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Appendix S1. The Null Distribution of the Kernel Statistic 

The Null Distribution of 
Ho  

Assuming Hardy-Weinberg equilibrium, the expectation of the random variables for genotypes, 

under the null hypothesis of no association between genetic effects and traits, is 0 ( ) 2ijl lE g m  

[1]. Let Ho 1 2(Z , , , Z )T

pZZ  be a 1p  vector with elements l l lZ w Z  for 1,2, ,l p . 

Based on the multivariate central limit theorem, HoZ  under the null hypothesis has an 

approximately multivariate normal distribution with mean 0 Ho( )E Z  and covariance matrix 

0 HoCov ( )Z . The values of the null mean of HoZ  are zero, 

1 10
ˆˆ(Z ) 2 0TK N

k il l l i ik ik ikE w m      1 A S , 1,2, ,l p , where i1  is a 1in   vector including all 

elements of 1, when ,iμ  1,2, , ,i N  are correctly specified. That is because, the elements ˆ
iμ , 

ˆ
iV ,  ˆ

i  and ˆ
iA  are consistent estimates of 0 ( )iE y , 0Cov ( )iy , i  and iA  under the null 

hypothesis, when the number of pedigree N is large enough. The null covariance matrix of HoZ  is  

   0 01 1
1

Ho

ˆ ˆˆ ˆCov (Z , Z ) Cov ( , )

                    2 (1 ) (1 )

N
K KT

l l l l ik ik ik il il ik ik ikk k
i

l l ll l l l l

w w

C w w H m m m m

   


   

   
  

  

  S A g g A S
 

 where  0Cov ( , ) 2 (1 ) (1 )il il i ll l l l lH m m m m       g g , 

   1 1 1Ho
ˆ ˆˆ ˆTN K K

i k kik ik ik i ik ik ikC   
      
 

S A A S  and i  is  a i in n
 matrix of genetic correlations 

for all 
in  individuals in the ith pedigree. Here the genetic correlations 

i  have the same 

definition as that given by Schaid et al. [1]. Hence, the null distribution of Ho  asymptotically 
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follows a mixture chi-square distribution 2
1 ,1

p
l l l  , where 2

,1l s are independent random 

variables following a chi-square distribution with one degree of freedom and 1 2( , , , )p    are 

nonzero eigenvalues of the null covariate matrix of

0 HoCov (Z , Z ) 2 (1 ) (1 )l l l l ll l l l lC w w H m m m m       . 

 

The Null Distribution of 
He  

Let He 11 1 1(Z , , , , , , Z )T

K p pKZ ZZ  be a ( ) 1p K   vector with elements lk lk lkZ w Z  for 

1,2, , , 1,2, ,l p k K  . Processing the similar procedure for derivation of the null 

distribution of 
Ho  , the null distribution of HeZ  asymptotically follows a multivariate normal 

distribution having zero mean and covariance matrix 0 HeCov ( )Z . The elements of 0 HeCov ( )Z  

are  

0 0

1

He

ˆ ˆˆ ˆCov (Z , Z ) Cov ( , )

                       2 (1 ) (1 )

N
T

lk l k lk l k ik ik ik il il ik ik ik

i

lk l k ll l l l l

w w

C w w H m m m m

       



    

   
 

  

 S A g g A S
  

where 1He
ˆ ˆˆ ˆTN

i ik ik ik i ik ik ikC    
     
S A A S . Therefore, the null distribution of 

He  asymptotically 

follows a mixture chi-square distribution 
2( )

1 ,1

p K
l l l 
 , where 

2

,1l s are independent random 

variables following a chi-square distribution with one degree of freedom and 1 2 ( )( , , , )p K     

are nonzero eigenvalues of the null covariate matrix of 

0 HeCov (Z , Z ) 2 (1 ) (1 )lk l k lk l k ll l l l lC w w H m m m m         .  
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Appendix S2. Extension to the X Chromosome 

To extend our methods to the X chromosome, we follow the idea from Schaid et al. [1] to use d 

to describe the code for men carrying the minor allele. Precisely, men are coded as 0 or d (d = 1 

or 2), while women are coded as 0, 1, or 2 (as for autosomes) [1]. Under the null hypothesis of 

no association between genotypes and phenotypes, the covariance matrix of the genotype codes 

for the X chromosome is given by 

    X X

0Cov ( , ) * (1 ) (1 )il il i i ll l l l lH m m m m       g g α  

which has the same interpretation and definition in Schaid et al. [1]. Here the notation * 

represents the element-wise multiplication. The genetic correlation 
X

i  for the X chromosome 

for all 
in  individuals in the ith pedigree has the same definition in equation (2) in Schaid et al. 

[1]. Similarly, 
iα  is a 

i in n  matrix with the elements given by  [1] 

2

2       if female-  and female-  pair,

     if male-  and male-  pair,

2   if female-  and male-  pair,

i

j j

d j j

d j j




 




α                                       

which has the same interpretation and definition as that given by Schaid et al. [1]. 

When the genetic relationship between subjects j  and j  in the ith pedigree is unknown, 

the elements of the genetic correlation 
X

i  for the X chromosome can be estimated through 

genomic data [1, 2] and its estimate is given by [1] 
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1

X

1

( 2 )( 2 )1
      if

2 (1 )

( )( )1ˆ            if
(1 )

( )( 2 )1
     

 female-  and female-  pair,

 male-  and male-  p

    

air,

i

     

 
2 (

 

f
1 )

p
ijl l ij l l

l l l

p
ijl l ij l l

i

l l l

ijl l ij l l

l l

g m g m

p m m

g m g m

p m

j j

j j
m

g m g m

p m m











 



 
 



 











1

male-  and female-  pair.  
p

l

j j
















 

Based on the null covariance matrix of the genotype codes for the X chromosome,  

   X X

0Cov ( , ) * (1 ) (1 )il il i i ll l l l lH m m m m       g g α , we extend the homogeneous kernel 

statistic (
Ho ), the heterogeneous kernel statistic (

He ) and the burden test (BT) to the X 

chromosome.  

