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Supplementary notes

Causal and joint-fit effect size

Following ref,! we define causal effect size of a SNP as the underlying true effect size of
the SNP on phenotype; we define joint-fit effect size of a SNP as the inferred effect size of
the SNP. Causal effect size of a SNP is unique, whereas joint-fit effect size is subjected to
the set of SNPs included in fitting the model for inferring the causal effect. Previous work?
estimates trans-ethnic genetic correlation of joint-fit effect size — the set of SNPs for model
fitting is the set of SNPs with minor allele frequency greater than 5% in both populations.!?

In this work, we focus on estimating trans-ethnic genetic correlation of causal effect size.

Per-allele and standardized causal effect size

Per-allele causal effect size of a SNP is the change in phenotype resulted from having
an additional allele at that SNP. Standardized causal effect size of a SNP is the change in
phenotype per standard deviation increase in normalized genotype of that SNP. Per-allele

and standardized causal effect size of a SNP are related to each other through

ﬁstandardized =V 2p(1 - p)ﬁper-allelea (1)

where p is the minor allele frequency (MAF) of the SNP in a population. Comparing stan-
dardized causal effect size of a SNP across populations is less informative due to differences
in MAF. Thus, we focus on comparing per-allele causal effect size across populations in this

work.

Defining stratified squared trans-ethnic genetic correlation of per-

allele causal effect size

We model a complex phenotype in two populations using linear models,

Y, =XB; + e,

(2)
Y, = Xy, + €9,

where Y, € RM and Y, € RM2 are vectors of standardized phenotype measurements with 0
mean and unit variance in the two populations, with sample size N; and N,, respectively;
X; € RM>*M and X, € RV2*M are mean centered (but not normalized) genotype matrices of

the two populations across M SNPs, respectively; B, € RM and B, € RM are the per-allele
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causal effect size vectors of the M SNPs on phenotypes in the two populations, respectively;
and €; € R™ and e, € R are the environmental effects in the two populations, respectively.
We model per-allele causal effect sizes, instead of standardized effect sizes as is modeled in
LDSC, to account for differences in minor allele frequency across different populations.

We assume both X; and X5 to be random. We assume a random effect model for the
per-allele causal effect sizes of SNP j in the two populations, 3;; and B}, respectively, with

mean, variance, and covariance,
E[$1;] = 0, Var[y;] Z% )T1c,
E[Ba;] = 0, Var| 5] Za] )Tac, (3)
Cov[B1;, Ba;] Z a;(C)be,

where a;(C) is SNP j’s value with respect to annotation C'; 7i¢ and m¢ are the net contri-
bution of annotation C' to the variance of per-allele causal effect size of SNP j in the two
populations; - the net contribution of annotation C' to the co-variance of per-allele causal
effect size of SNP j in the two populations.

We define stratified trans-ethnic genetic co-variance of a binary annotation C' (e.g.
functional annotations or quintiles of continuous-valued annotations) as the sum of per-SNP

genetic covariance of SNPs that are a member of annotation C,

C) = Y, Cov[Byj, Ba] = D, Y a;(C)ber. (4)

jeC jec ¢

Here, C' is a binary annotation, but C” can be either binary or continuous-valued. Similarly,
we define stratified heritability (of per-allele causal effect sizes) of a binary annotation C' in

the two populations as,

C) = Z Var[ ;] = Z Z a;(C" e,

jeC jeC ¢’ (5)
C) = Z Var[ﬂQJ = Z Za] 7_2C’
jeC jeC ¢’

We define stratified trans-ethnic genetic correlation as

ro(0) = 29| (©)
2, ()1, (C)
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Since estimates of 12, (C) and h2,(C') can be noisy and possibly negative, rendering the square
roots undefined, we estimate stratified squared trans-ethnic genetic correlation instead, which

is defined as,
p,(C)

g

Another advantage of estimating 72(C) over 7,(C) is that taking square root of a random
variable creates downward bias, which is difficult to correct for — estimating rg (C) resolves
this issues. In this work, we only estimate 77 (C') for SNPs with minor allele frequency (MAF)
greater than 5% in both populations. Additionally, we define enrichment of stratified squared

trans-ethnic genetic correlation,

N(C) = 5=, (8)

as the ratio between stratified squared trans-ethnic genetic correlation of annotation C' and
squared genome-wide trans-ethnic genetic correlation; we meta-analyze A?(C') across different

traits.

Estimating stratified squared trans-ethnic genetic correlation
Regression equations to estimate 6, and 7¢

We estimate the net contributions of annotation to per-SNP trans-ethnic genetic co-
variance and per-allele heritability, -, ¢ and Ty, respectively, from GWAS summary
association statistics using methods of moments.

In genome-wide association studies (GWAS) across two populations, Z-scores testing

association between SNP j and the trait are calculated as,

1
Zy = ——XLY],
U o /N (©)
1
oy = ——XLY,.

025V NQ

where Z;; and Z,; are Z-scores for SNP j in the two populations, respectively; oy, and oy;

are the standard deviation of SNP 7 in the two population.
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Substituting the linear phenotype model from Equation (2), it can be shown that

1
E[Z1;72] = PSS E[(X],X1B; + X];e1) (X, XoB, + XJe)]
X _
PN ( (Z mﬂlk))( 1 (Z zkﬂ%»]
1 [ (M M
- b X]X X],X
015027/ N1 Ny _<;‘1B1k Ly 1’“) (2 2k 2; 2k>]
1 M
= E XI.X
0-1]02] N1N2 _;ﬁlkzﬁQk( 15 1k) )] (10)
1 M
- E[XT. X E[XT.X
01,09 NlN?lfz_;_ ov| Bk, Bar] E| 1 16 B[ % ok]
1 M
= 0 N- N-
01025 N1 N3 kZl; car(CYN1p1jkNapaji
G| e PR
o \i=1 9192

where py;, and py;i, are the covariances between SNP j and k in population 1 and population

2, respectively. Let

)

(G,C) = f PRk 4, () (11)

= 71392

be the trans-ethnic LD score of SNP j with respect to annotation C, we arrive at the

regression equation for estimating 0.,

E[Z1; 22|t (5, C)] = v/N1N2 Y £ (4, C)bc. (12)

c

Following ref.?, regression equations for estimating 71 and ¢, contribution of annota-

tion C' to per-SNP heritability, can be derived similarly,

E[x316 (5, C N1Z€1 3, C)ic + Niar + 1,
(13)
E[x3;162(, C NzZ@ J, C)Tac + Naaz + 1,
where o
2
I
= 2 g (14)
k=1 p

W
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is the LD score of SNP j with respect to annotation C' in population p; and a,, is the intercept
term capturing population stratification in population p. An intercept term is not necessary
in the regression in Equation (12), as GWAS from different populations are not expected to

share samples or shared population stratification.

