
Response to reviewers

“Functional Parcellation of Mouse Visual Cortex Using Statistical Techniques Reveals Response-
Dependent Clustering of Cortical Processing Areas” (PCOMPBIOL-D-20-00156)

We thank the three reviewers for their detailed comments. To address these comments, we have carried out
significant additional analyses and made extensive changes to the manuscript. Our changes include 4 new text
figures (Figures 4, 7, 8, and 9), 2 new text tables (Tables 2 and 4), 4 new supplementary figures (Figures S1, S4,
S5, and S6) and 2 new supplementary tables (Table S2, S3). A point-by-point response is provided below.

Reviewer 1

Reviewer point 1.1 — “Kumar et al. studied wide-field GCaMP signals in 6 cortical visual areas in the
mouse. Pixels clustered into 6 groups with boundaries that match retinotopic borders, indicating that each visual
area is distinct. Unfortunately, what causes these areas to cluster is unknown. With no information on the
basis of clustering it’s difficult to assign significance to the clusters. Furthermore, the distinguishing feature is
not related to visual stimuli since the same clusters were derived from spontaneous activity, suggesting that the
clusters contain no information about the roles of these areas in processing visual information. In short, the paper
reports an observation – that pixels cluster – but doesn’t explain why. The observation would appear to have little
significance.” (See also Reviewer 3, point 7)

Response 1.1: We appreciate this important comment. We have carried out two new analyses to provide additional
insight into the visually driven and resting state response patterns that enable the classification. First, we have
computed the average intra-area and inter-area correlations between the neurons/pixels, for wide-field and two-photon
datasets. Fig R1 A, B shows the correlation computed for raw wide-field data using natural movies and resting state
responses, respectively. Similarly, Fig R1 E, F shows the same result for raw data from the Emx1-IRES subset of
the two-photon dataset. For both datasets, the average intra-area correlation is consistently higher than the inter-
area correlation. Even with resting state responses, in the absence of overt visual stimuli, the responses are more
correlated within an area. The ratio of average intra- to inter-area correlations calculated on raw responses were
1.1 and 2.5 for the wide-field and two-photon datasets, respectively. The raw signals were preprocessed using PCA
and LDA before they were given to the classifiers. In Figs R1 C, D, G, H, the correlations computed in the LDA
domain are shown. The LDA space significantly improved the ratio of average intra-area and inter-area correlations
to 8.8 and 9.7 for the wide-field and two-photon datasets, respectively. In Fig R2, we show the 2D visualization of
LDA subspace obtained using wide-field (mouse M4) and two-photon (Emx1-IRES Cre-line) datasets. T-distributed
stochastic neighbor embedding (tSNE, Maaten and Hinton [2008]) was used to convert the multi-dimensional LDA
subspace into a visualizable 2D space. The LDA subspace is able to cluster neurons from different areas owing to
correlated examples from the training data, in both visually driven and resting state responses from wide-field and
two-photon datasets (Fig R2). By applying different supervised classifiers to these subspaces, we were thus able to
identify the area labels with high accuracy.
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Fig R1. Intra-area and inter-area correlations computed on raw responses and LDA features. A-D)
Correlations computed from mouse M4 of wide-field dataset. E-H) Correlations computed from Emx1-IRES Cre-line
of two-photon dataset. The correlations are computed as averages over all unique pairs of neurons/pixels in the test
data, which were not used to train the LDA projection matrix. In Supporting Information Figs S5 and S6, we show the
correlations among raw responses and LDA features for all the other animals and data.
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Fig R2. Two-dimensional representation of the supervised LDA subspace. A, B) LDA subspace of wide-field
dataset (mouse M4). C, D) LDA subspace of two-photon dataset (Cre-line Emx1-IRES). The plots on the left (A, C)
are obtained from natural movie responses and that on the right (B, D) are obtained from resting state responses.

Both PCA and LDA are simple linear projections of the data. An illustration of LDA projection is shown in Fig R3.
The LDA projection (in Fig R3 B) is able to minimize the within-class variability and increase the between-class
distance because the clusters are distinct in the input x, y coordinate space (Fig R3 A). Thus, we argue that the
LDA space is able to cluster neurons from different areas (Fig R2) using examples from the training data owing to
the stronger intra-area correlations found in raw signals. Figs R1 and R2 are added as Figs 8 and 9 in the revised
manuscript, and the correlation analysis has been added to the Discussion (Section 3) in the paper.

A B

Fig R3. Illustration of LDA. A) Two cluster in x, y coordinate space. B) A possible LDA projection that minimizes
within class variability while increasing between class distance. (Redrawn from Elhabian and Farag [2009])

In a second new analysis, we have analyzed resting state and visually driven responses in more detail, using different
response durations and additional data on intrinsic activity from the Allen Institute dataset. We show that retinotopic
area classification is better with stimulus-driven responses than resting state responses of the same duration, particularly
when multiple trials are averaged. This has been added to Results (Section 2.3) and new Fig 7 in the text.

These findings demonstrate two important features of visual areas in mice, relevant to processing of visual stimuli.
First, they are consistent with the fact that each cortical area is characterized by a unique pattern of internal connections
and circuits. Some of these may be common to many areas of cortex (eg., local recurrent excitatory connections)
whereas others are crafted by a combination of specificity and plasticity (eg., local inhibitory connections, long-range
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excitatory connections). These connection patterns come into play even with internally generated activity which
characterizes resting state responses. Thus, the intra-areal correlations are higher than inter-areal correlations for
both visual and resting state responses. Second, visual stimuli are stronger drivers of internal circuits than resting
state activity. Thus, the visually driven responses have higher classifier accuracy than resting state responses for given
response durations, and in some instances the resting state responses never reach the accuracy of visual responses (Fig
7). This has been added to the Discussion (Section 3), and also to the Abstract.

Reviewer point 1.2 — The paper’s littered with sentences that appear disconnected from the results and
conclusions. I’ll give two examples. The second sentence of the abstract reads: ‘The extent to which these areas
represent discrete processing regions remains unclear.’ The paper brings no clarity. Why suggest the study is of
visual processing? And in the results ‘These results indicate that each visual area has a characteristic signature
that is represented in the responses to visual stimuli presented and can be revealed with a variety of visual stimuli.’
What signature? Information on this signature is conspicuously missing. And about the only thing we know is
that the signature’s not related to presented visual stimuli. This sentence is comprehensively at odds with the
results. The text frequently suggests the paper will be about the different visual stimuli that drive these visual
areas, but there’s no information here on this topic.