 

Kernel Statistic  

Homogeneous Kernel Statistic 

Under the assumption that the genetic effects on the K different phenotypes are homogeneous 

(i.e., 
1 2 )K  β β β , the null covariance matrix of Ho 1 2(Z , , , Z )T

pZZ  for the X 

chromosome is given by 

   X X

0 01 1
1

X

Ho

ˆ ˆˆ ˆCov (Z , Z ) Cov ( , )

                    (1 ) (1 )

N
K KT

l l l l ik ik ik il il ik ik ikk k
i

l l ll l l l l

w w

C w w H m m m m

   


   

   
  

  

  S A g g A S
 

 where    X X
1 1 1Ho

ˆ ˆˆ ˆ*TN K K
i k kik ik ik i i ik ik ikC   
      
 

S A α A S . Therefore, the null distribution of 

2
1Ho

p
l lZ   for the X chromosome asymptotically follows a mixture chi-square distribution 
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2
1 ,1

p
l l l  , where 2

,1l s are independent random variables following a chi-square distribution 

with one degree of freedom and 1 2( , , , )p    are nonzero eigenvalues of the null covariate 

matrix of X X

0 HoCov (Z , Z ) (1 ) (1 )l l l l ll l l l lC w w H m m m m       . 

 

Heterogeneous Kernel Statistic  

Under the assumption that the genetic effects on the K different phenotypes are heterogeneous 

(i.e., 
1 2 )K  β β β , the null covariance matrix of He 11 1 1(Z , , , , , , Z )T

K p pKZ ZZ  for 

the X chromosome is given by 

X

0 0

1

X

He

ˆ ˆˆ ˆCov (Z , Z ) Cov ( , )

                       (1 ) (1 )

N
T

lk l k lk l k ik ik ik il il ik ik ik

i

lk l k ll l l l l

w w

C w w H m m m m

       



    

   
 

  

 S A g g A S
 

where  X X
1He

ˆ ˆˆ ˆ*TN
i ik ik ik i i ik ik ikC    
      
S A α A S . Therefore, the null distribution of 

He  for the X 

chromosome asymptotically follows a mixture chi-square distribution 2( )
1 ,1

p K
l l l 
 , where 2

,1l s 

are independent random variables following a chi-square distribution with one degree of freedom 

and 1 2 ( )( , , , )p K     are nonzero eigenvalues of the null covariate matrix of 

X X

0 HeCov (Z , Z ) (1 ) (1 )lk l k lk l k ll l l l lC w w H m m m m         . Theoretical p-values of 
Ho  and 

He  for 

the X chromosome are approximately calculated by Kuonen’s saddlepoint method [3] and 

obtained by the R package pchisqsum. 
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Burden Test 

Let 1
T Tp

li l ilw g g  be a weighted average of genotype scores for the ith pedigree. On the basis of 

the HoK test (
Ho ) and the HeK test (

He ) for the X chromosome having the same marker-

specific weight of the lth variant for each trait k (i.e., , 1,2, ,l lkw w k K  ), we propose the 

burden test (BT) for the X chromosome as follows: 

2

1 1

X

0

1 1 1

ˆ ˆ

BT  

ˆ ˆˆ ˆCov ( )

N K
T

ik ik ik i

i k

N K K
T

ik ik ik i ik ik ik

i k k

 

  

  
  

  
    

     
    

 

  

S A g

S A g A S

 

where the null covariance matrix of 
ig  for the X chromosome is given by 

 

X X 2 X X

0 0 0 0

1 1 1 1

X

1 1

Cov ( ) Cov Cov ( , ) 2 Cov ( , )

              * (1 ) (1 )

p p p p

i l il l il il l l il il

l l l l l

p p

i i l l ll l l l l

l l

w w w w

w w H m m m m

 

    

   

 

 
   

 

   

  



g g g g g g

α

. 

Then, 

2

1 1

X

Ho

1 1

ˆ ˆ

BT  

(1 ) (1 )

N K
T

ik ik ik i

i k

p p

l l ll l l l l

l l

w w H m m m m C

 

   

 

  
  

  

 

 



S A g

. 

The null distribution of BT  for the X chromosome asymptotically follows a chi-square 

distribution with one degree of freedom. 

 

Omnibus Test 
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Let 
X

Hop , 
X

Hep  and 
X

BTp  denote the p-values obtained by the HoK, HeK and BT statistics from the 

X chromosome. Based on the idea of the p-value combination method through the Cauchy 

distribution [4-6], we propose the homogeneous omnibus test (HoO) and heterogeneous omnibus 

test (HeO) for the X chromosome.  

 

Homogeneous Omnibus Test 

Combining the 
X

Hop  with the 
X

BTp , we construct the homogeneous omnibus test (HoO) for the X 

chromosome as follows:  

1 X 1 X

Ho Ho BT

1
( ) ( )

2
C CO F p F p                                               

where 
1

CF 
 stands for the inverse cumulative distribution function of the standard Cauchy 

distribution.  

