
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

In this paper, the authors introduce a new member of their LDSC methodology family, called S-LDXR, 

to estimate the trans-ethnic genetic correlations stratified by genomic functional annotations using 

GWAS summary statistics. Building on two previous notable LDSC models: bivariate-LDSC for 

estimating genetic correlations between traits in one population, and S-LDSC for estimating per-SNP 

heritability enrichment in functional annotations, this method combines the merit of the two and 

allows the genetic correlations between different ethnic populations to be variable across functional 

annotations, taking the population-specific LD into account. The authors apply the method on 30 

diseases and complex traits in East Asians (EAS) and Europeans (EUR) with established genomic and 

tissue-specific annotations, in attempt to understand the biology and evolutionary cause underlying 

population-specific causal effect sizes. 

Overall, I find the paper to be quite good and very well written. The methodology is solid with a lot of 

details and the results are very interesting. The authors conclude that strong GxE interaction at 

regions undergone positive selection is the most likely mechanism to give rise to population-specific 

causal effect sizes. While it is plausible, I have following concerns/questions to be addressed before I 

can fully agree. I hope the authors will find my comments useful. 

Major: 

1. The authors claim that the squared trans-ethnic genetic correlation (rg^2) is defined at causal 

effect sizes, so any depletion in lambda^2(C) = rg^2(C)/rg^2 observed for a functional category (C) 

must be due to the differences in causal effect sizes between the two ethnic populations. It is a bit 

hard for me to really believe that their rg^2 captures all causal effects, given that only HapMap3 

common SNPs (MAF>5%) are included in the analysis and the various limitations in genotyping and 

imputation process. So, it is still a question for me that if a depletion in lambda^2(C) is due to the 

differences in causal effect sizes or due to the differences in LD and allele frequencies of the 

unobserved causal variants. This problem may become bigger when the causal variants with large 

effect sizes tend to be rarer in one population than in the other population due to differential actions 

of negative selection. Additionally, unlike S-LDSC, the S-LDXR does not include MAF bins as 

annotations, and the previous work has shown that the heritability estimate may be biased without 

stratifying SNPs by MAF, especially when the causal variants are enriched in low MAF bin. Thus, I 

suggest to investigate the unbiasness of lambda^2(C) estimate, as compared to that at the causal 

effects, by simulations that accounts for the properties of rare causal variants. For example, they can 

consider a model of negative selection where causal effect sizes are inversely related to MAF (with the 

relationship they found in Schoech et al 2019) and vary the proportion of causal variants being rare 

across functional categories. 

2. In their simulation study for assessing the estimation of rg and lambda^2(C), they vary the true rg 

from 0.20 to 0.96, which is a bit odd. How about rg = 0 and rg = 1? The estimation performance at 

the extreme values of rg is important as there is a high interest especially in testing for rg = 1. 

Moreover, the EAS and EUR populations have roughly equal GWAS sample sizes in the simulation, 

which are actually very different in practice. The authors should simulate different sample sizes with a 

ratio similar to that in real data. 

3. The power to detect enrichment or depletion in a binary annotation seems to be quite variable 

across different functional annotations (Figure 1b). While the reduction of power does not appear to be 

related to the annotation size, I wonder what factors affect the power, which could be important to 

understand any confounding factors in the results of real data analysis. For example, is the power 

related to the average LD score in the annotation? 



4. They find that regions with strong depletion in lambda^2(C) are those with prior evidence of 

positive selection (coding, conserved, regulatory regions), and GxE interaction is a plausible 

mechanism for the differences in effect sizes across environments, therefore conclude that GxE 

interaction together with the influence of positive selection have resulted in causal effect sizes to be 

different across populations. However, these functional regions with lambda^2(C) depletion have also 

been found to have signatures of negative selection (especially conserved region). Related to my 

comment #1, the effect sizes at the common SNPs may appear to be different if the rare (or low-

frequency) causal variant effect sizes are large and the LD between the rare variants and common 

SNPs are different between populations. In addition, the depletions of lambda^2(C) in the top quintile 

of background selection statistic and CpG content as well as the bottom quintile of nucleotide diversity 

and recombination rate (Figure 2b) seem to be more relevant to the model of negative selection. It 

seems the hypothesis of negative selection even without GxE can explain these results as well. How to 

reconcile these two hypotheses? 