My sense is that the study didn’t lead in the direction the authors had expected. If so, it would be best to let
go of the intended direction of the project and address what they can with the results. In particular, the aim and
conclusions need to be clear and clearly related to the results.

Response 1.2: We now clarify that the paper addresses the question of whether six retinotopic visual areas of the
mouse cortex can be classified based on their activity patterns in response to different visual stimuli or in the resting
state. We have rewritten the Abstract to emphasize the motivation and our findings, clarified the goals of our work
in the Introduction, and modified the Conclusion. We have modified the second sentence in the Abstract, and
removed references to ‘response signatures’ in the Abstract and Results. The above statement in Results has been
changed to: “These results thus indicate that the responses of different visual areas to a range of visual stimuli can
be used to reliably and accurately classify their borders”.

Our paper addresses the question we asked and gives clear answers, and this has been laid out in the revised
Abstract and Results. First, we show that areas can be classified based on visually driven activity. Second, we show
that resting state responses are an important complement to visual responses in classifying areas. Visual as well as
resting state responses do not arise de novo; rather they both reflect specific underlying input-output connections and
circuits in each area. These connections can be activated by internally generated activity without overt visual stimuli,
or explicitly by visual stimuli. In the revised manuscript, we now also show resting state results for the two-photon
Allen Institute dataset (detailed in Response to Reviewer 2, point 2). Thus, we now show comparable results from
two different datasets each with multiple stimuli along with resting state responses, demonstrating that resting state
and visual responses can be used to classify area borders. We also provide new analyses that intra-areal responses are
more correlated than inter-areal responses, for both visually driven and resting state activity, which we hypothesize
drives classifier accuracy (See Response 1.1). This has been added to the Discussion (Section 2.3) in the paper.

Our analysis does not speak further to what features of neuronal responses are responsible for the classification.
The analysis pipeline does not use any explicit configuration of stimuli except averaging the response across trials.
Hence, we have removed mention of response signatures from the text and modified the title of the paper.

Reviewer point 1.3— What is the genotype of the transgenic GCaMP mice? Also, the breeding scheme.

Response 1.3: The mice were generated by crossing Ai93 (TITLa-tTA) with Emx1-IRES-Cre mice lines from Jackson
Labs. This is now mentioned in Methods (Section 1.1.1)

Reviewer point 1.4 — What’s the eye-to-screen distance and visual angle subtended by the monitor.

Response 1.4: The eye-to-screen distance was 12 cm. Dimension of the monitor was 52.7 × 33.6 cm, subtending
a visual angle of 131◦ × 108◦ at that distance. This has been added to Methods (Section 1.1.1)

Reviewer point 1.5 — What was the size (in degrees) of the visual stimuli?

Response 1.5: The visual stimuli for retinotopic mapping was a narrow bar as described in the paper. The length of
the bar was the full length across the display; depending on the orientation of the bar, it was either 131◦ at horizontal
orientation or 108◦ at vertical orientation. The width of the bar was kept at 14◦ for either orientation. This has been
added to Methods (Section 1.1.1). Full-field visual stimuli (gratings, movies) were presented on the entire monitor.

Reviewer point 1.6 — Figure 1D. Why does the field sign map appear so patchy? It’s different from the
maps produced by others with wide-field GCaMP imaging. See for example Zhuang et al. eLife 2017. I would
guess perhaps the SNR of the retinotopic maps are poor?

3



The boundaries of the 6 core visual areas were defined according to criteria described in [9]’ This statement is
conspicuously untrue. If the authors intended to replicate the field sign mapping technique of Garrett et al., they
have failed. In Garrett et al. the borders are, by definition, where the field sign crosses zero. In figure 1D, the
borders are not at zero. Many, perhaps all the borders are at some negative field sign value. The authors need to
take a closer look at their code. They also need to provide a more detailed explanation of their mapping procedure
and, ideally, the code.

Response 1.6: Our procedure is identical to Garrett et al. [2014]. According to Garrett et al. [2014], the visual
area boundaries were defined by morphological post-processing over the sign maps. Our sign maps look similar to
Garrett et al. [2014] (eg., see their Fig 2), and they are no more patchy than any other study that has described such
maps (eg., S1 Fig. in Waters et al. [2019]). Some studies that impose a ‘standard’ map on the cortex provide little
actual mapping data and give the impression that maps are smoother than they actually are on close examination (eg.,
Andermann et al. [2011]). Importantly, in our study we take into account the natural variability of areal borders in
each mouse to build classifiers effectively. In the revised manuscript, Fig 1D shows the visual field sign for each area
to avoid confusion. In Fig R4, we show the azimuth and altitude contours along with the derived borders for all the
mice used in the paper. The visual field representation is the ground truth for each area, and is similar across mice
and also to other studies which have shown such maps (Garrett et al. [2014]; Zhuang et al. [2017]). Fig R4 is added
as Supporting Information Fig S1.

Azimuth Elevation

M1

M2

M3

M4

M5

0 15 30 45 60 75 90 -20 -10 0  10 20 30 40 

Fig R4. Horizontal and vertical retinotopy within 6 visual areas of all the mice used in the paper.
Cortical areas of the left hemisphere are shown. Azimuth 0◦ and 90◦ correspond to the midline and the far periphery
of the contralateral visual field, respectively. Negative values of elevation represent lower visual field and positive values
represent upper visual field.
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Reviewer point 1.7— Table 1 provides incomplete information on the stimuli. For 1, give the SF and TF. For
2, the TF and direction. For 3, the SF and direction. We also need luminance, contrast and size of the stimulus.

Response 1.7: The missing information is shown in Table R1 (given as Table 1 in the main paper). The table has
been updated.

Table R1: Summary of different stimuli shown to mice

S. No Stimuli Name Description

1 Directions/
Orientation

16 different sinusoidal gratings with varying direction
from 0o to 360o with a step of 22.5o. The spatial and
temporal frequencies were fixed at 0.03 cycles/degree and 3
Hz, respectively. Michelson contrast of 0.8 was used.

2 Spatial-
Frequency

5 different sinusoidal gratings with spatial frequency
increasing exponentially from 0.01 cycles/degree to
0.16 cycles/degree. The temporal frequency was fixed at 3
Hz. For each spatial frequency, the direction was varied
from 0o to 360o with a step of 45o. Michelson contrast of
0.8 was used.

3 Temporal-
Frequency

5 different sinusoidal gratings with temporal frequency
increasing exponentially from 0.5 Hz to 8 Hz. The spatial
frequency fixed at 0.03 cycles/degree. For each temporal
frequency, the direction was varied from 0o to 360o with
a step of 45o. Michelson contrast of 0.8 was used.