 

Heterogeneous Omnibus Test 

Combining the 
X

Hep  with the 
X

BTp ,  we construct the heterogeneous omnibus test (HeO) for the X 

chromosome as follows: 

1 X 1 X

He He BT

1
( ) ( )

2
C CO F p F p      . 

The null distributions of the 
HoO  test and the 

HeO  test for the X chromosome asymptotically 

follow a standard Cauchy distribution [4-6]. The p-values of the 
HoO  test and the 

HeO  test for the 
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X chromosome can be calculated by the R package RNOmni [7]. 
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Appendix S3. Simulation Results Based on the X Chromosome  

Following the same simulation set-up as those described in simulation studies in the text, the 

proposed methods, HoK, HeK, BT, HoO and HeO, are applied to the X chromosome with the 

genotype scores of men coded as 0 or 1. The empirical type I error rates based on fifty thousand 

replicates and the empirical power rates based on two thousand replicates are reported for all 

simulation results. 

 

Empirical Type I Error Rates 

Table S1 shows the empirical type I error rates of the seven competing methods for X 

chromosome analyses with continuous traits. Table S1 displays that the proposed methods, HoK, 

HoO, HeK, HeO and BT, appropriately control the empirical type I error rates whether the 

marker-specific weight is considered for ( ,1,1) 1l lw Beta m   or ( ,1,25)l lw Beta m  for variant 

l. Similarly, the existing methods, mPK and mPB, yield well-controlled type I error rates.  

In brief, the seven competing methods, HoK, HoO, HeK, HeO, BT, mPK and mPB, show 

good type I error performance for X chromosome analyses with continuous traits. 
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Table S1: Empirical type I errors of the seven competing methods with continuous traits based on the X 

chromosome. 

Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT mPK4 mPB 

Unweighted 0.05 U/U2  0.04506  0.04728  0.04660  0.04842  0.04694  
0.04264 0.04494 

marker-specific  E/E 0.04542  0.04720  0.04690  0.04862  0.04692  

weight1 0.01 U/U 0.00774  0.00808  0.00890  0.00850  0.00870  
0.00792 0.00910 

  E/E 0.00800  0.00824  0.00878  0.00862  0.00876  

 0.001 U/U 0.00062  0.00066  0.00060  0.00068  0.00052  
0.00088 0.00088 

  E/E 0.00064  0.00066  0.00060  0.00068  0.00056  

 0.0001 U/U 0.00008  0.00006  0.00002  0.00004  0.00006  
0.00004 0.00012 

  E/E 0.00008  0.00006  0.00002  0.00004  0.00006  

Weighted 0.05 U/U  0.04784  0.04912  0.04956  0.04942  0.04716  0.04636 0.04530 

marker-specific  E/E 0.04866  0.04924  0.04998  0.04976  0.04726  

weight 0.01 U/U  0.00922  0.00906  0.01000  0.00932  0.00848  0.00958 0.00988 

  E/E 0.00938  0.00912  0.01020  0.00942  0.00852  

 0.001 U/U 0.00078  0.00072  0.00106  0.00092  0.00088  0.00124 0.00132 

  E/E 0.00078  0.00074  0.00118  0.00094  0.00086  

 0.0001 U/U 0.00006  0.00008  0.00006  0.00008  0.00010  
0.00010 0.00008 

  E/E 0.00006  0.00008  0.00006  0.00008  0.00010  
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted marker-specific weight is  

   given by ( ,1,25)l lw Beta m .  
2U/U represents the structures of the working within-cluster and multivariate-response correlation matrices  

considered by the unstructured structures; E/E represents the structures of the working within-cluster and  

multivariate-response correlation matrices considered by the exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods.  
4mPK and mPB are executed by the R package MultiSKAT [8]. 

 

Table S2 shows the empirical type I error rates of the proposed methods, HoK, HoO, 

HeK, HeO and BT, for X chromosome analyses with binary traits. Table S2 exhibits that these 

proposed methods reasonably control empirical type I error rates, when the marker-specific 

weight is considered for ( ,1,1)l lw Beta m  or ( ,1,25)l lw Beta m  for binary traits based on X 
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chromosome analyses. 

 

Table S2: Empirical type I errors of the five competing methods with binary traits 

based on the X chromosome. 

Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT 

Unweighted 0.05 U/U2 0.04642 0.04922 0.04770 0.05102 0.04830 

marker-specific  E/E 0.04662 0.04978 0.04798 0.05122 0.04862 

weight1 0.01 U/U 0.00872 0.00920 0.00930 0.00972 0.00974 

  E/E 0.00890 0.00926 0.00950 0.00982 0.00988 

 0.001 U/U 0.00066 0.00070 0.00096 0.00086 0.00066 

  E/E 0.00068 0.00068 0.00092 0.00086 0.00068 

 0.0001 U/U 0.00004 0.00002 0.00012 0.00004 0.00004 

  E/E 0.00006 0.00002 0.00012 0.00006 0.00004 

Weighted 0.05 U/U  0.04908 0.04794 0.04936 0.04706 0.04516 

marker-specific  E/E 0.04914 0.04822 0.04954 0.04756 0.04498 

weight 0.01 U/U  0.00954 0.00956 0.00960 0.00930 0.00860 

  E/E 0.00992 0.00970 0.00976 0.00938 0.00866 

 0.001 U/U 0.00090 0.00076 0.00092 0.00086 0.00084 

  E/E 0.00100 0.00084 0.00094 0.00088 0.00088 

 0.0001 U/U 0.00004 0.00008 0.00010 0.00014 0.00008 

  E/E 0.00004 0.00008 0.00012 0.00014 0.00008 
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted 

marker-specific weight is given by ( ,1,25)l lw Beta m . 
2U/U represents the structures of the working within-cluster and multivariate-response correlation  

matrices considered by the unstructured structures; E/E represents the structures of the  

working within-cluster and multivariate-response correlation matrices considered by the  

exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods. 

 

In summary, these competing methods, HoK, HoO, HeK, HeO, BT, mPK and mPB, have 

good performance in controlling the type I error rates for X chromosome analyses with 
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continuous traits, regardless of the weight of the marker-specific weight. Moreover, the proposed 

methods, HoK, HoO, HeK, HeO and BT, are suitable for X chromosome analyses with binary 

traits. 