5. In Figure 2b, most annotations show a pattern that the enrichment or depletion of genetic 

correlation (lambda^2(C)) tends to be negatively related to that of heritability (h^2(g)) across 

quintiles. According to the argument in the paper, this could be the result of a combination of stronger 

GxE interaction and positive selection at functionally important regions (therefore higher per-SNP 

heritability). Then I find it is hard to interpret the clearly opposite patterns observed in the average 

LLD and GERP (NS), i.e. lambda^2(C) is positively related to h^2(C). The authors briefly mention it in 

the results but I find the explanation is a bit confusing. 

6. In the Supplementary Note, they have a section describing a two-population Eyre-Walker model 

and find that a result similar to the real data analysis can be observed only when the fitness effects for 

deleterious SNPs differ in both mean and variance across populations. I find this to be interesting. If 

this is true, we can expect that the relationship between effect sizes and MAF will be different in the 

two populations. Given that there are methods available to estimate such a relationship using GWAS 

summary data (Gazal et al 2018 NG; Speed et al 2019 bioRxiv; Zeng et al 2019 bioRxiv), it would be 

interesting to test that in their data. 

7. Besides SNP-specific Fst, have they looked at other per-SNP positive selection annotations, 

especially those for detecting recent selection? 

Minor: 

Line 90: It is not clear what C and C’ refer to and why C’ is needed here. 

Why they estimate lambda^2(C) for binary annotations only or quintiles of continuous-valued 

annotations? Is there a technical difficulty to estimate that for a continuous annotation as a whole? 

Line 419: As they define beta as per-allele effect size, the sum of per-SNP effect variance is not per-

SNP heritability unless multiply by heterozygosity 2pq. 

Figure S4 legend: panel # are incorrectly cited. Also, in “Shrinkage level, α, was set to 0.75 in a”, is 

the number 0.75 correct? I thought it would only make sense if alpha is less than 0.5. Otherwise, the 

pattern does not seem to be coherent with Figure 1a, where alpha is 0.5 by default. 

Figure S5 legend: the difference between a/b and c/d is the later includes a flanking window of 500bp 

for each annotation? 

Line 450: tau_1C and tau_2C. 



Reviewer #2 (Remarks to the Author): 

The authors consider the problem of estimating genome-wide trans-ethnic genetic correlations. A new 

method named S-LDXR is proposed to measure trans-ethnic correlations for SNPs in different 

functional annotation categories. The S-LDXR method incorporates summary statistics from genome-

wide association studies (GWAS) and linkage disequilibrium (LD) measures from reference panels The 

goal of S-LDXR is to identify functional annotation categories that have enrichment or depletion of 

squared trans-ethnic genetic correlation, where enrichment or depletion is calculated relative to 

genome-wide average genetic correlation. S-LDXR was evaluated in simulations studies using 

genotypes that were simulated based on haplotypes from East Asian and European populations. The 

authors find that estimated genome-wide average correlations for the two simulated populations were 

approximately unbiased for the simulated true values across different functional categories, and that 

S-LDXR yielded approximately unbiased estimates of relative enrichment/depletion of squared trans-

ethnic genetic correlation for the null and causal simulations. S-LDXR was applied to ~93K East Asians 

and 274K Europeans using GWAS summary statistics for 30 phenotypes, which included diseases and 

complex traits. They meta-analyzed results across traits and find a depletion of squared trans-ethnic 

genetic correlation in functionally important regions, which the authors conclude implies more 

population-specific causal effect sizes. This phenomenon was observed when using annotation based 

on the top quintile for a background selection statistic, CpG content and SNP-specific Fst. They also 

applied the S-LDXR method using gene expression annotations for 53 tissues. For each tissue, 

squared trans-ethnic genetic correlation estimates were estimated and meta-analyzed across the 30 

phenotypes for the European and East Asian summary statistics. There was depletion of squared 

trans-ethnic genetic correlation estimates for all 53 tissues, and the authors conclude that causal 

disease effect sizes are more population-specific in regions surrounding specifically expressed genes. 