4 Natural Movies 4 different movies with natural scenes. For each movie
additional noisy versions were created by perturbing
their spatial correlations, as demonstrated in Rikhye and
Sur [2015].

Reviewer point 1.8 — 2.1 The supervised classifiers are described in numerical detail, but I gained no insight
into the differences between the classifiers. Why these classifiers? Was there reason to use several?

Response 1.8: We have used different classifiers to show that this result is not based on a single classifier. We have
shown that the proposed methods work with generative (GMM, Unimodal Bayes) and discriminative (SVM, ANN)
classifiers. We have also shown the approach to work with linear (Unimodal Bayes, SVM) and non-linear (ANN, GMM)
classifiers. This shows that the obtained results are mainly because of the proposed PCA and LDA subspace rather
than the classifier. In addition, the fact that a non-linear classifier performs similarly as linear one suggests that major
difference between areas has been captured by linear models. This has been added to the Discussion (Section 3).

Reviewer point 1.9 — Figure 4D and E. The LM and RL labels are swapped.

Response 1.9: The labels have now been fixed in Fig 4D

Reviewer point 1.10 — Figure 5 and later figures. Why are the maps broken down by visual stimulus when
earlier results were not. And why break them down by visual stimulus when clustering needs no visual stimulus?

Response 1.10: This is a misunderstanding. For all the classifiers (from Fig 3), the results are broken down
by the different visual stimuli and mice. We show that we are able to classify/cluster the areas using all the visual
stimuli or resting state with no overt stimuli. Further, in Section 2.3, we also show that classification is better with
stimulus-driven responses than resting state responses.
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Reviewer point 1.11 — 2.3 Resting vs stimulus induced response. I failed to grasp the aim of this section.

Response 1.11: Specific activity patterns including reverberation-like activities during resting states (absence of
overt visual stimuli) in visual cortex have been observed by several labs, even in anesthetized animals (see Yao et al.
[2007]). Given these observations, the logic behind our experiment was to use our proposed methods to further
test whether spontaneous activities encode any area-specific information. We were not able to detect any significant
reverberations, most probably due to the slow dynamics of calcium signals. Nevertheless, we found that resting state
activity could be used to discriminate visual areas. This is a novel finding, and we wished to examine it further, which
we have done in section 2.3.

In Sections 2.1 and 2.2, the natural movies, and other stimuli were presented multiple times and averaged to obtain
stimulus-induced responses. Since a structured trial cannot be defined for resting state responses, the dF/F of the
signal was used as the input. In section 2.3, we now compare resting state responses with single-trial and trial-averaged
stimulus induced responses by fixing the response duration. This analysis enables an in-depth analysis of the results
obtained with and without stimuli: we show that stimulus-driven responses contain better discriminating responses
than the resting state when response lengths are limited to 100 secs (see also Response 3.8).

We have revised Section 2.3 and added new Fig 7 (replacing previous Figure 6).

Reviewer point 1.12 — The unsupervised clustering simply fails. Is there a reason to include it? The stated
conclusions are weak at best. (See also Reviewer 2, point 3 and Reviewer 3, point 3)

Response 1.12: Following suggestions from Reviewers 2 and 3 as well, we performed a new set of experiments to
examine in more detail the unsupervised clustering analysis. Below we summarize our experiments and results:

Experiments:

� We introduced new metrics to measure the effectiveness of the clustering result. V-measure (Rosenberg and
Hirschberg [2007]), was used as a metric to compare the clusters obtained by our approach and the areas defined
by retinotopy. V-measure is computed as the harmonic mean of completeness and homogeneity of the obtained
clusters.

� For a control experiment the initial clusters were spatially shuffled, and the clustering was repeated.

� In addition to BIC, we tried a new merging criterion which measures the generalized spread in the cluster
by computing the determinant of its covariance matrix. The results of old and new approaches are given in
Figs R9 and R10, respectively.

Results:

� The new results obtained using determinant of the covariance matrix as the merging criteria (Fig R10) gave
slightly better results than the previous method using BIC (Fig R9). The determinant of the covariance matrix
scored an average V-measure of 0.37 while the clustering using BIC scored a V-measure of 0.30.

� Shuffling the initial clusters randomly gave an average V-measure of 0.06 and 0.09 for BIC and determinant
based clustering, respectively.

However, the results obtained in Figs R9 and R10 are still very different from the retinotopically defined areas. Since
it was hard to interpret these clusters, we decided to keep this analysis just as a part of Response to Reviewers and
have removed the analysis from the paper (as recommended by reviewers 1 and 3). In the main article we now mention
that unsupervised clustering was attempted; however, we were not able to cluster them meaningfully (Discussion,
Section 3). Appendix 1 in this response details our additional experiments on the unsupervised approach.

Reviewer 2

Reviewer point 2.1 — This paper addresses the question of whether the retinotopic visual cortical areas of the
mouse can be discovered from their activity patterns in response to visual stimuli or in the resting state. The study
concludes that retinotopically defined areas have unique activity profiles that allows their identification based on
supervised and semi-supervised methods. However, unsupervised approaches fail to recover these areas with great
accuracy, suggesting that despite differences between areas, there is also a great deal of overlap between areas.
The question posed is an interesting one, and overall the results are convincing. I like the general approach and
think this approach will be valuable for many future questions, even beyond studies of visual cortex. I therefore
support publication of this work if the points below can be addressed.

Response 2.1: We appreciate the reviewer’s view of the paper. Below we have addressed reviewer 2’s comments in
detail.
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Reviewer point 2.2 — In the discussion and conclusions, a lot of emphasis is placed on the resting state
data. The authors emphasize that some of the separation between areas could be due to intrinsic activity rather
than visual responses. However, there are only two mice for the resting state data, which seems like too small of
a sample size. Either these claims should be lessened or more resting state data should be added.

Response 2.2: In the revised manuscript, we have added the analysis of intrinsic activity from the Allen Institute
dataset. We show that the supervised classifier trained using resting state activity from this dataset also performs
very similar to the trial-averaged natural movie responses. These observations include two Cre-lines in the main article
(Table 4) and four other Cre-lines in Table R4. Table R4 is included as Supporting Information Table S3.