 

Empirical Power 

Figure S1 exhibits the comparison results of empirical power rates for X chromosome analyses 

with continuous traits, when the working within-cluster and multivariate-response correlation 

matrices of the proposed methods, HoK, HeK and BT, are considered to be exchangeable. As 

expected, the empirical power rates of the seven competing methods with a weighted marker-

specific weight of ( ,1,25)l lw Beta m  are bigger than that with an unweighted marker-specific 

weight of ( ,1,1) 1l lw Beta m  . The empirical power rates of the heterogeneous kernel statistic 

(HeK) are slightly higher than that of the other methods, when the genetic effects on the different 

phenotypes are heterogeneous (i.e., 
1 2β β ) and causal SNPs have positive effects or negative 

effects on phenotypes. On the other hand, the empirical power rates of the existing method, 

mPB, are larger than that of the other methods, when the genetic effects on the different 

phenotypes are heterogeneous (i.e., 
1 2β β ) and all causal SNPs have a positive association on 

phenotypes.  

Moreover, the empirical power rates of the homogeneous omnibus test (HoO) are greater 
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than that of the other six competing methods, when the genetic effects on the different 

phenotypes are homogeneous (i.e., 
1 2β β ). In addition, similar simulation results of the 

empirical power rates are obtained (results not shown), when the working within-cluster and 

multivariate-response correlation matrices of the proposed methods, HoK, HeK and BT, are 

considered to be unstructured. Obviously, the seven competing methods, HoK, HoO, HeK, HeO, 

BT, mPK and mPB, have their respective advantages in detecting the association between 

genetic effects and multiple continuous traits for X chromosome analyses.  
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Figure S1: Power comparisons of the seven competing methods with continuous traits based on 

the X chromosome analyses for each scenario at the nominal level of 0.001. (A) Unweighted 

marker-specific weight: ( ,1,1) 1l lw Beta m  . (B) Weighted marker-specific weight: 

( ,1,25)l lw Beta m . 

 

Figure S2 exhibits the comparison results of empirical power rates for X chromosome 

analyses with binary traits when the working within-cluster and multivariate-response correlation 

matrices of the proposed methods, HoK, HeK and BT, are considered to be exchangeable. As 

expected, the empirical power rates of the heterogeneous kernel statistic (HeK) and the 
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heterogeneous omnibus test (HeO) are higher than that of the homogeneous kernel statistic 

(HoK) and the homogeneous omnibus test (HoO), when the genetic effects on the different 

phenotypes are heterogeneous (i.e., 
1 2β β ). On the other hand, the empirical power rates of the 

homogeneous omnibus test (HoO) are bigger than that of the other competing methods, when the 

genetic effects on the different phenotypes are homogeneous (i.e., 
1 2β β ). Clearly, the proposed 

methods, HoK, HoO, HeK, HeO and BT, have their respective benefits in identifying the 

association between genetic effects and multiple binary traits for X chromosome analyses.  

In summary, the seven competing methods, HoK, HoO, HeK, HeO, BT, mPK and mPB, 

have their respective advantages in examining whether genetic effects are associated with 

multiple continuous traits for X chromosome analyses. On the other hand, the proposed methods, 

HoK, HoO, HeK, HeO and BT, have their respective merits in terms of the empirical power rates 

for binary traits for X chromosome analyses.  
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Figure S2: Power comparisons of the five competing methods with binary traits based on the X 

chromosome analyses for each scenario at the nominal level of 0.001. (A) Unweighted marker-

specific weight: ( ,1,1) 1l lw Beta m  . (B) Weighted marker-specific weight: ( ,1,25)l lw Beta m .  
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Appendix S4. Additional Simulation Studies for Continuous Traits  

In this section we present addition simlation results to futher examine the performance of the 

proposed methods with continuous traits.  

 

4.1. Simulation Results with Higher Correlations of Phenotype Traits 

Following the same simulation set-up as those described in simulation studies in the text, we 

consider the higher correlational relationships for continuous traits. Preciously, the error terms 

11 21 31 12 22 32( , , , , , )T

i i i i i i i     ε  in equation (11) are assumed to be from a multivariate normal 

distribution having a mean of zero, a within-in cluster correlation matrix (i.e., Cor( , )ijk ij k   ) 

with diagonal entries of 1 and all off-diagonal entries of 0.7 and a subject-across-response 

correlation matrix (i.e., Cor( , )ijk ij k    ) with diagonal entries of 0.3 and all off-diagonal entries of 

0.2. The empirical type I error rates based on fifty thousand replicates and the empirical power 

rates based on two thousand replicates are reported for all simulation results. 

 

Empirical Type I Error Rates 

Table S3 shows the empirical type I error rates of the seven competing methods, HoK, HoO, 

HeK, HeO, BT, mPK and mPB, with continuous traits based on higher correlations between 

phenotypes. Table S3 shows that the seven competing methods maintain reasonably empirical 

type I error rates when the marker-specific weight is considered for ( ,1,1) 1l lw Beta m   or 
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( ,1,25)l lw Beta m  for continuous traits.  

In short, the seven competing methods can adequately control type I errors when 

continuous traits have higher correlations among one another. 

 

Table S3: Empirical type I errors of the seven competing methods with continuous traits based on 

higher correlations between phenotypes.  

Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT mPK4 mPB 

Unweighted 0.05 U/U2  0.04376 0.04518 0.04420 0.04598 0.04672 
0.04352 0.04692 

marker-specific  E/E 0.04426 0.04554 0.04424 0.04580 0.04672 

weight1 0.01 U/U 0.00858 0.00880 0.00864 0.00880 0.00894 
0.00854 0.01036 

  E/E 0.00824 0.00878 0.00882 0.00890 0.00882 

 0.001 U/U 0.00092 0.00078 0.00060 0.00070 0.00076 
0.00084 0.00088 

  E/E 0.00086 0.00076 0.00058 0.00072 0.00078 

 0.0001 U/U 0.00002 0.00008 0.00002 0.00008 0.00006 
0.00006 0.00014 

  E/E 0.00002 0.00004 0.00004 0.00006 0.00006 

Weighted 0.05 U/U  0.04798 0.04658 0.04908 0.04660 0.04264 0.04604 0.04536 

marker-specific  E/E 0.04806 0.04650 0.04870 0.04658 0.04284 

weight 0.01 U/U  0.00952 0.00884 0.00920 0.00866 0.00772 0.00978 0.01008 

  E/E 0.00952 0.00856 0.00918 0.00856 0.00776 

 0.001 U/U 0.00082 0.00076 0.00100 0.00084 0.00086 0.00124 0.00134 

  E/E 0.00080 0.00082 0.00100 0.00080 0.00078 

 0.0001 U/U 0.00006 0.00004 0.00006 0.00002 0.00008 
0.00002 0.00010 

  E/E 0.00006 0.00004 0.00010 0.00002 0.00006 
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted marker-specific weight is  

   given by ( ,1,25)l lw Beta m .  
2U/U represents the structures of the working within-cluster and multivariate-response correlation matrices  

considered by the unstructured structures; E/E represents the structures of the working within-cluster and  

multivariate-response correlation matrices considered by the exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods.  
4mPK and mPB are executed by the R package MultiSKAT [8]. 
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Empirical Power 

Figure S3 shows the empirical power rates of the seven competing methods, HoK, HoO, HeK, 

HeO, BT, mPK and mPB, with continuous traits based on higher correlations between 

phenotypes, when the working within-cluster and multivariate-response correlation matrices of 

the proposed methods, HoK, HeK and BT, are considered to be exchangeable. In comparison 

with the empirical power rates presented in Figure 1 and Figure S3, the empirical power rates 

based on the higher correlations of phenotypes in Figure S3 are larger than that based on the 

lower correlations of phenotypes in Figure 1. Moreover, the empirical power rates displayed in 

Figure 1 and Figure S3 have similar patterns, because both of them have similar correlation 

structures of phenotypes. 

In summary, our simulation results show that, in general, the empirical power rates based 

on the higher correlations of phenotypes are bigger than that based on the lower correlations of 

phenotypes, when continuous traits are considered.  
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Figure S3: Power comparisons of the seven competing methods with continuous traits based on 

higher correlations between phenotypes for each scenario at the nominal level of 0.001. (A) 

Unweighted marker-specific weight: ( ,1,1) 1l lw Beta m  . (B) Weighted marker-specific 

weight: ( ,1,25)l lw Beta m . 

 

4.2. Simulation Results with the Dimension of Phenotypes Given by K = 3 

Following the similar simulation set-up as those described in simulation studies in the text, we 

consider the continuous traits with the dimension of phenotypes given by K = 3. Preciously, the 

error terms 11 21 31 12 22 32 13 23 33( , , , , , , , , )T

i i i i i i i i i i        ε  in equation (11) with K = 3 are assumed 
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to be from a multivariate normal distribution having a mean of zero, a within-in cluster 

correlation matrix (i.e., Cor( , )ijk ij k   ) with diagonal entries of 1 and all off-diagonal entries of 

0.2 and a subject-across-response correlation matrix (i.e., Cor( , )ijk ij k    ) with diagonal entries of 

0.3 and all off-diagonal entries of 0.1. The empirical type I error rates based on fifty thousand 

replicates and the empirical power rates based on two thousand replicates are reported for all 

simulation results. 

 

Empirical Type I Error Rates 

Table S4 shows the empirical type I error rates of the seven competing methods, HoK, HoO, 

HeK, HeO, BT, mPK and mPB, with continuous traits based on the dimension of phenotypes 

given by K = 3. Table S4 shows that, in general, the seven competing methods have good 

performance on the empirical type I error rates with the unweighted marker-specific weight 

( ,1,1) 1l lw Beta m   considered for variant l for continuous traits. On the other hand, the 

proposed method, HoK, and the existing method, mPK, have slightly high values of the 

empirical type I errors at the nominal level of 0.0001, when the marker-specific weight is 

considered for ( ,1,25)l lw Beta m  for variant l.   

In summary, the seven competing methods based on the unweighted marker-specific 

weight ( ,1,1) 1l lw Beta m   have more robust control than that based on weighted marker-
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specific weight ( ,1,25)l lw Beta m  in terms of the empirical type I errors for continuous traits, 

when the dimension of phenotypes is given by K = 3. 

 

Table S4: Empirical type I errors of the seven competing methods with continuous traits based on  

the dimension of phenotypes given by K = 3.  

Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT mPK4 mPB 

Unweighted 0.05 U/U2  0.04854 0.05128 0.05068 0.05332 0.04950 
0.04414 0.04820 

marker-specific  E/E 0.04860 0.05122 0.05114 0.05318 0.04980 

weight1 0.01 U/U 0.00960 0.00990 0.00998 0.01040 0.01032 
0.00858 0.00972 

  E/E 0.00966 0.00978 0.00988 0.01016 0.01044 

 0.001 U/U 0.00068 0.00064 0.00074 0.00072 0.00082 
0.00086 0.00098 

  E/E 0.00066 0.00064 0.00068 0.00072 0.00088 

 0.0001 U/U 0.00006 0.00008 0.00008 0.00012 0.00010 
0.00014 0.00008 

  E/E 0.00006 0.00010 0.00008 0.00012 0.00010 

Weighted 0.05 U/U  0.05200 0.05008 0.05074 0.04942 0.04696 0.04666 0.04614 

marker-specific  E/E 0.05200 0.05052 0.05068 0.04946 0.04686 

weight 0.01 U/U  0.00990 0.00932 0.01030 0.01004 0.00914 0.00998 0.00990 

  E/E 0.00986 0.00932 0.01010 0.01032 0.00912 

 0.001 U/U 0.00098 0.00106 0.00114 0.00094 0.00090 0.00108 0.00106 

  E/E 0.00094 0.00102 0.00118 0.00088 0.00094 

 0.0001 U/U 0.00016 0.00012 0.00012 0.00008 0.00010 
0.00018 0.00014 

  E/E 0.00018 0.00012 0.00012 0.00008 0.00008 
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted marker-specific weight is  

   given by ( ,1,25)l lw Beta m .  
2U/U represents the structures of the working within-cluster and multivariate-response correlation matrices  

considered by the unstructured structures; E/E represents the structures of the working within-cluster and  

multivariate-response correlation matrices considered by the exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods.  
4mPK and mPB are executed by the R package MultiSKAT [8]. 

 

Empirical Power 
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Figure S4 shows the empirical power rates of the seven competing methods, HoK, HoO, HeK, 

HeO, BT, mPK and mPB, with continuous traits based on the dimension of phenotypes given by 

K = 3, when the working within-cluster and multivariate-response correlation matrices of the 

proposed methods, HoK, HeK and BT, are considered to be exchangeable. From Figure S4, we 

observe that, in general, the empirical power rates based on the higher dimension of phenotypes 

in Figure S4 are larger than that based on the lower dimension of phenotypes in Figure 1, when 

continuous traits are considered. However, we note that when the genetic effects on the different 

phenotypes are homogeneous (i.e., 
1 2 3 β β β ), the empirical power rates of the proposed 

method, HeK, based on higher dimensions of phenotypes don’t have an increasing trend, because 

the higher dimension of the phenotype causes the test statistic under the null hypothesis with a 

higher degree of freedom.    

In summary, our simulation results show that, in general, the empirical power rates based 

on the higher dimension of phenotypes are larger than that based on the lower dimension of 

phenotypes, when continuous traits are considered.  
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Figure S4: Power comparisons of the seven competing methods with continuous traits based on 

the dimension of phenotypes given by K = 3 for each scenario at the nominal level of 0.001. (A) 

Unweighted marker-specific weight: ( ,1,1) 1l lw Beta m  . (B) Weighted marker-specific 

weight: ( ,1,25)l lw Beta m . 
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Appendix S5. Additional Simulation Studies for Binary Traits 

In this section we present addition simlation results to futher examine the performance of the 

proposed methods with binary traits.  

 

5.1. Simulation Results with Slightly Higher Correlations of Phenotype Traits 

Following the same simulation set-up as those described in simulation studies in the text, we 

consider the slightly higher correlational relationships for binary traits. Preciously, the binary 

traits 
iy  in equation (12) are generated by the R package BinNor [9] based on a within-in cluster 

correlation matrix (i.e., Cor( , )ijk ij ky y  ) with diagonal entries of 1 and all off-diagonal entries of 

0.25 and a subject-across-response correlation matrix (i.e., Cor( , )ijk ij ky y   ) with diagonal entries 

of 0.3 and all off-diagonal entries of 0.15. Because implementing the proposed tests, HoK, HoO, 

HeK, HeO, and BT, based on the binary traits needs high computational costs, the empirical type 

I error rates based on 15,000 replicates and the empirical power rates based on 2,000 replicates 

are reported for all simulation results in order to save time.  

 

Empirical Type I Error Rates 

Table S5 exhibits the empirical type I error rates of the proposed methods, HoK, HoO, HeK, 

HeO, and BT, with binary traits based on slightly higher correlations between phenotypes. Table 
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S5 displays that, in general, the five proposed methods can control the empirical type I error rates 

with the marker-specific weight considered for ( ,1,1) 1l lw Beta m   or ( ,1,25)l lw Beta m  for 

variant l for binary traits. However, we observe that the proposed test, HoO, has inflated type I 

errors at the nominal level of 0.0001 with the weighted marker-specific weight 

( ,1,25)l lw Beta m  for variant l.   

In summary, the five proposed methods based on the unweighted marker-specific weight 

( ,1,1) 1l lw Beta m   have better performance than that based on the weighted marker-specific 

weight ( ,1,25)l lw Beta m  in terms of the empirical type I errors for binary traits, when these 

traits have slightly higher correlations among one another. 
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Table S5: Empirical type I errors of the five competing methods with binary traits based on 

slightly higher correlations between phenotypes. 

Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT 

Unweighted 0.05 U/U2 0.05033 0.05240 0.05480 0.05453 0.05153 

marker-specific  E/E 0.05067 0.05280 0.05500 0.05433 0.05107 

weight1 0.01 U/U 0.00900 0.00953 0.00987 0.00987 0.01007 

  E/E 0.00913 0.00967 0.00993 0.00993 0.00993 

 0.001 U/U 0.00053 0.00047 0.00107 0.00060 0.00060 

  E/E 0.00060 0.00060 0.00113 0.00053 0.00067 

 0.0001 U/U 0.00007 0.00007 0.00007 0.00000 0.00007 

  E/E 0.00007 0.00007 0.00007 0.00000 0.00007 

Weighted 0.05 U/U  0.03920 0.03793 0.04987 0.05040 0.03580 

marker-specific  E/E 0.03860 0.03820 0.05007 0.05000 0.03633 

weight 0.01 U/U  0.00887 0.00893 0.01087 0.00900 0.00733 

  E/E 0.00900 0.00900 0.01100 0.00900 0.00720 

 0.001 U/U 0.00093 0.00060 0.00107 0.00060 0.00033 

  E/E 0.00100 0.00060 0.00113 0.00060 0.00033 

 0.0001 U/U 0.00013 0.00020 0.00013 0.00007 0.00007 

  E/E 0.00013 0.00020 0.00013 0.00007 0.00007 
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted 

marker-specific weight is given by ( ,1,25)l lw Beta m . 
2U/U represents the structures of the working within-cluster and multivariate-response correlation  

matrices considered by the unstructured structures; E/E represents the structures of the  

working within-cluster and multivariate-response correlation matrices considered by the  

exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods. 