This is paper that builds on the work of the Brown et al. paper entitled "Trans-ethnic Genetic-

Correlation Estimates from Summary Statistics" [AJHG 99:66-88; 2016] where differences in average 

genetic correlation for a pair of populations for different classes of SNPs based on functional 

annotation are assessed relative to genome-wide averages. I find that the S-LDXR results that 

identifies a deficit in squared trans-ethnic genetic correlation for SNPs in functional regions to be 

interesting. However, the S-LDXR does not appear to be providing reliable or consistent estimates of 

deficit/enrichment of squared trans-ethnic genetic correlation in many of the simulation settings. In 

Figures 1a and 1b, the true casual enrichment/deficit value is outside of the standard error bars for 

both the continuous and binary annotations. This is problematic and has serious implications for the 

reliability of the results presented in the real data applications. 

Also, additional work is needed to provide sufficient insight into plausible causes of deficit or 

enrichment of squared trans-ethnic genetic correlation. In the discussion, the authors note that 

reductions in trans-ethnic genetic correlation as inferred by the S-LDXR could be caused by gene-

environment (G E) interaction and gene-gene (G G) interaction, for example. However, this was not 

explored in the simulation studies. How robust is the S-LDXR method? A more thorough investigation 

of S-LDXR is needed. 

I have a few additional comments for the authors. 

Comments: 

1. It is stated on lines 186-187 on page 7 that the average genetic correlations across 30 traits was 

around 0.83 for European and East Asians. This seems quite high, particularly in light of previously 

mentioned Brown et al. [AJHG 99:66-88; 2016] paper where "mean trans-ethnic genetic correlation 

across all genes was low" for Europeans and East Asians, with an average around 0.32. The authors 

should provide some insight into this. 



2. Is the genome-wide average genetic correlation used in S-LDXR calculated using all SNPs, even 

those that are not in functional regions, or is it it based on the average genetic correlation across all of 

the different functional annotations considered? This wasn't clear to me. 

3. The S-LDXR provides a statistic measuring enrichment/depletion, but it is not clear to me what the 

formal statistical test being used to assess deviations from the null hypothesis. How is the test being 

conducted for continuous value annotation that is split into quintiles as well as for binary annotations? 

Additional material is needed on this and should appear prominently in the manuscript. 

4. Related to comment 3 above, the authors should provide type I error a power estimates (with 

standard errors) for all of the simulation studies considered. 

5. The authors largely focus on depletion of genetic correlation. Under what settings would enrichment 

be expected? It would be helpful if the authors provide some material and/or a discussion about this. 

6. The authors compare European and Asian populations. How would the results change when 

considering more distant continental populations, such as European vs. African populations or Asian 

vs. African populations? What impact does the level of divergence of the two populations have on 

average genetic correlation and the S-LDXR statistic for measuring enrichment/depletion? 

7. The authors recommend using alpha= 0.5 as the default shrinkage parameter for the S-LDXR 

shrinkage estimator based on the simulation studies. Is this shrinkage value expected to be 

appropriate for other populations, such as, such as European and African populations? In practice, how 

should this shrinkage value be identified? 

8. It would be helpful for the authors to provide insight as to how the S-LDXR statistic behaves when 

the two populations have the same causal variants but different allele frequencies, as well as when the 

causal variants are different. It isn't clear to me if the authors considered these settings in the 

simulation studies. 

9. For GWAS, the true "causal" variants may not have been genotyped, so SNPs that may be in LD 

with the casual variant are used for assessing trans-ethnic genetic correlations instead of the true 

casual variants. How does using SNPs in LD with the causal variant impact the S-LDXR statistic when 

there are differential LD patterns in the causal region across populations? It would be helpful for the 

authors to provide some insight into this setting, which often occurs in GWAS. 

Reviewer #3 (Remarks to the Author): 

The authors describe a novel method to measure trans-ethnic squared genetic correlation, or a way to 

quantify the enrichment/depletion of similarity of causal effect sizes between populations. This new 

method can be useful in identifying annotations that may have increased population-differentiation of 

causal effect sizes, to hopefully downstream improve prediction and understanding of the underlying 

biology of traits. They provide simulations and the application of these methods to 30 traits comparing 

Europeans and Japanese summary statistics. 

In general, the manuscript would benefit from an expansion of potential uses for this novel method 

and interpretations of results when applied across traits. It is unclear as it currently stands why other 

investigators would adopt this method, especially in a trait-specific manner as the majority of analyses 

are conducted as a meta-analysis across all traits. This would require expansion in both the 

Introduction and Discussion sections. 



Major Comments 

- The manuscript is currently written with much of the methods in the results section. This is 

understandable, as it is a methods development manuscript, but for this specific audience it should be 

rewritten with the methods in the results section simplified and the vast majority of this text in the 

methods section. 