Estimating LD scores

We estimate trans-ethnic and population-specific LD scores using publicly available
reference genotypes of 481 East Asian and 489 European individuals from the 1000 Genomes
Project.?

Let X, € RVM*M and X, € RM2*M he the mean centered (but not normalized) reference
genotype matrices for M SNPs in the two populations, with reference sample size N; and Ny,
respectively, we obtain unbiased estimates of trans-ethnic LD score of SNP j with respect
to annotation C, £, (j,C) as

M
(x(4,C 01] £ Z P1jkP2jik: (15)
where T T
A kaij ~2 ijij (16)
Ppjk = N,— 1’ Opj = N,—1°

At sample size of N; = 481 and N, = 489, both standard deviation estimation and ratio
estimation are nearly unbiased. Thus, to show E[(y(j,C)] = £y (j,C), it suffices to show
E[p1jkpajk] = p1jupajr- Indeed,

. X1, Xy X1, Xoj
i) - [ (50 ) (28]

1
= (Nl — 1)(N2 — 1) [Z Xlszhj Z XZz’k‘X2z ]]

i'=1
1 Y (17)
- (Nl - 1)(N2 — 1) Z Z E [XlikxlinZL"k‘XQi’j]

1=14¢=1
_ (V1= Dprjr(Na — D)paji
(N7 —1)(Ny — 1)

= P1jkP2jk;

where the equality on the fourth line follows from Isserlis’ theorem® and the fact that unad-

g0 justed sample covariance is biased by a factor of % When estimating the trans-ethnic LD

90

scores, we restrict to SNPs that are present in both populations. Effectively, we assume that
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only SNPs present in both populations contribute to genetic covariance. Since LD is small
outside a 1 centimorgan window, we only include SNPs within a 1 centimorgan window in
the summation in Equation (17), similar to previous works.>%7

Similarly, we obtain unbiased estimates of population-specific LD score, £,(j, C'), as

. 1 ¥ N R 62,62,
6(5,C) = =3 Z N, i 1 (Pij - ﬁ) - (18)
P

J k=1

For sample size of Ny = 481 and Ny, = 489, the bias introduced in ratio estimation is
&ij&ik] _ N1 o
Np - Np pp.]k

negligible. Thus, to show ép( J, C) is unbiased, it suffices to show E [ﬁf)jk -
Indeed,

AD A 2 AD A
E |2 O piOph _® XonXni\" O i
| N, —1 N, —1

! ISR 0240219

| i=14=1

! Bsby 2.0

Np—1 i=14'=1 p—1
1 ? 2 2 2 2 2 Ugjggk
~(Fm) 1% = D+ (3, = Dt + (N, = D] - 2%
Np —1 2

When estimating the trans-ethnic LD scores, we restrict to SNPs that are present in popu-
lation p. Effectively, we assume that SNPs present in population p contribute to heritability.
Since LD is small outside a 1 centimorgan window, we only include SNPs within a 1 centi-

morgan window in the summation for estimating LD scores.

Regression SNPs and regression weights

To mitigate potential confounding due to imputation quality, we include only well-
imputed SNPs (INFO>0.9) in the regression. We further restrict to HapMap 3% SNPs with
minor allele frequency (estimated using 1000 Genomes Project! data) greater than 5% in
both populations, which is a set of SNPs that are well imputed in diverse populations and
has been used in previous studies.®”

We use weighted least square regression to obtain estimates of 7¢, T¢, and 6c. For

estimating 7,¢, we use weights similar to those described in Finucane et al 2015. In detail,
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the weights for each regression SNP 7 in population p is

1
ij = - - 5 (20)
Ep(]a HapMapS) (Np ZC fp(]a C)TpC + 1)

For estimating 6., we use the following weights
1
Upi = 2 . 2 . . ’
AT 6 HapMap3) [ T2, (N, X G O + 1) + Ny X e (G, O |

(21)

Estimating stratified squared trans-ethnic genetic correlation

Let 71¢, Toc, and 9};, be the estimates of ¢, 7o, and ¢, respectively. First, we obtain
estimates of stratified trans-ethnic genetic covariance and heritability of a binary annotation

C as,

pg(C) = 1> ac(§)ber,

jeCc ¢’

e (C) = ) Y ac (i) e, (22)
jeC ¢’

izfﬂ(C) = Z Zacf(j)%zc'-
jeC ¢’

We jackknife over 200 continuous and disjoint blocks of SNPs to obtain standard error of

each estimates. As, an example, we estimate standard error of p,(C') as

B-—1&

SE(C)] = | 2[00 - ()] (23)

where B is the total number of jackknife samples, and ﬁgb)(C) denotes the estimate with
SNPs in the b-th block removed.
Next, we obtain an initial estimate of stratified squared trans-ethnic genetic correlation,
r2(C), as
_ P3(C) = (SE[p,(O)])"
531(0)532(0) - COV[ﬁﬁl(C)a il?;z ()]

72(C) , (24)

where Cov[ﬁgl(C’),BSQ(C)] is estimated using jackknife over 200 continuous and disjoint
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blocks of SNPs,
9 9 _B-10(s 7 2(b) P9 7 2(b)
Cov[i (C), (O] = === Y] |4 () = ()| [I(0) = ()| (29)
b=1

The initial estimator, 7 (C), however, is a biased estimator of 72(C').” We estimate and

correct for the bias using jackknife samples of fg(C’ ).? We obtain final bias-corrected estimate

of 72(C) as,

, o Cov | (O). B (Oh%,(C) Var [12,(€)2,(0)]
75(C) = {7, (C - - 1+ — < . (206)
2,(C)2,(C) 2,(C)2,(C)

and obtain its standard error using block jackknife.
We obtain an initial estimate enrichment of stratified squared trans-ethnic genetic cor-

relation

, (27)

22
Tg
and obtain bias corrected enrichment as

2y R Cov [f’g(C’),fg] Var [7‘3(6’)]
)\((J)—{A (C) + 72(C) }/{1+—f2(0) } (28)

g

Shrinkage estimator

Estimates of 72(C) can be imprecise and unreliable if the denominator, h2 (C')h2,(C),
is noisy and close to 0. This is especially true for small annotations. To mitigate this issue,
we introduce a shrinkage estimator to “regularize” the estimates of 72(C).

We apply the shrinkage to estimates of stratified per-SNP genetic covariance and heri-
tability, so that the per-SNP estimates are shrunk towards genome-wide average. Inspired

by Bayesian shrinkage, we derive a shrinkage factor for per-SNP genetic covariance and
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heritability as follows. Let

Y2 = 1/ 1 +a M~ ] )
Var | h2, Mc (29)
/ Var [392(0)] M
V3 = 1/ I+« r~ ] ’
Var | h2,| Me

where M¢ is the number of SNPs in annotation C, and « € [0, 1] is a user-controlled tuning
parameter that governs the magnitude of shrinkage. We define the shared shrinkage factor

as

Y= min{’yh V2, 73} (30)

We use shared shrinkage factor instead of separate shrinkage factors for convenience of char-
acterizing the behavior of the estimator. When « is set to 0, no shrinkage is applied; when
« is set to 1, the entire Bayesian shrinkage is applied.