 

Empirical Power 

Figure S5 shows the empirical power rates of the five proposed methods, HoK, HoO, HeK, HeO 

and BT, with binary traits based on slightly higher correlations between phenotypes, when the 

working within-cluster and multivariate-response correlation matrices of the proposed methods, 
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HoK, HeK and BT, are considered to be exchangeable. In comparison with the empirical power 

rates presented in Figure 2 and Figure S5, the empirical power rates based on the slightly higher 

correlations of phenotypes in Figure S5 are similar to that based on the slightly lower 

correlations of phenotypes in Figure 2. The reason is that the value of the binary trait is 0 or 1, 

and the number of the one value is fewer in contrast with the number of the zero value. 

Moreover, as mentioned for continuous traits, the pattern of the empirical power rates presented 

in Figure 2 is analogous to that in Figure S5, because they both have similar correlation 

structures of phenotypes.   

In summary, our simulation results show that, in general, the empirical power rates based 

on the slightly higher correlations of phenotypes are similar to or equal to that based on the lower 

correlations of phenotypes, when binary traits are considered.  
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Figure S5: Power comparisons of the five competing methods with binary traits based on slightly 

higher correlations between phenotypes for each scenario at the nominal level of 0.001. (A) 

Unweighted marker-specific weight: ( ,1,1) 1l lw Beta m  . (B) Weighted marker-specific 

weight: ( ,1,25)l lw Beta m . 

 

5.2. Simulation Results with the Dimension of Phenotypes Given by K = 3 

Following the similar simulation set-up as those described in simulation studies in the text, we 

consider the binary traits with the dimension of phenotypes given by K = 3. Preciously, the 

binary traits 
iy  in equation (12) are generated by the R package BinNor [9] based on a within-in 
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cluster correlation matrix (i.e., Cor( , )ijk ij ky y  ) with diagonal entries of 1 and all off-diagonal 

entries of 0.2 and a subject-across-response correlation matrix (i.e., Cor( , )ijk ij ky y   ) with diagonal 

entries of 0.3 and all off-diagonal entries of 0.1. Owing to binary traits with heavy computational 

requirements, the empirical type I error rates based on 15,000 replicates and the empirical power 

rates based on 2,000 replicates are reported for all simulation results in order to save time.  

 

Empirical Type I Error Rates 

Table S6 shows the empirical type I error rates of the proposed methods, HoK, HoO, HeK, HeO 

and BT, with binary traits based on the dimension of phenotypes given by K = 3. Table S6 shows 

that, in general, these proposed methods can appropriately control the empirical type I errors 

with the unweighted marker-specific weight ( ,1,1) 1l lw Beta m   or with the weighted marker-

specific weight ( ,1,25)l lw Beta m  for variant l for binary traits. However, the HeK, based on the 

unstructured structures of the working within-cluster and multivariate-response correlation 

matrices, has the empirical type I error rate inflation at the nominal level of 0.0001, when the 

marker-specific weight is considered for ( ,1,25)l lw Beta m  for variant l.  

In summary, the proposed methods, HoK, HoO, HeK, HeO and BT, based on the 

unweighted marker-specific weight ( ,1,1) 1l lw Beta m   have better performance than that 

based on weighted marker-specific weight ( ,1,25)l lw Beta m  in terms of the empirical type I 
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errors for binary traits, when the dimension of phenotypes is given by K = 3. 

 

Table S6: Empirical type I errors of the five competing methods with binary traits based on 

the dimension of phenotypes given by K = 3. 

 
Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT 

Unweighted 0.05 U/U2 0.05040 0.05293 0.05273 0.05400 0.05147 

marker-specific  E/E 0.05040 0.05373 0.05240 0.05393 0.05133 

weight1 0.01 U/U 0.00993 0.00987 0.01013 0.01040 0.01027 

  E/E 0.00993 0.00980 0.00967 0.01040 0.01047 

 0.001 U/U 0.00067 0.00067 0.00120 0.00113 0.00093 

  E/E 0.00080 0.00080 0.00133 0.00113 0.00100 

 0.0001 U/U 0.00013 0.00007 0.00013 0.00013 0.00007 

  E/E 0.00013 0.00007 0.00013 0.00013 0.00007 

Weighted 0.05 U/U  0.05280 0.05200 0.05380 0.05120 0.04687 

marker-specific  E/E 0.05313 0.05167 0.05380 0.05193 0.04687 

weight 0.01 U/U  0.01087 0.01013 0.01087 0.00987 0.00880 

  E/E 0.01120 0.01033 0.01087 0.00960 0.00887 

 0.001 U/U 0.00080 0.00060 0.00107 0.00060 0.00067 

  E/E 0.00087 0.00047 0.00100 0.00053 0.00067 

 0.0001 U/U 0.00007 0.00007 0.00020 0.00013 0.00000 

  E/E 0.00007 0.00007 0.00013 0.00013 0.00000 
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted 

marker-specific weight is given by ( ,1,25)l lw Beta m . 
2U/U represents the structures of the working within-cluster and multivariate-response correlation  

matrices considered by the unstructured structures; E/E represents the structures of the  

working within-cluster and multivariate-response correlation matrices considered by the  

exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods. 