- All of the trait-related results are presented as a meta-analysis of all 30 diseases and complex traits. 

It would be great to have a section discussing trait- or trait group-specific trends. For example, do the 

two anthropometric traits (height, BMI) show different patterns, given that their heritability is much 

different? It would be beneficial to expand discussion of these trait-specific trends to inform the reader 

of possible uses for this method in more trait focused projects. 

- A possible implication is cited as reweighting PRS from European population training data based on 

enrichment/depletion of the squared trans-ethnic genetic correlation. How would this practically be 

done in respect to directionality of effect weights? Would this just be downweighting SNPs that are 

depleted (therefore more likely to be different) and upweighting SNPs that are enriched (more likely to 

transfer)? And subsequently, would this improve performance or trend towards the null in terms of 

prediction if the larger effect sizes are in differentiated regions? It would be great to expand on this 

point in the discussion, given it is also mentioned in the introduction. 

- The authors note a limitation is that gene expression measurements were conducted in Europeans 

and may not be applicable to non-European groups. When looking at trans-ethnic correlations and 

annotation categories, which reference group do you pick for these annotations? These analyses were 

conducted in the European-derived reference datasets. Would you need to do two analyses, one in 

European and one in Asian reference sets, and then compare/contrast? 

- There is currently not a description of the summary statistics used for trait-specific analyses. For 

example, were these summary statistics genome-wide on a genotyping array or after imputation to 

1000Genomes or another reference panel? Besides MAF cut-offs, were there any other thresholds 

used to select inclusion? As many PRS use a thresholded approach, how would this affect the 

weighting if the depletion/enrichment were limited to SNPs above a certain p-value threshold, which 

would mean larger effect sizes given their common frequencies of MAF>5%? 

- Top 5% of simulations with highest standard errors were discarded to assess unbiasedness of 

estimator. However, the authors note that in the analysis of real traits, these estimates would 

contribute very little to the meta-analysis across traits. Does this mean this method should only be 

used across multiple traits and not for a few traits on their own? 

- The method compares the similarity versus dissimilarity of effect sizes across different populations. 

However, it would also be useful to include a discussion of effect size magnitudes, which ties into the 

heritability and the number of SNPs considered. 

Minor Comments 

- Figures S4-6: The legends for these figures are confusing. For each of these figures, the legends 

only refer to panels a and b (S4), c and d (S5), or e (S6). The legends should be expanded to 

explicitly state the differences between all panels. 

- Figure S7: What are the blue and red filled dots symbolizing? 
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Response to reviewers for NCOMMS-19-37936-T (Shi et al.) 
We thank all the reviewers for their helpful comments.  Point-by-point responses to all reviewer 
comments are provided below.  We first list some additional changes that we have made to the 
manuscript, motivated by the reviewer comments but distinct from the changes directly 
requested by the reviewers.  All changes to the manuscript are highlighted in red font. 

Additional Changes: 

1. We have improved the bias correction of our S-LDXR method for estimating the 
enrichment/depletion (ߣଶ(ܥ)) of stratified squared trans-ethnic genetic correlation (ݎ௚ଶ(ܥ)) of 
annotation ܥ. Briefly, we analytically derived and corrected for the bias in estimates of ݎ௚ଶ(ܥ) 
and ߣଶ(ܥ). In null simulations, our new estimator is more robust in estimating ߣଶ(ܥ) of small 
annotations (proportion of SNPs < 1%). This is an improvement from our previous jackknife 
approach to correct for bias in estimating ߣଶ(ܥ), which had limited capacity to correct for bias 
for small annotations.  

We have updated the Overview of methods subsection of the Results section to briefly mention 
the analytical bias correction (see page 4-5), and updated the Methods section (see page 19) to 
describe the new estimator. 

2. We have updated the interpretation of the depletion of squared trans-ethnic genetic 
correlation at SNPs surrounding genes specifically expressed in ovary. In detail, a recent study 
(Li et al. 2018 Am J Hum Genet, ref. 40) showed that the PGR gene, specifically expressed in 
ovary, is impacted by recent positive selection. This result is consistent with our hypothesis that 
stronger gene x environment (G×E) interaction at loci impacted by positive selection induces 
population-specific causal effect sizes.  