We apply the shrinkage to stratified genetic covariance and heritability as follows,

ps(C) = Mc (V%S) + (1= 7)%)
B2,(C) = M (vhﬁ? +(1- v)%) (31)
i) - e (1149 4 1)),

and obtain standard errors of the shrunk estimates using block jackknife. Intuitively, if
stratified heritability and trans-ethnic genetic covariance are estimated with low variance,
the amount of shrinkage needed will be small, and shrinkage estimator will preserve the
unshrunk estimates. On the other hand, if stratified heritability and genetic covariance are
estimated with large variance (i.e. noisy), the shrinkage estimator will shrink the estimates
towards genome-wide average.

Finally, we obtain shrunk r2(C) and X*(C), 72(C) and A*(C), by plugging in p,(C),
hZ,(C), and hZy(C) into the procedures described in previous section. We found that when

a = 0.5, the shrinkage estimator yields robust results across a wide range of polygenicity.
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Two-population Eyre-Walker model

The Eyre-Walker model'® couples fitness effect (selection coefficient) with causal disease

effect size, (8, through the equation
B =0865"(1+¢€), (32)

where § = £1 with equal probabilities governs the sign of 3; S = 4sN, (s is the fitness effect,

N, effective sample size of the population); 7 is the parameter coupling selection and /3; and
2

e is normally distributed with mean 0 and variance oZ. Since the scaling factor 4N, does
not affect trans-ethnic genetic correlation (and subsequently enrichment of stratified squared

trans-ethnic genetic correlation, A\*(C)), we use the simplified equation instead,

B ocds™(1+e). (33)

We use negative s to denote deleteriousness, following convention of previous works.'!12

However, we emphasize that positive s (i.e. beneficial mutations) is also plausible.
We extend the Eyre-Walker model to two populations to model causal disease effect

sizes of SNP j, 81, and f3;, in population 1 and population 2, respectively,

Blj aoC 581-](1 + 61),

(34)
ng oC 58;](1 + 62),

where s1; and sg; are the fitness effects of SNP j in the two populations; €; and €, indepen-
dently follow normal distributions with mean 0 and variance o? and ¢3. Assuming 7 is a

constant, 3;; and f,; has covariance,
Cov[By), Baj] oc E[ds];(1 + €1)ds5;(1 + €2)] = E[(s15825)"]; (35)
and variance,

Var[By,] o E[(0s7,(1 + e1))*] = E[s77](1 + 02),
Var[fy;] ot E[(353;(1 + )] = E[s7](1 + 03).

10
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The squared genome-wide trans-ethnic genetic correlation is then

2 = (2, El(s15525)7])?
' S B+ oD BRI+ 70
1 (2, El(s182))71)*

" (+od)(1+0}) X, ERHIERS]

(37)

And the stratified squared trans-ethnic genetic correlation of a binary annotation C' is

(X jec El(s1582)7])?
(Xjec E[sT7I(L + 02) E[s37](1 + 02))
B 1 (Xjec El(s182)7])?
L+ o)1 +03) Yec ElsTIE[s3]]

r2(C) =
(38)

The enrichment of squared trans-ethnic genetic correlation, A\*(C'), only depends on s1; and

525,

o TC) (e Bllsiys2)7])? (X, Els7] Els3;])
N(C) = 2 (Yjec EIsT1ELs31) (3 El(s1;525)7])?

Therefore, although 7’3 can be less than 1 as long as 02 or 02 is greater than 0, differential

(39)

fitness effects in annotation C' compared with genome-wide average is necessary for A\?(C')
to be different from 1.

To introduce population-specific fitness effects, we assume

S1 = 80(]. + Al),

So = so(1 4+ Ay), (40)

where sg represents the fitness effect prior to the split of population 1 and population 2, and
A and A, represent the relative change in fitness effects since the split, and are indepen-
dently sampled from N (0, 0% ) (and truncated so that (1+A;) and (1+A,) are non-negative).
We further assume that 0% is small (close to zero) at weakly deleterious or effectively neutral
SNPs (i.e. s1 &~ sq), and large at more strongly deleterious SNPs (i.e. s; # s2) (Supple-
mentary Figure 31a). Under our model, fitness effects in the two populations have the same
mean, but higher variance at SNPs with large fitness effect (i.e. strongly deleterious SNPs)
and lower variance at SNPs with small fitness effect (i.e. weakly deleterious SNPs). Since
both populations have the same mean fitness effect, we expect the relationship between effect
size and MAF to be the same in the two populations for strongly and weakly deleterious
SNPs. We have publicly released Python code implementing the 2-population Eyre-Walker
model (see Code availability).

11
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We used Equation (40) to sample population-specific fitness effects (s; and sy) and
subsequently used Equation (34) to sample causal disease effect sizes ($; and fs) for 50,000
simulated unlinked SNPs, setting 90% of the SNPs to be weakly deleterious (so = —107°)
and 10% of the SNPs to be more strongly deleterious (so = —107%) (Methods). We then
used the sampled causal effect sizes to compute the enrichment/depletion of squared trans-
ethnic genetic correlation (A\*(C)) for SNPs in each of these two categories. When 7 = 0.2,
0? =02 = 1.0, and 0% = 0.0 for both weakly and more strongly deleterious SNPs (i.e. same
fitness effects across populations), A?(C) was equal to 1.00 (s.e. 0.00) for both categories
(Supplementary Figure 31b). However, when 0% = 0.0 for weakly deleterious SNPs but
od = 0.7 for more strongly deleterious SNPs (leaving all other parameters unchanged),
A%(C) for more strongly deleterious SNPs decreased to 0.79 (s.e. 0.01) (Supplementary
Figure 31c) due to more population-specific causal disease effect sizes, roughly matching
results for SNPs in the top quintile of background selection statistic in real data analyses
(Figure 2). Analyses at other values of 7 produced similar results, yielding lower values of
A%(C) for more strongly deleterious SNPs at higher values of o% (Supplementary Table 6).
We also performed a secondary analysis with 03 = 0.7 for both weakly and more strongly
deleterious SNPs (leaving all other parameters unchanged). We observed no depletion of
A2(C') at more strongly deleterious SNPs (Supplementary Figure 32). Thus, we concluded
that, under the Eyre-Walker evolutionary model, a lower o4 at weakly deleterious SNPs and
a higher 02 at more strongly deleterious SNPs is necessary to explain the results observed
in analyses of real traits.

Here, we did not consider demographic histories in our evolutionary modeling, which
may lead to increased proportions of population-specific variants, decreasing trans-ethnic

14,15

polygenic risk score accuracy.'> We also note that other evolutionary models exist, and

could also be explored.'*!?