Reviewer point 2.3 — I like the analysis of shuffling the area labels in the supervised analysis to show the
chance level. I think similar analyses would be nice for the other parts of the paper too. For example, for the
unsupervised clustering, it might be interesting to compare clustering metrics for the real data and data in which
the pixel locations are shuffled. This could provide some measure of how much structure can be discovered in the
real data relative to what would emerge from random data. In general these comparisons are helpful to provide
the reader with a bound on what can be expected by chance. (See also Reviewer 1, point 12 and Reviewer 3, point
3 )

Response 2.3: As suggested by the reviewer, we carried our further analysis of unsupervised clustering. Our
experiments and results are summarized in Response 1.12, and described in Appendix 1. We found little improvement,
and have removed the analysis from the paper (as recommended by Reviewer 1, point 12 and Reviewer 3, point 3).

Reviewer point 2.4 — My understanding is that the unsupervised analysis was only performed on the
widefield calcium imaging data. It was a bit hard to figure this out in the text, so I apologize if I am incorrect. If
my statement is correct, then it would be nice in addition to see the unsupervised analysis on the single cell data.
The single cell data lack spatial correlations that are present in the widefield data, as the authors note. It would
be interesting to see if similar clusters could be uncovered with the single cell data.

Response 2.4: We have not tried unsupervised clustering of the two-photon dataset. For clustering the wide-field
dataset, we merged only clusters that are spatially neighbors. Furthermore, we use grids of size 25 to 49 pixel as starting
points. In the two-photon dataset, without the spatial information the initial grids and the merging criteria need to
be changed completely. Without the spatial relation of pixels/neurons, the problem is even more under-constrained.

Moreover, as stated in Response 1.12, Response 2.3, and Appendix 1, since it was hard to interpret clusters
obtained from the unsupervised approach, we decided to keep this analysis just as a part of Response to Reviewers
and removed it from the main paper. In the main article we discuss (in Section 3) that unsupervised clustering was
attempted, but that we were not able to cluster the areas meaningfully.

Reviewer point 2.5 — The tables of accuracies for the supervised and semi-supervised analyses are nice,
but it would also be interesting to see the confusion matrices for these analyses. It would be interesting to some
readers to see which areas are more similar to one another and thus get confused with one another more frequently.
Such a confusion matrix could support some of the claims about lateral versus medial differences that the authors
make using the unsupervised analysis. (See also Reviewer 3, point 5)

Response 2.5: In Fig R5, we show examples of confusion matrices, obtained using mouse M1 from wide-field dataset
and Emx1-IRES Cre-line from two-photon dataset, respectively. In Supporting Information Fig S4, we show the same
for the entire dataset. For the wide-field dataset, responses from other areas were mostly predicted as V1 (Fig R5),
which is not unexpected since V1 projects to each of the other areas. The confusion observed in the two-photon
dataset were variable. Importantly, however, for both datasets, the majority of neurons were predicted correctly. This
has been added to the Results in Section 2.1. Fig R5 is included as a new figure (Fig 4) in the text.

Reviewer point 2.6 — The raw retinotopic map data for all mice should be shown in addition to the post-
processed boundaries. This is important to evaluate the quality of the input to parcellate the areas into retinotopic
divisions. In particular I ask about this because I was surprised by how much variance there was in the size and
location of the areas. For example, in some mice AM is anterior and medial to PM, whereas in other mice AM
is anterior and lateral to PM. Also, sometimes AM is directly bordering V1, and other times it is not. I was
surprised by the location of AM in Figure 1D. Typically AM is adjacent to V1. Similar variance is seen for
other areas. I am not sure it matters greatly for this study, but I have some concern that the area labels may be
inaccurate in some mice, such as the case for AM that is not adjacent to V1 (Figure 1D). (See also Reviewer 1,
point 6 and Reviewer 3, point 2)

Response 2.6: A recent study (Waters et al. [2019]) explored the variability of the different visual areas in 60 mice.
A previous study (Garrett et al. [2014]) also shows areas from multiple mice. There are significant variations in the
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Fig R5. Confusion matrices for test data obtained using supervised classifier. The diagonal values denote the
precision (in %) of each class. Off-diagonal values denotes the false prediction rate (in %) for the predicted class given
the actual class. A) Confusion matrix obtained using responses of Mouse M1 and Natural Movie stimuli. B) Confusion
matrix obtained using the Cre-line Emx1-IRES and Natural Movie 3 stimuli from dataset 2. In Supporting Information
Fig S4, we show the confusion matrices for all the remaining data.

size, shape and location of each of the 5 visual areas that are close to V1. As the reviewer requested, in Fig R4, we
show the azimuth and altitude contours along with the derived borders for all the mice used in the paper. Fig R4 has
been added as Supporting Information Fig S1.

Reviewer point 2.7 — Currently all the analyses are done within a mouse, which is sensible. However, I
was wondering if the authors tried across mouse analyses. For the supervised analyses, what do the results look
like if the classifiers are trained on mouse 1 and tested on mouse 2? For the unsupervised analysis, is there a
way to see if the clusters identified in mouse 1 then provide predictive power for mouse 2? Across mouse analysis
might further support claims of structure made by the authors. (See also Reviewer 3, point 15)

Response 2.7: We tried pooling data from mice M1 and M2. When training data was sampled from this pooled
dataset, the classifier worked with accuracy of about 90% for test data, from both M1 and M2. However, when
trained on M1 and tested on M2, the result did not scale. This shows that each mouse’s data is quite variable, and
the proposed classifier only works for the mice that were seen during training. Indeed, it would be very exciting to
train a model that could be generalized across mice, as this would tease apart the covarying factors from invariant
factors in the area-area relationships. However, it is not clear whether such invariant relationships exist at this level.
Further studies are needed to address this important question.

Reviewer point 2.8 — What were the mice doing during the imaging experiments? Were they moving?
Could movement contribute to the results? Recent studies have emphasized the importance of movement to visual
cortical activity (see PMIDs: 20188652, 31551604, 31000656).

Response 2.8: The mice were restrained in a narrow tube and thus did not have large movements during the wide-
field imaging experiments. In addition, all analysis was based on trial averaged data. Thus, random small movements
would not contribute. We have added this in Methods, Section 1.1.1. The Allen Institute dataset that we analyzed
has responses recorded while the mice were allowed to be free-running and thus in many instances were not stationary.

Reviewer point 2.9 — Some references to recent papers using related methods were missing and should be
added. PMIDs: 32282806, 30772081.

Response 2.9: PMID 32282806 used Local NMF and PMID 30772081 used CNNs to derive insights from wide-field
responses of mouse visual cortex. Citations to these papers have been included in Introduction.

