212	Adenosine	Increased	1.55	1.30		
C00262	Hypoxanthine	Decreased	0.74	0.81		
C04282	1-Pyrroline-4-hydroxy-2-carboxylate*	Decreased	0.72	0.58		
C00025	Glutamate	Decreased	0.70	0.58		
C00065	Serine	Decreased	0.56	0.67		
C00049	Aspartate	Decreased	0.60	0.57		
Pyruvate	·					
C00352	Glucosamine phosphate	Increased	8.57	5.23		
C02488	Ethyl malate*	Increased	4.14	2.28		
C00900	Acetolactate*	Increased	3.21	1.87		
C01172	Hexose phosphates*	Increased	1.76	1.93		
C02225	Methylcitrate*	Increased	1.65	1.97		
C00212	Adenosine	Increased	1.82	1.5		
C00026	Ketoglutarate	Increased	1.79	1.37		
C00122	Fumarate	Decreased	0.68	0.76		
C00546	Methylglyoxal*	Decreased	0.59	0.78		
C00149	Malate	Decreased	0.63	0.74		
COODEE	Serine	Decreased	0.58	0.76		
C00065				0		
C00065 C01697	Galactitol*	Decreased	0.27	0.34		
	Galactitol*			0.34		
C01697		Decreased	0.27	0.34		
C01697 KEGG	Galactitol*	Decreased Direction of	0.27 Fold cf	0.34 nange GF		
C01697 KEGG code#	Galactitol* Dysregulated metabolites in PVS	Decreased Direction of dysregulation	0.27 Fold cf	0.34 nange		
C01697 KEGG code# C00581	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid	Decreased Direction of dysregulation Increased	0.27 Fold cr CD 1.79	0.34 nange GF 2.15 2.12		
C01697 KEGG code# C00581 C00037	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine	Decreased Direction of dysregulation Increased Increased	0.27 Fold ch CD 1.79 1.61	0.34 nange GF 2.15		
C01697 KEGG code# C00581 C00037 C00245	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine	Decreased Direction of dysregulation Increased Increased Increased	0.27 Fold cr CD 1.79 1.61 1.56	0.34 nange GF 2.15 2.15 1.45		
C01697 KEGG code# C00581 C00037 C00245 C03137	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan	Decreased Direction of dysregulation Increased Increased Increased Increased Increased	0.27 Fold cr CD 1.79 1.61 1.56 1.50	0.34 nange GF 2.11 2.12 1.41 1.99		
C01697 KEGG code# C00581 C00037 C00245 C03137 C00327	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid	Decreased Direction of dysregulation Increased Increased Increased Increased Increased Increased Increased Increased	0.27 Fold cr CD 1.79 1.61 1.56 1.50 1.35	0.34 nange GF 2.11 2.12 1.44 1.99 1.50 1.33		
C01697 KEGG code# C00581 C00037 C00245 C03137 C00327 C00158	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline	Decreased Direction of dysregulation Increased Increased Increased Increased Increased Increased Increased Increased	0.27 Fold cf CD 1.79 1.61 1.56 1.50 1.35 1.28	0.34 nange GF 2.11 2.12 1.44 1.99 1.56 1.33 1.54		
C01697 KEGG code# C00581 C00037 C00245 C03137 C00327 C00327 C00158 C00047 C03761	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine	Decreased Direction of dysregulation Increased	0.27 Fold cf CD 1.79 1.61 1.56 1.50 1.35 1.28 1.28	0.34 nange GF 2.14 2.14 1.44 1.99 1.56 1.33 1.54 1.55		