12



2» Supplementary tables

simulated r, | estimated r, s.e. mean mean jackknife s.e.
0 0 0.0016 0.0016
0.2 0.21 0.0015 0.0016
0.4 0.41 0.0016 0.0017
0.6 0.62 0.0017 0.0017
0.8 0.82 0.0018 0.0019
1 1.03 0.002 0.0021

Supplementary Table 1: Numerical results of S-LDXR in estimating genome-wide
trans-ethnic genetic correlation. Mean and standard errors are based on 1,000 simula-
tions.

13



trait (abbrev.) Ngas Ngur h2 pas h2 pur
*Atrial Fibrillation (AF) 3679210 10308367 | 0.110 (0.026) 0.021 (0.002) | 0.817 (0 193)
Age at Menarche (AMN) 67029 252514 | 0.074 (0.013) 0.128 (0.010) | 0.878 (0.057)
Age at Menopause (AMP) 438618 69360"° | 0.092 (0.021) 0.190 (0.016) | 0.567 (0.091)
Basophil Count (BASO) 6207620 1318602 | 0.107 (0.018) 0.088 (0.011) | 0.427 (0.061)
Body Mass Index (BMI) 15828420 3375392 | 0.161 (0.010) 0.207 (0.007) | 0.804 (0.021)
Blood Sugar (BS) 93146%  337539%% | 0.057 (0.011) 0.036 (0.004) | 0.829 (0.087)
Diastolic Blood Pressure (DBP) 1366152 33753922 | 0.052 (0.008) 0.146 (0.007) | 0.862 (0.059)
Estimated Glomerular Filtration Rate (EGFR) | 143658%°  1001252% | 0.074 (0.008) 0.058 (0.007) | 1.053 (0.063)
Eosinophil Count (EO) 620762 3375392 | 0.076 (0.016) 0.154 (0.010) | 0.950 (0.092)
Hemoglobin Alc (HBA1C) 427902 3375392 | 0.109 (0.022) 0.082 (0.006) | 0.875 (0.083)
High Density Lipoprotein (HDL) 706577 33753922 | 0.109 (0.016) 0.140 (0.010) | 0.892 (0.056)
Height (HEIGHT) 151569%* 33753922 | 0.371 (0.017) 0.366 (0.018) | 0.897 (0.018)
Hemoglobin (HGB) 108769% 132596 | 0.070 (0.010) 0.166 (0.012) | 0.911 (0.058)
Hematocrit (HTC) 1087570 1326992 | 0.078 (0.009) 0.161 (0.012) | 0.870 (0.054)
Low Density Lipoprotein (LDL) 72866%° 33753922 | 0.047 (0.015) 0.076 (0.009) | 0.662 (0.105)
Lymphocyte Count (LYMPH) 620762 3375392 | 0.121 (0.015) 0.165 (0.011) | 0.903 (0.059)
Mean Corpuscular Hemoglobin (MCH) 1080542°  337539%2 | 0.130 (0.014) 0.144 (0.010) | 0.884 (0.049)
MCH Concentration (MCHC) 10872820 1325862' | 0.069 (0.010) 0.089 (0.010) | 0.887 (0.077)
Mean Corpuscular Volume (MCV) 108256%°  132353* | 0.146 (0.015) 0.200 (0.015) | 0.891 (0.048)
*Major Depressive Disorder (MDD) 10640%°  62984%6 | 0.354 (0.078) 0.202 (0.014) | 0.342 (0.074)
Monocyte Count (MONO) 6207620 3375392 | 0.123 (0.015) 0.156 (0.012) | 0.811 (0.048)
Neutrophil Count (NEUT) 62076%°  131564%' | 0.123 (0.016) 0.163 (0.011) | 0.766 (0.059)
Platelet Count (PLT) 10820820 3375392 | 0.157 (0.015) 0.214 (0.013) | 0.879 (0.035)
*Rheumatoid Arthritis (RA) 2234377 3759877 | 0.219 (0.041) 0.191 (0.021) | 0.872 (0.098)
Red Blood Cell Count (RBC) 108794 33753922 | 0.105 (0.011) 0.167 (0.009) | 0.924 (0.052)
Systolic Blood Pressure (SBP) 13650720 33753922 | 0.064 (0.008) 0.149 (0.007) | 0.807 (0.043)
*Schizophrenia (SCZ) 13761% 35737 | 0.908 (0.064) 0.868 (0.040) | 0.945 (0.036)
*Type 2 Diabetes (T2D) 190559%  141364% | 0.099 (0.007) 0.046 (0.006) | 0.927 (0.048)
Total Cholesterol (TC) 12830520 33753022 | 0.057 (0.013) 0.087 (0.010) | 0.910 (0.073)
Triglyceride (TG) 10559720 33753922 | 0.061 (0.010) 0.100 (0.009) | 0.932 (0.066)
White Blood Cell Count (WBC) 10796420 337539%% | 0.103 (0.010) 0.156 (0.007) | 0.848 (0.037)

Supplementary Table 2: Details of 31 diseases and complex

traits analyzed. We

report genome-wide heritability of the traits estimated using S-LDSC*!!' conditioned on
baseline-LD-v2.2 model annotations in each population, and trans-ethnic genetic correlation
estimated using S-LDXR conditioned on baseline-LD-X model annotations. Heritability
estimates for binary traits denote observed-scale heritability (* denotes binary traits). Stan-
dard errors of the estimates are shown in parentheses. The prevalence of MDD is 2.2% and
7.3%* in UK Biobank®? EAS (Chinese) and EUR population, respectively. The prevalence
of schizophrenia (SCZ) is 0.33% and 0.52% in Asia and Europe, respectively.>® The preva-
lence of type 2 diabetes (T2D) is 2.7% and 4.2%3! in UK Biobank EAS (Chinese) and EUR

populations.
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decile | h? ,5(C) enrch. h2 ;;5(C) enrch. X*(C) (s.e.)
1st NA NA NA
2nd NA NA NA
3rd NA NA NA
4th NA NA NA
5th 1.04 (0.15) 1.17 (0.08) 0.92 (0.09)
6th 1.02 (0.08) 1.05 (0.04) 0.91 (0.04)
7th 1.01 (0.05) 0.99 (0.03) 1.04 (0.03)
8th 1.04 (0.04) 1.07 (0.03) 0.97 (0.02)
9th 0.99 (0.04) 0.99 (0.02) 0.97 (0.02)
10th 0.91 (0.03) 0.90 (0.02) 0.95 (0.03)

Supplementary Table 3: Enrichment of heritability and stratified squared trans-

ethnic genetic correlation across 10 MAF bin annotations.

MAF bins containing

no SNP with MAF > 5% in either East Asian (EAS) or European (EUR) populations are

reported as “NA”. Standard errors are reported in parentheses.