Reviewer 3

Reviewer point 3.1 — The authors use widefield and 2-photon imaging data from the mouse visual cortex
to train classifiers to identify the different visual areas. They find that supervised and semi-supervised classifiers
perform well, identifying pixels or neurons with high accuracy. The fact that they do so using even just the neural
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responses to one 4.5 second movie is remarkable. The authors go on to show that unsupervised classifiers do not
identify the different visual areas with high accuracy, but do capture some of the functional organization of the
visual cortex. These results indicate that there are distinct physiological profiles for the different visual areas –
or from the unsupervised results at least from groups of visual areas. I found the work to be interesting, and the
paper did a great job of explaining the different techniques and conclusions. I do have some concerns, that I hope
are reasonably addressable.

Response 3.1: We appreciate the reviewer’s view of the paper. Below we have addressed reviewer 3’s concerns
point by point.

Reviewer point 3.2 — The retinotopic maps shown in these figures are somewhat different from the retino-
topic maps I see in the literature (namely Zhuang et al 2017 and Garrett et al 2014) – specifically in regards to
the location and borders of RL. In the two papers mentioned above, RL sits at the top of V1, in contact with
both AL and AM on either side. I understand that this area has difficult retinotopy, however, it seems possible
that the pixels at the top of V1 are being mis-assigned to V1 and should really be within RL – which could had
different effects on the different supervised/semi-supervised/un-supervised results. I encourage the authors to look
more closely at the assignment for RL, or perhaps to consider excluding it from these analyses (or weighting the
accuracy for that area differently). (See also Reviewer 1, point 6 and Reviewer 2, point 6)

Response 3.2: See Response 2.6. We refer to a recent study (Waters et al. [2019], which added to data shown
in Zhuang et al. [2017]) as well as a previous one (Garrett et al. [2014]) in which variability in location and size of
different visual areas were described. In a few of the cases, RL and AL do not share a border or are not adjacent to
V1. Importantly, our methods for obtaining responses and defining maps are nearly identical to these studies.

In Fig R4, we show the azimuth and altitude contours along with the derived borders for all the mice used in the
paper (as also suggested by Reviewer 1, point 6 and Reviewer 2, point 6). Fig R4 is added to the paper as Supporting
Information Fig S1.

Reviewer point 3.3 — I am wary of the conclusions drawn from the unsupervised classification results.
Specifically, it seems that the conclusions drawn result directly from the rules added to the unsupervised clustering.
For instance, since clusters can only be merged if they are touching, it seems impossible for the lateral and medial
areas to end up in the same clusters, especially given the 40% constraint, so it isn’t clear to me how meaningful
that result is. It is possible that the paper could stand without the unsupervised classification results. (See
also Reviewer 1, point 12 and Reviewer 2, point 3)

Response 3.3: As suggested by the reviewer, we carried our further analysis of unsupervised clustering. Our
experiments and results are summarized in Response 1.12, and described in Appendix 1. We found little improvement,
and have removed the analysis from the paper (as suggested above and by Reviewer 1, point 12).

Reviewer point 3.4 — Throughout the paper, chance is said to be 1/6 given the six visual areas. It is not
clear to me that this is the right level of chance to be used. Particularly for the widefield data, when more pixels
are in V1 than any of the other visual areas, it seems that the prior should be shifted towards V1. Is there a way
to define chance that takes the relative proportion of pixels (and neurons for the 2P data) for each of the areas?

Response 3.4: As the reviewer suggested, we have included the proportion of pixels used for training as a bias to
the random classifier. We show that the results are still better than the biased classifier. Only the supervised classifier
(Section 2.1) uses training data in proportion to the available data from each area. In the semi-supervised classifier
we start with equal amount of data for all the areas. The exact text added to Results (in Section 2.1) can be found
below:

To demonstrate the significance of results obtained in Tables 3 and 4 (in the main paper), we
compared the results with two random classifiers. First, a random, unbiased six-faced die was
considered. This random classifier will give a chance level accuracy of 16.67%, irrespective of the
dataset. Secondly, we considered a six-faced die biased by the proportion of different area sizes
(or the number of pixels/neurons used during training). For the wide-field dataset, this random
classifier will give an average chance level accuracy of 37.6% (averaged across all five mice) and a
maximum of 51.1% (for M1). Similarly, for dataset 2, this classifier will give an average chance
accuracy of 26.7% and a maximum of 33.9% (for Nr5a1 Session C2). For both the datasets, the
results obtained in Tables 3 and 4 were much higher than the random classifiers. These results
suggest that the responses are discriminative between different areas.
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Reviewer point 3.5 — Related to this, I would like to see what the confusion matrix looks like for these
classifications. Do mis-classified pixels(/neurons) tend to be classified as the closest area? To the area the best
matches retinotopy for that location? Or do they default to V1?. (See also Reviewer 2, point 5)

Response 3.5: In Fig R5, we show examples of confusion matrices, obtained using mouse M1 from wide-field dataset
and EXM1-IRES Cre-line from two-photon dataset, respectively. In Supporting Information Fig S4, we show the same
for the entire dataset. For the wide-field dataset, responses from other areas were mostly predicted as V1 (Fig R5),
which is not unexpected since V1 projects to each of the other areas. The confusion observed in the two-photon
dataset were variable. Importantly, however, for both datasets, the majority of neurons were predicted correctly. This
has been added to the Results in Section 2.1.

Reviewer point 3.6 — I would like to see a comparison of the semi-supervised area boundaries with retinotopy
(eg. Fig 9 of Zhuang et al). It is not clear to me that the boundaries that this method is identifying do not reflect
retinotopy. Eg. It appears that the semi-supervised boundaries separate altitude reasonably well (eg. the boundary
between LM and RL that extends into V1 seems to match roughly with the horizontal meridian). The authors make
the point that they are not using a retinotopic stimulus, but a natural movie stimulus has distinct information in
different retinotopic locations – and thus could drive retinotopically distinct responses. If that is not true for the
movies used in this study, I’d like to see an analysis to demonstrate the spatial/temporal content of the movies
across retinotopy.

Response 3.6: We show the results of semi-supervised clustering on natural movies, and three other grating stimuli
responses (Section 2.2). In addition, we also show that resting state responses can be used to cluster different areas
(Section 2.2). Hence, retinotopically distinct responses are not necessarily required to cluster the areas.