We have updated the Analysis of specifically expressed gene annotations subsection of the 
Results section (see page 10) to discuss this interpretation. 

3. We have now analyzed East Asian and European GWAS summary statistics for schizophrenia 
(Lam et al. 2019 Nat Genet, ref. 98), a psychiatric disorder whose underlying genetic variants 
are strongly impacted by negative selection (Pardiñas et al. 2018 Nat Genet). We observed high 
genome-wide trans-ethnic genetic correlation (0.95 (s.e. 0.04)). This result suggests that 
negative selection likely has limited impact on inducing population-specific causal effect sizes, 
corroborating our hypothesis involving G×E at loci impacted by positive selection.  

We have updated the Analysis of specifically expressed gene annotations subsection of the 
Results section (see page 10) to discuss the results for schizophrenia.  
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Reviewer #1 (Remarks to the Author): 

In this paper, the authors introduce a new member of their LDSC methodology family, called S-
LDXR, to estimate the trans-ethnic genetic correlations stratified by genomic functional 
annotations using GWAS summary statistics. Building on two previous notable LDSC models: 
bivariate-LDSC for estimating genetic correlations between traits in one population, and S-LDSC 
for estimating per-SNP heritability enrichment in functional annotations, this method combines 
the merit of the two and allows the genetic correlations between different ethnic populations 
to be variable across functional annotations, taking the population-specific LD into account. The 
authors apply the method on 30 diseases and complex traits in East Asians (EAS) and Europeans 
(EUR) with established genomic and tissue-specific annotations, in attempt to understand the 
biology and evolutionary cause underlying population-specific causal effect sizes.  

We thank the reviewer for accurately summarizing our study. 

Overall, I find the paper to be quite good and very well written. The methodology is solid with a 
lot of details and the results are very interesting. The authors conclude that strong GxE 
interaction at regions undergone positive selection is the most likely mechanism to give rise to 
population-specific causal effect sizes. While it is plausible, I have following concerns/questions 
to be addressed before I can fully agree. I hope the authors will find my comments useful. 

We thank the reviewer for suggesting that our paper is very interesting and very well written.  
Reviewer concerns/questions are addressed below. 

Major: 

1. The authors claim that the squared trans-ethnic genetic correlation (rg^2) is defined at causal 
effect sizes, so any depletion in lambda^2(C) = rg^2(C)/rg^2 observed for a functional category 
(C) must be due to the differences in causal effect sizes between the two ethnic populations. It 
is a bit hard for me to really believe that their rg^2 captures all causal effects, given that only 
HapMap3 common SNPs (MAF>5%) are included in the analysis and the various limitations in 
genotyping and imputation process. So, it is still a question for me that if a depletion in 
lambda^2(C) is due to the differences in causal effect sizes or due to the differences in LD and 
allele frequencies of the unobserved causal variants. This problem may become bigger when 
the causal variants with large effect sizes tend to be rarer in one population than in the other 
population due to differential actions of negative selection. Additionally, unlike S-LDSC, the S-
LDXR does not include MAF bins as annotations, and the previous work has shown that the 
heritability estimate may be biased without stratifying SNPs by MAF, especially when the causal 
variants are enriched in low MAF bin. Thus, I suggest to investigate the unbiasness of 
lambda^2(C) estimate, as compared to that at the causal effects, by simulations that accounts 
for the properties of rare causal variants. For example, they can consider a model of negative 
selection where causal effect sizes are inversely related to MAF (with the relationship they 
found in Schoech et al 2019) and vary the proportion of causal variants being rare across 
functional categories. 
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The reviewer has raised several related questions: (a) Do the results pertain to HapMap3 SNPs 
only, given that only HapMap3 SNPs are analyzed; (b) Does S-LDXR attain robust results for 
annotation-dependent MAF-dependent architectures; (c) Should S-LDXR include MAF bins as 
annotations.  We address each of these questions in turn. 

(a) Do the results pertain to HapMap3 SNPs only, given that only HapMap3 SNPs are analyzed. 