—1x distance to nearest exon

background selection statistic

quintile h2 pas(C) enrch.  h2 g p(C) enrch. N (O) h2 pas(C) enrch.  h2 ;;,.(C) enrch. A (0)
Ist 0.24 (0.030) 0.23 (0.023) 107 (0.050) |  0.44 (0.026) 0.43 (0.020)  1.23 (0.052)
ond 0.59 (0.019) 0.65 (0.013)  1.16 (0.028) |  0.68 (0.014) 0.68 (0.011)  1.19 (0.025)
3rd 0.89 (0.020) 0.92 (0.014) 1.03 (0.022) 0.88 (0.010) 0.89 (0.0073) 1.06 (0.011)
4th 1.15 (0.028) 1.15 (0.019)  0.96 (0.021) |  1.20 (0.012) 1.21 (0.0087)  0.91 (0.010)
5th 2.13 (0.062) 2.04 (0.042)  0.87 (0.018) |  1.82 (0.037) 1.81 (0.027)  0.79 (0.016)

(a)
annotation | Thas(C) (se.) ThuR(0) (s.e)  0*(C) (se.)
distance to nearest exon 0.020 (0.021)  -0.03 (0.018)  -0.015 (0.020)
background selection statistic | 0.28 (0.027) 0.25 (0.020) 0.19 (0.021)

(b)

Supplementary Table 4: Numerical S-LDXR results for distance to nearest exon
annotation. a) Heritability enrichment and enrichment of squared trans-ethnic genetic
correlation (A*(C)) of the reversed distance to nearest exon annotation and the background

selection statistic annotation. Standard errors are displayed in parentheses.

b) Standard-

ized annotation effect sizes of the distance to nearest exon annotation and the background

selection statistic annotation.
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pLI decile | h2 ,5(C) enrch. 12 p;(C) enrch. N (C)
st 1.39 (0.035) 1.38 (0.023) | 0.851 (0.018)
ond 1.62 (0.045) 1.56 (0.03) | 0.863 (0.018)
3rd 1.68 (0.045) 1.57 (0.029) 0.9 (0.018)
4th 1.62 (0.045) 1.55 (0.03) | 0.887 (0.019)
5th 1.68 (0.048) 1.65 (0.03) | 0.871 (0.018)
6th 1.62 (0.047) 1.64 (0.031) | 0.866 (0.019)
7th 1.55 (0.044) 1. 55 (0.020) | 0.922 (0.02)
8th 1.83 (0.044) 8 (0.03) 0.873 (0.018)
9th 1.95 (0.044) 1. 92 (0.020) | 0.888 (0.016)
10th 1.91 (0.04) 1.85 (0.023) | 0.895 (0.015)

Supplementary Table 5: Numerical S-LDXR results for deciles of probability of
loss-of-function intolerance (pLI) annotations.
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T ok | B2 A) enrch. h2 (B) enrch. | h2, A) enrch. hZ)(B) enrch. | X*(A) N (B)

0 0 0 (0.002) 0 (0.02) 0 (0.002) 0 (0.02) 10 (0.0) 1.0 (0.0)
0 02| 1.0/(0.002) 0 (0.02) 0 (0.002) 0 (0.02) 1.0 (0.0) 1.0 (0.0)
0 04 (0 002) 0 (0.02) 0 (0.002) 0 (0.02) 1.0 (0.0) 1.0 (0.0)
0 06| 1.0(0.002) 0 (0.02) 0 (0.002) 0 (0.02) 1.0 (0.0) 1.0 (0.0)
0 08| 1.0/(0.002) 0 (0.02) 0 (0.002) 0 (0.02) 1.0 (0.0) 1.0 (0.0)
0 1| 10(0.002) 0 (0.02) 0 (0.002) 0 (0.02) 1.0 (0.0) 1.0 (0.0)
0.2 0 | 087 (0.004) 2(0.03) | 0.87 (0.004) 2 (0.03) 1.0 (0.0) 1.0 (0.0)
0.2 02| 0.88(0.004) 1(0.03) | 0.88 (0.004) 1(0.03) | 1.01 (0.0008) 0.96 (0.003)
0.2 04| 0.89(0.004) 1(0.03) | 0.89 (0.004) 1(0.03) | 1.03(0.002) 0.8 (0.007)
0.2 0.6 | 0.89 (0.004) 2.01 (0.03) 0.89 (0.004) 2.01 (0.03) 1.05 (0.002)  0.82 (0.008)
0.2 08| 0.89(0.004)  20(0.04) | 089(0.004) 2.0 (0.04) | 1.06 (0.003) 0.76 (0.009)
0.2 1 | 089(0.004)  20(0.04) | 089(0.004)  2.0(0.04) | 1.07 (0.003) 0.72 (0.01)
04 0 | 065(0.006) 412 (0.05 | 0.65(0.006)  4.12 (0.05) 1.0 (0.0) 1.0 (0.0)
0.4 02| 0.66(0.007)  4.08(0.05) | 0.66(0.007)  4.08 (0.05) | 1.04 (0.002) 0.94 (0.003)
0.4 04| 0.66(0.007) 407 (0.06) | 0.66(0.007)  4.07 (0.06) | 1.10 (0.004) 0.87 (0.006)
04 06| 0.66(0.007) 407 (0.06) | 0.66(0.007)  4.07 (0.06) | 1.14 (0.006) 0.81 (0.008)
0.4 0.8 0.66(0.007)  4.09 (0.06) | 0.66(0.007)  4.09 (0.06) | 1.18 (0.007) 0.76 (0.009)
04 1 | 065(0.007)  4.11(0.06) | 065(0.007) 411 (0.06) | 1.21(0.008) 0.73 (0.01)
0.6 0 | 040 (0.006)  6.38 (0.07) | 0.40(0.006)  6.38 (0.07) 1.0 (0.0) 1.0 (0.0)
0.6 02| 040(0.007) 644 (0.07) | 040 (0.007)  6.44 (0.07) | 1.12 (0.009) 0.94 (0.003)
0.6 04| 039(0.007) 652 (0.07) | 0.39(0.007) 652 (0.07) | 1.24 (0.009) 0.8 (0.005)
0.6 0.6| 0.38(0.007)  6.61(0.08) | 0.38(0.007)  6.61 (0.08) | 1.35(0.01) 0.84 (0.006)
0.6 08| 0.37(0.007)  6.70(0.08) | 0.37(0.007)  6.70 (0.08) | 1.44 (0.02) 0.81 (0.008)
0.6 1 | 036(0.007) 677 (0.09) | 0.36(0.007)  6.77 (0.09) | 1.52(0.02) 0.79 (0.009)
08 0 | 0.21(0.004) 816 (0.09) | 021(0.004)  8.16 (0.09) 0(0.0) 1.0 (0.0)
0.8 02| 019(0.004)  830(0.09) | 0.19(0.004) 830 (0.09) | 1. 23 (0.009)  0.95 (0.002)
0.8 04| 018(0.004) 842 (0.10) | 0.18(0.004) 842 (0.10) | 1.47 (0.02) 0.92 (0.003)
0.8 06| 0.16(0.004)  852(0.10) | 0.16(0.004) 852 (0.10) | 1.67 (0.03)  0.90 (0.004)
0.8 08| 0.15(0.004)  861(0.10) | 0.15(0.004) 861 (0.10) | 1.84 (0.04)  0.89 (0.005)
0.8 1 | 0.15(0.004) 869 (0.11) | 0.15(0.004) 869 (0.11) | 1.99 (0.04) 0.8 (0.005)
10 | 0.092(0.002) 918 (0.11) | 0.092 (0.002)  9.18 (0.11) 0(00) 10 (0.0)
102 0078 (0.002) 930 (0.12) | 0.078 (0.002)  9.30 (0.12) | 1. 39 (0.02)  0.97 (0.002)
1 04 0067 (0.002) 939 (0.12) | 0.067 (0.002)  9.39 (0.12) | 1.75 (0.03)  0.96 (0.002)
1 0.6 0.060(0.002)  9.46 (0.13) | 0.060 (0.002)  9.46 (0.13) | 2.06 (0.05)  0.95 (0.002)
1 08| 0.054(0.002) 951 (0.12) | 0.054(0.002)  9.51 (0.12) | 2.32 (0.07)  0.95 (0.003)
11| 0050 (0.002)  9.55(0.12) | 0.050 (0.002)  9.55 (0.12) | 2.54 (0.08)  0.95 (0.003)