In Figs R6 and R7, we provide the spatial and temporal frequencies computed from different regions of the natural
movie stimuli. The distributions of spatial and temporal frequency components are almost identical for different regions
of the movies. Thus, it is very unlikely that different retinotopic locations were differently stimulated.
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Fig R6. Distribution of spatial frequency computed from different regions of the natural movie stimuli
used

Reviewer point 3.7 — The biggest question that emerges for me from this work is what is the distinguishing
features of the activity from the different areas. The authors conclude that these results suggest that each visual
area has distinct response signatures, and some insight into the nature of those signatures would be very valuable.
Particularly given that these classifiers can separate these visual areas using as little as a 4.5 second movie or
even just 10 minutes of resting state activity. What are the features of the activity that the classifiers are using to
separate these areas? An analysis of the classifier weights or features could be really illuminating in this regard.
Or perhaps even example traces from the different areas. (See also Reviewer 1, point 1)

Response 3.7: To follow up the reviewer’s comment, we carried our further analysis by computing inter-areal
and intra-areal correlations in wide-field and two-photon data. We argue that the supervised classifier is able to
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Fig R7. Distribution of temporal frequency computed from different regions of the natural movie stimuli
used

cluster neurons from different areas using examples from the training data owing to stronger intra-area correlations.
Response 1.1 and Figs R1 and R2 describe our analysis in detail. This analysis has been added to the Discussion
(Section 3, Figs 8 and 9) in the paper.

Reviewer point 3.8 — The analysis in Figure 6 comparing boundaries obtained with different durations of
stimulus is very interesting and important. My concern is that the movie responses are averaged across trials
while the resting state is not averaged. The nature of an averaged signal and an unaveraged signal is very
different, so 20 seconds of average movie activity and 20 seconds of unaveraged resting state are not an equivalent
comparison. Why not do the classification of movie responses without averaging the trials, thus allowing a direct
duration comparison between the two?

Response 3.8: We have changed Fig 7 (Figure 6 in the previous manuscript) and Section 2.3 completely in response
to this comment. A summary of the changes is given below:

� We now extend the result in Fig 7 to supervised results as well. We also include results from the two-photon
dataset of the Allen Institute.

� As the reviewer has suggested, we have also included single trial natural movie responses.

In the wide-field dataset, we observe that the single trial responses gave better accuracy than the resting state
responses. However, with the two-photon dataset, the performance of background and single-trial movie responses
was similar. For both the datasets, the trial-averaged responses gave better results than resting state responses.

Reviewer point 3.9— Table 1 summarizing the stimuli used for widefield imaging needs more information.
Namely the spatial and temporal frequencies and contrast used for stimulus 1. The directions, temporal frequency,
and contrast for stimulus 2. The directions, spatial frequency, and contrast for stimulus 3

Response 3.9: The missing information is shown in Table R1 (given as Table 1 in main paper). The table has been
updated.

Reviewer point 3.10 — Was the stimulus for the widefield imaging warped to account for viewing distance?
Where was the monitor positioned relative the mouse’s center of gaze? As different visual areas cover different
regions of retinotopy, if the stimulus wasn’t warped properly, the stimulus could have different content in different
regions, and hence for different HVAs.

Response 3.10: Visual stimuli were presented to head-fixed mice using a large display screen placed perpendicular
to the right retina at an angle of 30◦ relative to the body axis of the animal, at an eye-to-screen distance of 12 cm. As
mentioned in Section 1.1.1, display placement was ensured to cover as much of the contralateral visual field as possible.
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We additionally did spherical warping of the visual stimuli during retinotopic mapping, using pschopy.visual.windowwarp
function from Allen Institute. The rendering of stimuli was then manually checked to make sure the warping was
effective.

Reviewer point 3.11— What was the mean luminance of the stimulus? Was the monitor gamma corrected?

Response 3.11: The monitor was gamma corrected. The mean luminance was kept at 55 cd/m2. This information
has been added to Methods (Section 1.1.1) in the text.

Reviewer point 3.12— What Cre line was used to drive the GCaMP6 expression in the widefield data

Response 3.12: The Cre-line used in wide-field dataset was Emx1-IRES. This has been added to Methods (Section
1.1.1)

Reviewer point 3.13 — How did the authors choose to analyze Emx1 and Nr5a1 from the Allen Brain
Observatory dataset? (the authors mention these Cre lines were imaged across all six areas, but that is true for
Cux2, Rorb, and Rbp4 as well – why were these not analyzed?) Was Emx1 used from all layers or only from
specific layers?

Response 3.13: The Emx1 Cre line was chosen because it is the same mouse line used for collecting wide-field
data; here GCaMP is expressed only in excitatory cells. Nr5a1 was selected as an additional Cre line to complement
our analysis. We now show the results for all other Cre lines, namely, Rorb, Cux2, Rbp4, and Slc17a7, which have
recordings from all six areas in Table R4. Table R4 is added as Supporting Information Table S3.

Reviewer point 3.14 — I’d like a bit more information about how the classifier was applied to the 2P data.
Were all neural traces (for the chosen Cre lines) used, or subselected? If subselected, how was this done? What
was the test/train split? Were equal numbers of neurons used for each area or was this different? How many
neurons were used?

Response 3.14: In the original manuscript, for each stimulus, the session was randomly picked from experiment
containers in Allen Institute API. In the revised manuscript, for each stimulus, a particular session is fixed explicitly as
detailed below.

The Allen Institute dataset has neuronal responses collected using four different session types. In each session,
different stimuli were used. In the updated manuscript, we have used the data from “Session A” for natural movies 1,
3, and resting state responses. Also, we use data from “Session C2” for natural movie 2 responses. All the traces of
particular stimuli were chosen from the given Cre line and session for the analysis. 50% of cells from each area were
randomly selected from each area for training. Therefore, every area had a different number of cells for training. On
fixing the number of training neurons from each area to the lowest, we observed a drop in performance. Despite the
different number of training examples, confusion matrices in Fig R5 (given as Fig 4 in the main paper) show that the
models produce a comparable precision for all the areas. These details have been added to Methods (Section 1.1.2) in
the text. Table R2 (Table 2 in the main article) provides the number of neurons available for each area from the Allen
Institute dataset. Classification accuracies in Table 4 (Table 3 in original manuscript) have been updated consequently.

Table R2: Number of neurons available for analysis for each Cre-line and session from the Allen Institute
dataset.