S-LDXR analyzes summary statistics from HapMap3 SNPs with MAF > 5% in both populations 
(regression SNPs) together with reference panel LD from SNPs present in either population in 
1000 Genomes (reference SNPs) to estimate enrichment/depletion (defined as a function of 
causal effect sizes) for all SNPs with MAF > 5% in both populations (heritability SNPs), 
accounting for tagging effects (analogous to S-LDSC; Finucane et al. 2015 Nat Genet, ref. 21).  
Thus, the results pertain to causal effects of all SNPs with MAF > 5% in both populations 
(heritability SNPs).  We recognize that it is our responsibility to verify that not just the definition 
but also the actual estimates achieve this result.  Thus, we simulated traits using SNPs present 
in either population in 1000 Genomes (including non-HapMap3 SNPs) as causal SNPs in our 
simulations, including simulations with annotation-dependent MAF-dependent architectures.   

We have updated the Introduction section (see page 3), Overview of methods subsection of the 
Results section (see pages 4-5) and Methods section (see pages 18-19) to clarify this point.  
(Also see response to Reviewer 1 Comment 4 and response to Reviewer 2 Comment 9). 

(b) Does S-LDXR attain robust results for annotation-dependent MAF-dependent architectures. 

Motivated by the reviewer’s question, we performed simulations with annotation-dependent 
MAF-dependent architectures, defined as architectures in which the level of MAF-dependence 
is annotation-dependent.  We determined that S-LDXR yielded nearly unbiased estimates of 
enrichment/depletion of stratified squared trans-ethnic genetic correlation (ߣଶ(ܥ)) for binary 
functional annotations (Figure S8, Table S10), unbiased estimates for quintiles of most 
continuous-valued annotations (Figure S9, Table S11), and slightly biased estimates in the top 
and bottom quintile of the average level of LD annotation and the recombination rate 
annotation (Figure S9, Table S11; the bias is small compared to the enrichment/depletion we 
observed in analyses of real traits, and we conjecture that it is because of imperfect tagging of 
rare causal variants due to small sample size the reference panel).   

We have updated the Simulations subsection of the Results section (see pages 5-6) and the 
Methods section (see page 23) to describe these new simulations. 

(c) Should S-LDXR include MAF bins as annotations. 

We decided not to include MAF bin annotations in the baseline-LD-X model used by S-LDXR, for 
two reasons.  First, we estimated ߣଶ(ܥ) in quintiles of MAF (maximum across 2 populations) 
and did not observe significant enrichment/depletion of squared trans-ethnic genetic 
correlation (Table S16), suggesting that squared trans-ethnic genetic correlation does not 
depend on MAF.  Second, in simulations with annotation-dependent MAF-dependent 
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architectures, we determined that S-LDXR with MAF bins attained results that were very similar 
to S-LDXR without MAF bins (Figure S8, S9, Table S10, S11). 

We have updated the Simulations subsection of the Results section (see pages 6-7) and the 
Analysis of baseline-LD-X model annotations across 31 diseases and complex traits subsection of 
the Results section (see page 9) to describe these results. 

2. In their simulation study for assessing the estimation of rg and lambda^2(C), they vary the 
true rg from 0.20 to 0.96, which is a bit odd. How about rg = 0 and rg = 1? The estimation 
performance at the extreme values of rg is important as there is a high interest especially in 
testing for rg = 1. Moreover, the EAS and EUR populations have roughly equal GWAS sample 
sizes in the simulation, which are actually very different in practice. The authors should 
simulate different sample sizes with a ratio similar to that in real data. 

The reviewer has made two requests: (a) simulations with a ratio of EAS vs. EUR sample size 
similar to that in real data, and (b) simulations at extreme values of ݎ௚.  We address each of 
these requests in turn. 

(a) simulations with a ratio of EAS vs. EUR sample size similar to that in real data. 

We have modified all simulations in our paper so that the East Asian sample sizes is half of the 
European sample size, analogous to real data. 

We have updated the Simulations subsection of the Results section (see page 5), Figure 1, all 
simulation Supplementary Tables/Supplementary Figures, and the Methods section (see page 
22) accordingly. 

(b) simulations at extreme values of ݎ௚. 

Simulations assessing estimation of ݎ௚: we performed simulations in which ݎ௚ was set to 0 or 1.  
We determine that S-LDXR yielded accurate estimate of ݎ௚ in these simulations (Figure S3, Table 
S3). 

Simulations assessing estimation of ߣଶ(ܥ): our previous simulations considered ݎ௚=0.8 only.  
We elected not to vary ݎ௚ in these simulations, as ݎ௚’s of most of diseases and complex traits 
analyzed in this work are close to 0.8. Instead, we performed simulations in which 20% of 
causal variants were specific to each population (also see response to Reviewer 2 Comment 7).  
S-LDXR yielded nearly unbiased estimates of ߣଶ(ܥ) in these simulations, just as in our main 
simulations (see Figure S11, Table S12). 