Supplementary Table 6:

Numerical evolutionary modeling results using 2-

population extension of Eyre-Walker model. Standard errors of the mean are reported
in parenthesis. Here, A refers to the set of SNPs with 5 = —10°, and B the set of SNPs with

5 =—10"%

works.!12 However, positive s (i.e. beneficial mutations) may also be plausible.
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Supplementary Figure 1: Correlation between functional annotations and
continuous-valued annotations. The correlations were computed across SNPs with minor
allele frequency > 5% in both populations.
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Supplementary Figure 4: Accuracy of S-LDXR in estimating enrichment of stratified
squared trans-ethnic genetic correlation, \*(C), of quintiles of continuous-valued
annotations. Here, 10% of SNPs were randomly selected to be causal. Shrinkage level,
a, was set to 0.0 in a, 0.25 in b, 0.75 in ¢, and 1.0 in d. Mean and standard errors were

obtained across 1,000 simulations. Error bars represent 1.96 times the standard error on
both sides.
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Supplementary Figure 5: Accuracy of S-LDXR in estimating enrichment of stratified
squared trans-ethnic genetic correlation, \?>(C), of functional annotations. Here,

10% of SNPs were randomly selected to be causal. Shrinkage level, a, was set to 0.0 in a,

0.25 in b, 0.75 in ¢, and 1.0 in d. Mean and standard errors were obtained across 1,000

simulations. Error bars represent 1.96 times the standard error on both sides.
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Supplementary Figure 6: Accuracy of S-LDXR in estimating enrichment of strat-
ified squared trans-ethnic genetic correlation, \?(C), of 500-base-pair extended
functional annotations. Here, 10% of SNPs were randomly selected to be causal. Shrink-
age level, a, was set to 0.0 in a, 0.25 in b, 0.5 in ¢, 0.75 in d, and 1.0 in e. Mean and
standard errors were obtained across 1,000 simulations. Error bars represent 1.96 times the
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Supplementary Figure 7: Q-Q plot for S-LDXR p-values testing enrichment of
squared trans-ethnic genetic correlation of 20 main functional annotations in
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Supplementary Figure 9: Accuracy of S-LDXR in estimating enrichment of stratified
squared trans-ethnic genetic correlation, \*(C), of quintiles of continuous-valued
annotations in simulations with annotation-dependent M AF-dependent genetic
architectures. 10% of SNPs were randomly selected to be causal. Shrinkage level, o, was
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was applied with the baseline-LD-X model annotations and 5 MAF bin annotations. Mean
and standard errors were obtained across 1,000 simulations. Error bars represent 1.96 times
the standard error on both sides.

31



observed —logioP observed —logioP observed —logioP observed —logioP

observed —logioP

IS

w

~

-

Repressed (46.3%) H3K4mel (42.2%)

H3K27ac (Hnisz) (38.8%)

Q¢ [N
o o
— —
(o] D
O3 O
| |
el ©
2 2
> >
< <
[ [J]
%] wn
Q1 o1
o (o]
0 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
expected —logioP expected —logioP expected —log;oP
Intron (38.5%) Transcribed (34.3%) H3K27ac (PGC2) (26.7%)
a 4
% %
— —
o B o
O o O
| L |
o e kel
2 e 2
2 c
[} ot 7]
(%] = %]
Q1 - Q1
1) P o
0 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
expected —logioP expected —log;oP expected —logioP
DHS (16.7%) Super Enhancer (16.7%) DGF (13.5%)
Q ¢ [
o o
— =1
()] [®2]
2 o o
| | o
° o e
2 2 -
> > s
| | e
7] ] =
0 w0 2
Q1 o1 P
o o P
0 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
expected —logioP expected —logioP expected —log;oP
H3K4me3 (13.1%) TFBS (13%) H3K9ac (12.4%)
4 4
%, %
— =1
(o] - ()]
O //’ O o
| e | ///
° g ° e
V2 e 2 o
> o S -
= e j o
0] e 7] 4=
b P - 2 p
Q1 D Q' »
[<] L s} L
0 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
expected —logioP expected —logioP expected —logioP
Fetal DHS (8.3%) Enhancer (Hoffman) (4.2%) Promoter (3%)
Q¢ aQ’
o o
— —
- ()] [e)]
9 25
7 | |
e ° °
e V2 V2
-7 > >
’¢’ _ i
2 7] Q
5 0 0
o Q1 Q1
s [e) (o]
0 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
expected —logioP expected —logioP expected —logioP