Cre-line AL LM RL AM PM V1

Emx1-IRES (Session A) 1235 1446 1963 241 536 2199

Emx1-IRES (Session C2) 1148 1238 2085 226 552 964

Nr5a1 (Session A) 178 256 1074 110 203 441

Nr5a1 (Session C2) 106 267 1023 115 234 149

Reviewer point 3.15 — Figure 3B shows generalization across mice. It’s not clear to me whether this is to
show similar results for different mice, or whether it is to show that training on one mouse can predict testing on
a different mouse. I believe it’s the former, but it would be very interesting if it were the latter. Please clarify.
(See also Reviewer 2, point 7)

Response 3.15: In Fig 3B, by generalization across mice we mean that the classifiers work similarly for different
mice when trained and tested individually. We tried pooling data from mice M1 and M2. When training data is
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sampled from this pooled dataset, the classifier worked with accuracy of about 90% for test data, from both M1 and
M2. However, when trained on M1 and tested on M2, the result did not scale. This shows that each mouse’s data is
quite variable, and the proposed classifier only works for the mice that were seen during training. Indeed, it would be
very exciting to train a model that could be generalized across mice, as this would tease apart the covarying factors
from invariant factors in the area-area relationships. However, it is not clear whether such invariant relationship exist
at this level. Further studies are needed to address this important question.

Reviewer point 3.16— Figure 4 color labels appear to be mis-assigned

Response 3.16: The labels has been fixed in Fig 4D

Reviewer point 3.17 — Why is the accuracy for widefield pixels so much higher than for the 2P neurons?
Given the shorter movie clip, and the single pixel data, I’d expect the widefield data to perform worse than
2P, not better. But perhaps the fact that the widefield signal for a pixel could combine activity from multiple
neurons/processes could play a role in this? In a similar vein, why do Emx1 and Nr5a1 perform differently? Are
there different numbers of neurons available? Could it be layer specific? I don’t think these can necessarily be
conclusively answered, but if possible some discussion of these questions would help.

Response 3.17: We believe the wide-field pixels work better owing to the spatial correlation among the pixels in
the dataset. To counter this effect, in Section 2.1, we sample training data from only the center of each area. In
Section 2.2, we propose semi-supervised clustering, which uses only the minimum amount of data from each area. As
we make the problem more constrained in the wide-field dataset, we observe the accuracy to drop. However, even in
this constrained setting, the accuracy obtained is always significantly better than the chance level.

In the revised manuscript, we have fixed the session for each stimulus to enable better comparison (See Reviewer
3, point 14). In addition to two Cre-lines in the main paper, we now show the results for all other Cre-lines, namely,
Rorb, Cux2, Rbp4, and Slc17a7, which have recordings from all six areas in Table R4. The number of neurons available
for two Cre-lines used in the paper is shown in Table R2 (Table 2 in the main paper). The same information for the
additional four Cre-lines are shown in Table R3. We do observe that the result varies with each Cre-line, irrespective
of the total number of neurons. However, for all the Cre-lines, the results are consistently higher than the accuracy of
a random classifier (see Reviewer 3, point 4). Tables R3 and R4 are added as Supporting Information Tables S2 and
S3.

Table R3: Number of neurons available for other Cre-lines in the Allen Institute dataset. The classification
accuracies are shown in Table R4

Cre-line AL LM RL AM PM V1

Slc17a7-IRES2 (Session A) 223 2184 97 138 1245 4499

Slc17a7-IRES2 (Session C2) 267 2140 70 149 1220 4232

Rorb-IRES2 (Session A) 794 767 975 516 511 1617

Rorb-IRES2 (Session C2) 292 421 1082 404 397 515

Cux2-CreERT2 (Session A) 2219 1820 1271 1060 1624 3558

Cux2-CreERT2 (Session C2) 497 358 1275 871 289 774

Rorb-IRES2 (Session A) 267 333 72 244 375 320

Rorb-IRES2 (Session C2) 109 194 68 237 141 242

Reviewer point 3.18— The Allen Brain Observatory is from the Allen Institute for Brain Science (not Allen
Brain Institute – line 42). The citation should also match the citation policy for the dataset (https://alleninstitute.org/legal/citation-
policy/)

Response 3.18: Citation for the dataset from the Allen Institute has been corrected in the updated paper. The
dataset is referred to as from the Allen Brain Observatory, Allen Institute for Brain Science, or the Allen Institute
dataset in short.
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Table R4: Classification accuracy for other Cre-lines in the Allen Institute dataset. The results are averaged
across random initializations. The entries denote “% accuracy (± standard deviation)”

Cre-line (Session) Stimuli
Accuracy of Supervised Classifier

GMM SVM ANN Bayes

Slc17a7-IRES2 (Session A)

Natural Movie 1 58.0 (±1.28) 65.4 (±0.49) 65.0 (±0.577) 57.10 (±0.98)

Natural Movie 3 68.6 (±1.44) 71.0 (±0.26) 71.4 (±0.13) 66.9 (±0.82)

Resting State 55.9 (±1.13) 61.2 (±0.85) 59.9 (±1.08) 44.6 (±1.68)

Slc17a7-IRES2 (Session C2) Natural Movie 2 59.0 (±1.01) 63.0 (±0.33) 62.8 (±0.50) 55.7 (±0.59)

Rorb-IRES2 (Session A)

Natural Movie 1 42.2 (±1.44) 45.2 (±0.68) 44.9 (±0.78) 42.0 (±0.47)

Natural Movie 3 48.5 (±1.77) 53.0 (±0.30) 53.4 (±0.57) 48.7 (±0.84)

Resting State 65.3 (±1.62) 67.8 (±1.05) 68.4 (±1.64) 63.5 (±1.80)

Rorb-IRES2 (Session C2) Natural Movie 2 46.8 (±0.59) 48.3 (±0.78) 47.6 (±0.57) 44.6 (±1.31)

Cux2-CreERT2 (Session A)

Natural Movie 1 37.5 (±1.16) 43.0 (±0.68) 43.5 (±0.70) 39.3 (±0.72)

Natural Movie 3 39.0 (±0.82) 47.7 (±1.27) 50.1 (±0.93) 38.7 (±1.09)

Resting State 45.8 (±1.15) 48.6 (±0.98) 47.3 (±1.005) 39.2 (±0.69)

Cux2-CreERT2 (Session C2) Natural Movie 2 45.6 (±1.47) 46.9 (±1.66) 46.4 (±1.70) 44.9 (±1.30)

Rbp4 (Session A)

Natural Movie 1 34.6 (±2.20) 34.6 (±1.88) 34.5 (±2.17) 33.1 (±2.00)

Natural Movie 3 38.1 (±2.50) 39.7 (±2.23) 38.2 (±2.31) 35.9 (±2.27)

Resting State 35.6 (±1.79) 41.0 (±2.73) 39.9 (±2.92) 33.7 (±2.75)

Rbp4 (Session C2) Natural Movie 2 34.0 (±1.64) 34.2 (±1.09) 32.5 (±1.51) 31.4 (±0.81)
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Appendix 1 Revised experiments on unsupervised clustering of mouse
visual cortex

The unsupervised approach is a hierarchical clustering technique very similar to the semi-supervised approach.
The clustering starts with an initial division of the visual cortex into chunks of uniform size. Similar to semi-
supervised clustering, the size of the initial chunks is a hyperparameter to be set empirically. In every iteration,
only the neighboring clusters with highest score are merged. BIC and the determinant of covariance of the merged
cluster are used as two different metrics for the clustering algorithm.