We have updated the Simulations subsection of the Results section (see page 5, page 7) and the 
Methods section (see page 23) to describe these new simulations. 

3. The power to detect enrichment or depletion in a binary annotation seems to be quite 
variable across different functional annotations (Figure 1b). While the reduction of power does 
not appear to be related to the annotation size, I wonder what factors affect the power, which 



Page 5 of 25 
 

could be important to understand any confounding factors in the results of real data analysis. 
For example, is the power related to the average LD score in the annotation? 

We thank the reviewer for pointing out the lack of discussion of potential factors impacting the 
power to detect enrichment/depletion of stratified squared trans-ethnic genetic correlation (ߣଶ(ܥ)). 
The standard error of ߣଶ(ܥ) for a binary annotation primarily depends on the total heritability 
of SNPs in the annotation (sum of per-SNP variances of standardized causal effect sizes), which 
appears as the denominator (ℎ௚ଵଶ ℎ௚ଶଶ(ܥ)  in the estimation of stratified squared trans-ethnic ((ܥ)
genetic correlation (ݎ௚ଶ(ܥ)); if this denominator is small, estimation of ݎ௚ଶ(ܥ) becomes noisy. 

The standard error of ߣଶ(ܥ) for a binary annotation indirectly depends on the size of the 
annotation, because larger annotations tend to have larger total heritability.  However, 
estimates of ߣଶ(ܥ) for a large annotation may have large standard error if the annotation is 
depleted for heritability. 

We have updated the Overview of methods subsection of the Results section to briefly mention 
factors impacting the power of S-LDXR (see page 4-5), citing a more detailed discussion of this 
in the Methods section (page 19). 

4. They find that regions with strong depletion in lambda^2(C) are those with prior evidence of 
positive selection (coding, conserved, regulatory regions), and GxE interaction is a plausible 
mechanism for the differences in effect sizes across environments, therefore conclude that GxE 
interaction together with the influence of positive selection have resulted in causal effect sizes 
to be different across populations. However, these functional regions with lambda^2(C) 
depletion have also been found to have signatures of negative selection (especially conserved 
region). Related to my comment #1, the effect sizes at the common SNPs may appear to be 
different if the rare (or low-frequency) causal variant effect sizes are large and the LD between 
the rare variants and common SNPs are different between populations. In addition, the 
depletions of lambda^2(C) in the top quintile of background selection statistic and CpG content 
as well as the bottom quintile of nucleotide diversity and recombination rate (Figure 2b) seem 
to be more relevant to the model of negative selection. It seems the hypothesis of negative 
selection even without GxE can explain these results as well. How to reconcile these two 
hypotheses? 

The reviewer has raised two related questions: (a) are ߣଶ(ܥ) results for common SNPs impacted 
by differential tagging of rare variants across populations, and (b) can negative selection 
(instead of positive selection) explain our findings.  We address each of these questions in turn. 

(a) are ߣଶ(ܥ) results for common SNPs impacted by differential tagging of rare variants across 
populations. 
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As noted in part (a) of our response to Reviewer 1 Comment 1, S-LDXR analyzes summary 
statistics from HapMap3 SNPs with MAF > 5% in both populations (regression SNPs) together 
with reference panel LD from SNPs present in either population in 1000 Genomes (reference 
SNPs) to estimate enrichment/depletion (defined as a function of causal effect sizes) for all 
SNPs with MAF > 5% in both populations (heritability SNPs), accounting for tagging effects 
(analogous to S-LDSC; Finucane et al. 2015 Nat Genet, ref. 21).  Thus, the results pertain to 
causal effects of all SNPs with MAF > 5% in both populations (heritability SNPs). Our simulations, 
including simulations with annotation-dependent MAF-dependent architectures, verify that not 
just the definition but also the actual estimates achieve this result.  Thus, ߣଶ(ܥ) estimates 
(which pertain to causal effects of all SNPs with MAF > 5% in both populations) are not 
impacted by differential tagging of rare variants across populations. 

We have updated the Introduction section (see page 3), Overview of methods subsection of the 
Results section (see pages 4-5) and Methods section (see pages 18-19) to clarify this point. 