Supplementary Figure 10: (continued on next page)
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Supplementary Figure 10: Q-Q plot for S-LDXR p-values testing enrichment of
squared trans-ethnic genetic correlation of 20 main functional annotations in
1,000 null simulations with annotation-dependent M AF-dependent genetic ar-
chitectures. 10% of SNPs were randomly selected to be causal. S-LDXR was applied with
the baseline-LD-X model annotations. The shrinkage level, a, was set to 0.5. Here, the p-
values are unadjusted two-tailed p-values obtained from a t distribution with 44 (number of
jackknife blocks — 1) degrees of freedom. Shaded area represent the 95% confidence interval
around the mean. Size of the annotation (proportion of SNPs) is shown in parenthesis.
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Supplementary Figure 11: Accuracy of S-LDXR in estimating enrichment of strat-
ified squared trans-ethnic genetic correlation, \?>(C'), when causal variants differ
across the two populations. 10% of SNPs were randomly selected to be causal. Shrink-
age level, a, was set to 0.5. a) Estimates of A\*(C') for binary functional annotations. b)
Estimates of A?(C') for quintiles of continuous-valued annotations. Mean and standard errors

were obtained across 1,000 simulations. Error bars represent 1.96 times the standard error
on both sides.
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Supplementary Figure 12: Accuracy of S-LDXR in estimating enrichment of strat-
ified squared trans-ethnic genetic correlation, \?>(C)), in simulations under the
baseline-LD-X model using all simulated GWAS samples and half (250) the de-
fault reference panel sample size. 10% of SNPs were randomly selected to be causal.
Shrinkage level, a, was set to 0.5. a) Estimates of A?(C') for binary functional annotations.
b) Estimates of A\?(C') for quintiles of continuous-valued annotations. Mean and standard
errors were obtained across 1,000 simulations. Error bars represent 1.96 times the standard
error on both sides. Numerical results are reported in Supplementary Data 12a.
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Supplementary Figure 13: Accuracy of S-LDXR in estimating enrichment of
stratified squared trans-ethnic genetic correlation, A\?(C), in simulations with
annotation-dependent M AF-dependent genetic architectures using all simulated
GWAS samples and half (250) the default reference panel sample size. 10% of
SNPs were randomly selected to be causal. Shrinkage level, «, was set to 0.5. a) Estimates of
A?(C) for binary functional annotations. b) Estimates of A?(C') for quintiles of continuous-
valued annotations. Mean and standard errors were obtained across 1,000 simulations. Error
bars represent 1.96 times the standard error on both sides. Numerical results are reported
in Supplementary Data 12b.
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Supplementary Figure 14: Accuracy of S-LDXR in estimating enrichment of strat-
ified squared trans-ethnic genetic correlation, \?>(C)), in simulations under the
baseline-LD-X model using all simulated GWAS samples and twice (1,000) the
default reference panel sample size. 10% of SNPs were randomly selected to be causal.
Shrinkage level, a, was set to 0.5. a) Estimates of A?(C') for binary functional annotations.
b) Estimates of A\?(C') for quintiles of continuous-valued annotations. Mean and standard
errors were obtained across 1,000 simulations. Error bars represent 1.96 times the standard
error on both sides. Numerical results are reported in Supplementary Data 13a.
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Supplementary Figure 15: Accuracy of S-LDXR in estimating enrichment of
stratified squared trans-ethnic genetic correlation, A\?(C), in simulations with
annotation-dependent M AF-dependent genetic architectures using all simulated
GWAS samples and twice (1,000) the default reference panel sample size. 10% of
SNPs were randomly selected to be causal. Shrinkage level, «, was set to 0.5. a) Estimates of
A?(C) for binary functional annotations. b) Estimates of A?(C') for quintiles of continuous-
valued annotations. Mean and standard errors were obtained across 1,000 simulations. Error
bars represent 1.96 times the standard error on both sides. Numerical results are reported
in Supplementary Data 13b.
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Supplementary Figure 16: Accuracy of S-LDXR in estimating enrichment of strat-
ified squared trans-ethnic genetic correlation, \?>(C)), in simulations under the
baseline-LD-X model using half of the simulated GWAS samples and the default
(500) reference panel sample size. 10% of SNPs were randomly selected to be causal.
Shrinkage level, a, was set to 0.5. a) Estimates of A?(C') for binary functional annotations.
b) Estimates of A\?(C') for quintiles of continuous-valued annotations. Mean and standard
errors were obtained across 1,000 simulations. Error bars represent 1.96 times the standard
error on both sides. Numerical results are reported in Supplementary Data 14a.
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Supplementary Figure 17: Accuracy of S-LDXR in estimating enrichment of
stratified squared trans-ethnic genetic correlation, A\?(C), in simulations with
annotation-dependent M AF-dependent genetic architectures using half of the
simulated GWAS samples and the default (500) reference panel sample size. 10%
of SNPs were randomly selected to be causal. Shrinkage level, «, was set to 0.5. a) Es-
timates of A?(C) for binary functional annotations. b) Estimates of A\*(C') for quintiles of
continuous-valued annotations. Mean and standard errors were obtained across 1,000 simu-
lations. Error bars represent 1.96 times the standard error on both sides. Numerical results
are reported in Supplementary Data 14b.
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Supplementary Figure 18: Genome-wide trans-ethnic genetic correlation for 31 dis-
eases and complex traits. Diseases and complex traits are sorted by the magnitude of
trans-ethnic genetic correlation. Traits with estimated trans-ethnic genetic correlation sig-
nificantly less than 1 (one-tailed p < 0.05/31) are marked by red filled dots. Here, p-values
are obtained from the t distribution with 199 (number of jackknife blocks — 1) degrees of
freedom. Full name of the traits can be found in Supplementary Table 2. Error bars repre-
sent £1.96x the jackknife standard error of the estimated genome-wide trans-ethnic genetic
correlation. The blue dashed line represents meta-analyzed 7,4, and the shaded region covers
1.96 times the meta-analysis standard error on each side.
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Supplementary Figure 19: Comparison of S-LDXR vs. Popcorn? estimates of
genome-wide trans-ethnic genetic correlations for 31 diseases and complex traits.
Error bars represent +£1.96 x the jackknife standard error of the estimated genome-wide trans-
ethnic genetic correlation. The meta-analyze average r, of S-LDXR and Popcorn are 0.85
(s.e. 0.01) and 0.82 (s.e. 0.01), respectively.
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Supplementary Figure 20: Enrichment of stratified squared trans-ethnic genetic
correlation, \?(C), across 31 diseases and complex traits, across a) quintiles of
continuous-valued annotations and b) functional annotations. The shrinkage level,
a, was set to 1.0. FError bars represent +1.96x the standard error of the meta-analyzed
A%(C). P-values are obtained from a standard normal distribution. Red stars (*) denote
two-tailed p < 0.05/20.
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Supplementary Figure 21: S-LDXR results for quintiles of 8 continuous-valued an-
notations across 20 approximately independent diseases and complex traits. The
shrinkage parameter, o, was set to 0.5. Error bars represent +1.96x the standard error of
the meta-analyzed A\?(C'). P-values are obtained from a standard normal distribution. Red
stars (%) denote two-tailed p < 0.05/40.
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Supplementary Figure 22: S-LDXR results for 20 binary functional annotations
across 20 approximately independent diseases and complex traits. The shrinkage
parameter, «, was set to 0.5. Error bars represent £1.96x the standard error of the meta-
analyzed A\?(C'). P-values are obtained from a standard normal distribution. Red stars (»)