C01697 KEGG code# C00581 C00037 C00245 C03137 C00327 C00158 C00047 C03761 C00031	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine 3-Hydroxymethylglutaric acid D-Glucose	Decreased Direction of dysregulation Increased	0.27 Fold cr CD 1.79 1.61 1.56 1.50 1.35 1.28 1.28 1.21	0.34 nange GF 2.11 2.12 1.44 1.99 1.50 1.33 1.54 1.55 0.77		
C01697 KEGG code# C00581 C00245 C00245 C00158 C00047 C00047 C03761 C00031 C00214	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine 3-Hydroxymethylglutaric acid D-Glucose Thymidine	Decreased Direction of dysregulation Increased Increased	0.27 Fold cr CD 1.79 1.61 1.56 1.50 1.35 1.28 1.28 1.28 1.21 0.62 0.62	0.34 nange GF 2.14 2.14 1.44 1.99 1.56 1.33 1.55 0.77 0.33		
C01697 KEGG code# C00581 C00037 C00245 C03137 C00327 C00158 C00047 C03761 C00031 C000214 C00526	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine 3-Hydroxymethylglutaric acid D-Glucose Thymidine Deoxyuridine	Decreased Direction of dysregulation Increased Increased Increased Increased Increased Increased Increased Increased Decreased Decreased Decreased	0.27 Fold cf CD 1.79 1.61 1.56 1.50 1.35 1.28 1.28 1.28 1.21 0.62 0.62 0.56	0.34 nange GF 2.11 2.12 1.44 1.99 1.50 1.33 1.54 1.55 0.77 0.37 0.24		
C01697 KEGG code# C00581 C00037 C00245 C003137 C00327 C00158 C00047 C03761 C00031 C00214 C00526 C00491	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine 3-Hydroxymethylglutaric acid D-Glucose Thymidine Deoxyuridine L-Cystine	Decreased Direction of dysregulation Increased Decreased Decreased Decreased Decreased Decreased Decreased	0.27 Fold cr CD 1.79 1.61 1.56 1.50 1.35 1.28 1.28 1.28 0.62 0.62 0.56 0.36	0.3- nange GF 2.1- 2.1- 1.4 1.9- 1.5- 1.5- 1.5- 0.7 0.3 0.2- 0.2-		
C01697 KEGG code# C00581 C00037 C00245 C00158 C00047 C003761 C00031 C00214 C00526 C00491 C05598	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine 3-Hydroxymethylglutaric acid D-Glucose Thymidine Deoxyuridine L-Cystine Phenylacetylglycine	Decreased Direction of dysregulation Increased Decreased Decreased Decreased Decreased Decreased Decreased Decreased	0.27 Fold cf CD 1.79 1.61 1.56 1.50 1.50 1.35 1.28 1.28 1.21 0.62 0.56 0.36 0.14	0.34 nange GF 2.11 2.12 1.4 1.99 1.50 1.33 1.54 1.55 0.77 0.33 0.24 0.24 0.24 0.24		
C01697 KEGG code# C00581 C00037 C00245 C00245 C00327 C00327 C00158 C00047 C003761 C00031 C00214 C00526 C00491	Galactitol* Dysregulated metabolites in PVS Guanidinoacetic acid Glycine Taurine N-acetyltryptophan Citrulline Citric acid L-Lysine 3-Hydroxymethylglutaric acid D-Glucose Thymidine Deoxyuridine L-Cystine	Decreased Direction of dysregulation Increased Decreased Decreased Decreased Decreased Decreased Decreased	0.27 Fold cr CD 1.79 1.61 1.56 1.50 1.35 1.28 1.28 1.28 0.62 0.62 0.56 0.36	0.34 nange GF 2.15 2.15 1.45 1.99 1.50		