Sa,b = log p(D|λλλ)− ( log p(Da|λλλa) + log p(Db|λλλb) ) (R1)

For computing BIC, unimodal Gaussian distribution are fitted to every initial cluster. The BIC score provided
in Equation R1 is used to evaluate neighboring clusters for merging. After merging, the new cluster is modeled
by a GMM with the number of components as the sum of the number of Gaussians in separate clusters. This
technique is analogous to unsupervised clustering of speakers in Ajmera and Wooters [2003]. Since the total
number of parameters is constant throughout the clustering process, in Ajmera and Wooters [2003], the clustering
is stopped when the BIC score is ≤ 0 for all the possible merges. When the same stopping criteria are applied to
the visual cortex, the clustering ends after a few iterations. Hence, the clusters with highest BIC score are merged
until there are only six clusters left, which is the count of visual areas studied in the supervised approaches.

The determinant of covariance matrix is used as another score to merge clusters. This score is measure of a
generalized variance in the cluster. The two neighboring clusters having the lowest value of the determinant are
merged in every iteration.

In addition to the above metrics, two physiological rules, derived empirically from the observed maps were
added to the clustering approach.

Rule 1: A single cluster cannot be larger than 40% of the total number of clusters.

Rule 2: One visual area cannot morphologically enclose another.

Rule 1 prevents the formation of a single dominating cluster. The primary visual cortex (V1) being the largest
visual area, occupies about 40% of the total area of the visual cortex. When the merged cluster size exceeds
this threshold, the cluster pairs with next highest BIC score are chosen for merging. Hence this rule limits the
maximum size of a cluster to the size of V1. Rule 2 is a de facto condition that is checked while finding the
visual areas from the retinotopic maps in Garrett et al. [2014]. In Fig R8, an illustration of the unsupervised
clustering is shown. During the process of merging, if a cluster is found to enclose another, it is morphologically
closed. The sequence of steps for clustering is presented below:

Step 1: The dimensions of the wide-field responses are reduced using PCA (as described in Methods (Sec-
tion 1.2.1)).

Step 2: The visual cortex is initially divided into square grids of equal size. Every cluster is modeled by a
unimodal Gaussian distribution. The parameters are estimated using maximum likelihood estimation.

Step 3: BIC (Equation R1) or determinant of covariance matrix is computed as score between every pair of
adjacent clusters. Two clusters that share a boundary are defined as neighboring clusters.

Step 4: The pair with best score is merged into a single cluster. The merged cluster are modeled by a GMM
with the number of components as the sum of the number of Gaussians in separate clusters.

Step 4.1: The merged cluster is checked for rule 1. If the merged cluster size is higher than 40% of the
total visual cortex size then the cluster pair with next best score is merged.

Step 4.2: The merged cluster is checked for rule 2. If the merged cluster completely encloses another
cluster then the former is morphologically closed.

Step 5: Steps 3 to 7 are repeated until the total number of unique clusters are six. Finally, to smoothen the
boundaries, a supervised classifier is trained by sampling from the final clusters.

The results of clustering the visual cortex using the unsupervised pipeline using BIC is given in Fig R9.
The results using determinant of the covariance matrix as the merging criteria is given in Fig R10. Unlike
the supervised approaches, there is no one to one mapping between the clusters obtained and the visual areas
identified by the retinotopic procedure. Hence the final clusters are evaluated using V-measure (Rosenberg and
Hirschberg [2007]) instead of accuracies. V-measure is computed as the harmonic mean of completeness and
homogeneity of the obtained clusters.
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1. Initial Clusters 2. Iteration 150

3. Iteration 300 4. Final Clusters

A B

Mice : M1; Stimuli: Natural Movies

Fig R8. Illustration of unsupervised clustering. A) Block diagram of the unsupervised clustering pipeline. B) The
clustering process is shown through various iterations along with the final cluster for Natural Movie stimuli.

Direction (0.23) Natural Movies (0.26) Spatial-Frequency (0.21)

Mouse M2 (0.37) Mouse M3 (0.38) Mouse M4 (0.28) Mouse M5 (0.46)

Mouse M4 (0.40) Mouse M5 (0.39)

Temporal-Frequency (0.27) A
Mouse 

M1

B
Natural 
Movies

C
Resting 

State

Fig R9. Unsupervised clustering of mouse visual cortex using BIC. A) Clusters obtained for different visual
stimuli in mouse M1. The visual stimuli are as mentioned above each plot. B) Clusters obtained for different mice using
natural movies as stimuli. C) Clusters obtained from resting state responses in two different mice. The values in bracket
denote the V-measure (Rosenberg and Hirschberg [2007]) of the clustering result.

In Figs R9 and R10 the results are shown for different mice as well as different visual stimuli, and resting state.
Although the final clusters vary across mice and stimuli, some properties are consistent across various mice. From
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Direction (0.30) Natural Movies (0.38) Spatial Frequency
          (0.39)
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          (0.40)

M2 (0.45) M3 (0.41) M4 (0.43) M5 (0.45)

M4 (0.46) M5 (0.52)
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Fig R10. Unsupervised clustering of mouse visual cortex using determinant of the covariance matrix. A)
Clusters obtained for different visual stimuli in mouse M1. The visual stimuli are as mentioned above each plot. B)
Clusters obtained for different mice using natural movies as stimuli. C) Clusters obtained from resting state responses
in two different mice. The values in bracket denote the V-measure (Rosenberg and Hirschberg [2007]) of the clustering
result.

the results, the following properties are observed consistently (i) The lateral areas (LM, AL, and RL) are always
modeled by different clusters when compared to the medial areas (AM and PM). (ii) Areas LM and AL appear
to be consistently clustered together. This observation indicates that there is a difference in the signatures of
lateral and medial areas. In most of the cases, V1 seems to be split by the lateral and medial clusters, suggesting
that the signatures of V1 are slightly different from that of the lateral and medial areas. These observations
are consistent with resting state responses as well. A better merging criterion is required to cluster these areas
effectively. The obtained results in Figs R9 and R10 are still very different from the retinotopically defined areas
and hard to interpret precisely. Hence these results have been removed from the main article.
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