denote two-tailed p < 0.05/20.
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Supplementary Figure 23: S-LDXR results for 53 specifically expressed gene (SEG)
annotations across 31 diseases and complex traits in analyses with the shrinkage
parameter a set to 0.0. (a) We report estimates of the enrichment/depletion of squared
trans-ethnic genetic correlation (A*(C)) for each SEG annotation (sorted by A?(C')). Results
are meta-analyzed across 31 diseases and complex traits. Error bars denote +1.96x the
standard error of the meta-analyzed A\?(C). P-values are obtained from the standard normal
distribution. Red stars (%) denote two-tailed p<0.05/53. Numerical results are reported
in Supplementary Data 20. (b) We report observed A*(C') vs. expected A*(C') based on 8
continuous-valued annotations, for each SEG annotation. Results are meta-analyzed across
31 diseases and complex traits. Error bars denote +1.96x standard error. Annotations are
color-coded as in (a). The dashed black line (slope=1.40) denotes a regression of observed
A(C)—1 vs. expected A\(C)—1 with intercept (R = 0.74) constrained to 0. Numerical results
including population-specific heritability enrichment estimates are reported in Supplemen-
tary Data 20. 46
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Supplementary Figure 24: S-LDXR results for 53 specifically expressed gene (SEG)
annotations across 31 diseases and complex traits in analyses with the shrinkage
parameter « set to 1.0. (a) We report estimates of the enrichment/depletion of squared
trans-ethnic genetic correlation (A*(C)) for each SEG annotation (sorted by A?(C')). Results
are meta-analyzed across 31 diseases and complex traits. Error bars denote +1.96x the
standard error of the meta-analyzed A\?(C). P-values are obtained from the standard normal
distribution. Red stars (%) denote two-tailed p<0.05/53. Numerical results are reported
in Supplementary Data 18. (b) We report observed A*(C') vs. expected A*(C') based on 8
continuous-valued annotations, for each SEG annotation. Results are meta-analyzed across
31 diseases and complex traits. Error bars denote +1.96x standard error. Annotations are
color-coded as in (a). The dashed black line (slope=0.76) denotes a regression of observed
A(C)—1 vs. expected A(C)—1 (R = 0.76) with intercept constrained to 0. Numerical results
including population-specific heritability enrichment estimates are reported in Supplemen-
tary Data 20. 47
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Supplementary Figure 25: Comparison of S-LDXR results for 53 specifically ex-
pressed gene (SEG) annotations for 14 blood-related traits vs. 17 other traits.
The list of 14 blood phenotypes is: BASO, EO, HBA1C, HGB, HTC, LYMPH, MCH, MCHC,
MCV, MONO, NEUT, PLT, RBC, WBC. The list of 16 non-blood phenotype is: AF, AMN,
AMP, BMI, BS, DBP, EGFR, HEIGHT, HDL, LDL, MDD, RA, SBP, SCZ, TC, TG, T2D.
Full name of the abbreviations can be found in Supplementary Table 2. Here, the shrinkage
parameter was set to 0.5. Error bars denote £1.96x the standard error of the meta-analyzed
A*(C). The black dashed line represent the regression line (slope=1.10) fitting (A\*(C') — 1)
of non-blood phenotypes and (A?(C') — 1) of blood phenotypes, with intercept constrained

to 0.
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Supplementary Figure 26: Relationship between specifically expressed gene (SEG)
annotations and background selection statistic (BSS). a) Correlation between 53
SEG annotations and BSS. Tissues are ranked by magnitude of correlation. a) Mean BSS
at annotated SNPs for 53 SEG annotations. Tissues are ranked by magnitude of the mean.
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Supplementary Figure 27: Relationship between specifically expressed gene (SEG)
SNPs for 53 SEG annotations. Tissues are ranked by magnitude of the mean.
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Supplementary Figure 28: Correlation between specifically expressed gene annota-
tions and 8 continuous-valued annotations. Annotations are sorted inversely based on
their correlation with background selection statistic.
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- 0.24
pLI (decile 4) -0.017 -0.038 0.011 0.0032 0.016 0.0062 0.18
pLI (decile 5) -0.016 -0.033 -0.0032 0.0015 0.0049 0.0035 - 0.12
pLI (decile 6) -0.026 -0.041 0.033 0.0081 0.018 0.0021 - 0.06
pLI (decile 7) -0.033 -0.031 0.014 -0.0011 0.014 0.002 0.00

- —0.06

pLI (decile 8) -0.066 -0.017 -0.026 -0.005 0.027 0.00056

pLI (decile 9) -0.088 0.011 -0.064 -0.016 0.026 0.01

pLI (decile 10) -0.073 0.03 -0.096 -0.029 0.018 0.015

Supplementary Figure 29: Correlation between probability of loss-of-function intol-
erance (pLI) decile gene annotations and 8 continuous-valued annotations. Here,
correlations are calculated across all SNPs with minor allele frequency greater than 5% in
both East Asian and European populations.
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Supplementary Figure 30: S-LDXR results for deciles of probability of loss-of-
function intolerance (pLI) annotations across 31 diseases and complex traits.
Deciles with A?(C) significantly less than 1 are marked by red stars. Numerical results can
be found in Supplementary Table 5. Error bars denote +1.96x standard errors of the meta-
analyzed A\?(C'). P-values are obtained from a standard normal distribution. Red stars (x)
denote two-tailed p < 0.05/10.
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Supplementary Figure 31: Evolutionary modeling results using 2-population ex-
tension of Eyre-Walker model. We use negative s to denote deleteriousness, following
convention of previous works.''? However, positive s (i.e. beneficial mutations) may also be
plausible. (a) Diagrams illustrating fitness effects in population 1 and population 2 (s; and
S9) as a function of the fitness effect in the ancestral population (sg) at weakly deleterious
SNPs (left; e.g. corresponding to SNPs in bottom quintile of background selection statistic)
and more strongly deleterious SNPs (right; e.g. corresponding to SNPs in top quintile of
background selection statistic). (b), (¢) We report enrichment/depletion of squared trans-
ethnic genetic correlation (A\?(C')) for SNPs with different fitness effects, in simulations under
a two-population extension of the Eyre-Walker model with (b) 03 = 0 for both weakly dele-
terious SNPs (s9 = —107°) and more strongly deleterious SNPs (so = —1071), (c) 0% = 0.0
for weakly deleterious SNPs and 0% = 0.7 for more strongly deleterious SNPs. Results are
averaged across 1,000 simulations. Error bars denote +1.96x standard error of the mean.
Numerical results are reported in Supplementary Table 6.
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Supplementary Figure 32: Evolutionary modeling results using 2-population ex-
tension of Eyre-Walker model with ¢ = 0.7 for both weakly deleterious and
more strongly deleterious SNPs. We use negative s to denote deleteriousness, following
convention of previous works.''? However, positive s (i.e. beneficial mutations) may also
be plausible. We report enrichment/depletion of squared trans-ethnic genetic correlation
(A2(C)) for SNPs with different fitness effects, in simulations under a two-population ex-
tension of the Eyre-Walker model,'® with 0% = 0.7 for both weakly deleterious and more
strongly deleterious SNPs. Results are averaged across 1,000 simulations. Error bars denote
+1.96 x standard error of the mean.
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