 Table S3, related to Figure 4 and S4: Microbiome-dependent metabolites.

Dysregulated metabolites in liver: LC-MS metabolomics identified hepatic metabolites significantly altered 30 min following either saline or pyruvate administration between control mice and microbiome-deficient mice (CD and GF). * denotes putative metabolite identities (n = 3-6).

<u>Dysregulated metabolites in PVS:</u> LC-MS metabolomics identified PVS metabolites significantly altered between control mice and microbiome-deficient mice (CD and GF). # Where KEGG codes were not identified, HMDB codes are provided (n = 4-5). Fold change was determined as the ratio of CD or GF mean metabolite levels compared to control.

MetaboAnalyst: Microbiome-dependent pathways in liver							
KEGG code	Dysregulated pathway	dysre	ber of gulated bolites	<i>P</i> -value			
		Saline	Pyruvate	Saline	Pyruvate		
ko00250	Alanine, aspartate and glutamate metabolism	2	3	0.004	0.001		
ko00471	D-Glutamine/D-Glutamate metabolism	1	1	0.021	0.038		
ko00330	Arginine and proline metabolism	3	1	0.001	0.294		
ko00970	Aminoacyl-tRNA biosynthesis	3	1	0.002	0.424		
ko00020	Citrate cycle (TCA cycle)		3		0.000		
ko00620	Pyruvate metabolism		3		0.013		
ko00260	Glycine, serine and threonine metabolism	1	2	0.125	0.023		
ko00230	Purine metabolism	2	1	0.038	0.419		
ko00680	Methane metabolism	1	1	0.038	0.068		

XCMS: Microbiome-dependent dysregulated pathways in liver	Altered, %	<i>P</i> -value
Myo-inositol de novo biosynthesis	100	0.006
Glycine biosynthesis	100	0.006
4-hydroxyproline degradation	50	0.007
β-alanine degradation	67	0.012
L-cysteine degradation II	67	0.012
L-cysteine degradation I	67	0.012
Methylglyoxal degradation I	67	0.012
Alanine biosynthesis/degradation	67	0.012
Morphine biosynthesis	67	0.012
Glycolysis	40	0.029

XCMS: Microbiome-dependent dysregulated pathways in PVS	CD Altered, %	GF Altered, %	CD <i>P</i> -value	GF <i>P</i> -value
Ketolysis	100	83	0.000	0.001
TCA cycle	44	78	0.001	0.001
Valine degradation	43	80	0.002	0.001
4-aminobutyrate degradation	50	80	0.007	0.001
Glycine biosynthesis	50	75	0.007	0.003
Ascorbate recycling (cytosolic)	50	60	0.007	0.004
Pyrimidine ribonucleosides degradation	50	43	0.007	0.013
4-hydroxy-2-nonenal detoxification	50	67	0.007	0.018
Methylglyoxal degradation I	40	50	0.012	0.035
Methylglyoxal degradation VI	40	50	0.012	0.035
Arsenate detoxification I (glutaredoxin)	40	50	0.012	0.035
Pyrimidine deoxyribonucleosides degradation	40	50	0.012	0.035
D-glucuronate degradation	40	50	0.012	0.035

Table S4, related to Figure 4 and S4: Microbiome-dependent pathways.

MetaboAnalyst: Microbiome-dependent pathways in liver: Pathways identified by MetaboAnalyst as being significantly dysregulated (P < 0.05), with an impact score > 0, utilizing metabolites listed in Table S3 (saline and pyruvate entered separately). Number of dysregulated metabolites denotes the number of metabolites in the pathway map that are differentially regulated; Blank cells indicate the absence of dysregulated metabolites in the pathway (n = 3-6).

<u>XCMS:</u> Microbiome-dependent dysregulated pathways in liver: Unbiased determination of microbiomedependent hepatic pathways altered by pyruvate stimulation. XCMS analysis of LC-MS metabolomics using pairwise comparisons in the negative ionization mode (no pathways were significantly altered in the positive ionization mode). Microbiome-dependent pathways were defined as metabolic pathways significantly (P < 0.05pyruvate *vs.* saline) altered in conventional control mice but not in microbiome-deficient mice (CD and GF). Percentage of altered metabolites from the total metabolites measured per pathway (n = 3-6).

XCMS: Microbiome-dependent dysregulated pathways in PVS: Unbiased determination of microbiomedependent metabolic pathways altered in the PVS. XCMS analysis of LC-MS metabolomics using pairwise comparisons in the negative ionization mode. Microbiome-dependent pathways were defined as metabolic pathways significantly (P < 0.05) altered between control mice and microbiome-deficient mice (CD and GF). Percentage of altered metabolites from the total metabolites measured per pathway (n = 4-5).