 

Empirical Power 

Figure S6 shows the empirical power rates of the proposed methods, HoK, HoO, HeK, HeO and 
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BT, with binary traits based on the dimension of phenotypes given by K = 3, when the working 

within-cluster and multivariate-response correlation matrices of the proposed methods, HoK, 

HeK and BT, are considered to be exchangeable. Compared with the empirical power rates in 

Figure 2 and Figure S6, we observe that, in general, the empirical power rates on the basis of the 

larger dimension of phenotypes in Figure S6 are bigger than that on the basis of the lower 

dimension of phenotypes in Figure 2, when the binary traits are considered. On the other hand, as 

mentioned for continuous traits, the higher dimension of the phenotype causes the HeK under the 

null hypothesis with a higher degree of freedom, which may cause that the empirical power rates 

of the HeK under the higher dimension of the phenotypes don’t have an increasing trend, when 

the genetic effects on the different phenotypes are homogeneous (i.e., 
1 2 3 β β β ). 

In summary, our simulation results show that, in general, the proposed methods, HoK, 

HoO, HeK, HeO and BT, based on the higher dimension of phenotypes can provide higher power 

rates for analyzing binary traits, in comparison with these methods based on the lower dimension 

of phenotypes.  
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Figure S6: Power comparisons of the five competing methods with binary traits based on the 

dimension of phenotypes given by K = 3 for each scenario at the nominal level of 0.001. (A) 

Unweighted marker-specific weight: ( ,1,1) 1l lw Beta m  . (B) Weighted marker-specific 

weight: ( ,1,25)l lw Beta m . 
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Appendix S6. Limitation  

To futher evaluate the performance of the empirical type I erors of the proposed methods for 

binary traits, we enhance the correlational relationship between phenotypes.  

Following the same simulation set-up as those described in simulation studies in the text, 

the binary traits 
iy  in equation (12) are generated by the R package BinNor [9] based on a 

within-in cluster correlation matrix (i.e., Cor( , )ijk ij ky y  ) with diagonal entries of 1 and all off-

diagonal entries of 0.3 and a subject-across-response correlation matrix (i.e., Cor( , )ijk ij ky y   ) with 

diagonal entries of 0.3 and all off-diagonal entries of 0.2. The empirical type I error rates are 

carried out based on 15,000 simulation runs. 

Table S7 shows the empirical type I rates of the five proposed methods, HoK, HoO, HeK, 

HeO and BT, with binary traits based on higher correlations between phenotypes. From Table 

S7, we observe that all proposed methods, HoK, HoO, HeK, HeO and BT, have good 

performance in terms of empirical type I error rates at the nominal of 0.001. On the other hand, 

we note that the proposed method HeK has the empirical type I error inflation at the nominal 

level of 0.0001 with the unweighted marker-specific weight ( ,1,1)l lw Beta m  for variant l. 

Moreover, the proposed method HoK has the empirical type I error inflation at the nominal level 

of 0.0001 with the weighted marker-specific weight ( ,1,25)l lw Beta m  for variant l. Compared 

with the empirical type I errors in Table 2, Table S5 and Table S7, we observe that these 
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proposed methods have more reasonable control in terms of the empirical type I errors for binary 

traits when the lower correlational relationships between the phenotypes are considered. 

Therefore, improving the proposed methods for more effectively analyzing the binary traits with 

higher correlations of phenotypes is the future work. This issue has been discussed in the 

Limitation section.  

 

Table S7: Empirical type I errors of the five competing methods with binary traits based on 

higher correlations between phenotypes. 

Marker-specific Nominal  Working  Method 

weight ( )lw   level correlation HoK3 HoO HeK HeO BT 

Unweighted 0.05 U/U2 0.05047 0.05200 0.05360 0.05300 0.05220 

marker-specific  E/E 0.04993 0.05247 0.05373 0.05287 0.05220 

weight1 0.01 U/U 0.00893 0.00913 0.00987 0.00920 0.00940 

  E/E 0.00880 0.00907 0.01007 0.00900 0.00947 

 0.001 U/U 0.00060 0.00053 0.00100 0.00087 0.00060 

  E/E 0.00067 0.00053 0.00093 0.00080 0.00067 

 0.0001 U/U 0.00007 0.00013 0.00020 0.00013 0.00007 

  E/E 0.00007 0.00013 0.00020 0.00013 0.00007 

Weighted 0.05 U/U  0.04880 0.04920 0.05193 0.04920 0.04733 

marker-specific  E/E 0.04833 0.04867 0.05207 0.04993 0.04727 

weight 0.01 U/U  0.01113 0.01027 0.01040 0.01020 0.00847 

  E/E 0.01087 0.01040 0.01033 0.01007 0.00840 

 0.001 U/U 0.00133 0.00067 0.00107 0.00080 0.00067 

  E/E 0.00133 0.00073 0.00100 0.00073 0.00067 

 0.0001 U/U 0.00020 0.00013 0.00013 0.00007 0.00007 

  E/E 0.00020 0.00013 0.00013 0.00007 0.00007 
1The unweighted marker-specific weight is given by ( ,1,1) 1l lw Beta m  ; the weighted 

marker-specific weight is given by ( ,1,25)l lw Beta m . 
2U/U represents the structures of the working within-cluster and multivariate-response correlation  

matrices considered by the unstructured structures; E/E represents the structures of the  

working within-cluster and multivariate-response correlation matrices considered by the  



37 
 

exchangeable structures.  
3HoK, HoO, HeK, HeO and BT are our proposed methods. 
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