(b) can negative selection (instead of positive selection) explain our findings.   

The reviewer is correct that annotations such as background selection statistic can reflect the 
action of both positive selection and negative selection (McVicker et al. 2009 PLoS Genet, ref. 
30).  Nonetheless, we believe that our overall set of results is better explained by positive 
selection (e.g. stronger gene-environment interaction at loci impacted by positive selection) 
than by negative selection, for the following reasons: 

(i)  We observed substantial depletion of squared trans-ethnic genetic correlation for SNPs near 
skin (ߣଶ(ܥ) = .ݏ)	0.83 ݁. 0.02) for Skin Sun Exposed (Lower Leg)) and immune-related genes 
(ܥ)ଶߣ) = .ݏ)	0.85 ݁. 0.02) for Spleen), which are strongly impacted by recent positive selection, 
but not for SNPs near brain genes ((ߣଶ(ܥ) = .ݏ)	0.98 ݁. 0.02) for Brain Nucleus Accumbens 
(Basal Ganglia)) (see Figure 4, Table S20). 

(ii) We observed a lack of variation in enrichment/depletion of squared trans-ethnic genetic 
correlation across genes in different deciles of probability of loss-of-function intolerance (see 
Figure S24, Table S23). 

(iii) As noted in Additional Change 2, we have updated the interpretation of the depletion of 
squared trans-ethnic genetic correlation at SNPs surrounding genes specifically expressed in 
ovary. Specifically, a recent study (Li et al. 2018 Am J Hum Genet, ref. 40) showed that the PGR 
gene, specifically expressed in ovary, is impacted by recent positive selection. This result is 
consistent with our hypothesis that stronger gene x environment (G×E) interaction at loci 
impacted by positive selection induces population-specific causal effect sizes. We have updated 
the Analysis of specifically expressed gene annotations subsection of the Results section (see 
page 10) to discuss this interpretation. 

(iv) As noted in Additional Change 3, we have now analyzed East Asian and European GWAS 
summary statistics for schizophrenia (Lam et al. 2019 Nat Genet, ref. 98), a psychiatric disorder 
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whose underlying genetic variants are strongly impacted by negative selection (Pardiñas et al. 
2018 Nat Genet). We found no significant deviation of genome-wide trans-ethnic genetic 
correlation from 1 (ݎ௚=0.95 (s.e. 0.04)). This result suggests that negative selection likely has 
limited impact on inducing population-specific causal effect sizes, corroborating our hypothesis 
involving G×E at loci impacted by positive selection. We have updated the Analysis of 
specifically expressed gene annotations subsection of the Results section (see page 10) to 
discuss the results for schizophrenia.  

(v) (Also see response to Reviewer 1 Comment 7) We performed a new analysis of a binary 
annotation reflecting the action of positive selection based on the iHS score (Voight et al. 2006 
PLoS Biol, ref. 43; Johnson & Voight 2018 Nat Ecol Evol, ref. 44).  We observed strong depletion 
of squared trans-ethnic genetic correlation (ߣଶ(ܥ)=0.88 (s.e. 0.03)). This annotation is positively 
correlated with the background selection statistic annotation (R=0.08), confirming that SNPs 
with high background selection statistic can indeed reflect the action of positive selection. We 
have updated the Analysis of specifically expressed gene annotations subsection of the Results 
section (see page 10) and the Methods section (see page 26) to describe the iHS analysis. 

We have updated the discussion of positive selection vs. negative selection in the Discussion 
section (see page 13) to include all of these reasons for favoring the positive selection 
hypothesis, while noting that we cannot formally exclude explanations involving negative 
selection. 

5. In Figure 2b, most annotations show a pattern that the enrichment or depletion of genetic 
correlation (lambda^2(C)) tends to be negatively related to that of heritability (h^2(g)) across 
quintiles. According to the argument in the paper, this could be the result of a combination of 
stronger GxE interaction and positive selection at functionally important regions (therefore 
higher per-SNP heritability). Then I find it is hard to interpret the clearly opposite patterns 
observed in the average LLD and GERP (NS), i.e. lambda^2(C) is positively related to h^2(C). The 
authors briefly mention it in the results but I find the explanation is a bit confusing.  

We agree with the reviewer that more discussion of the relationship between enrichment of 
heritability and enrichment/depletion of squared trans-ethnic genetic correlation is warranted, 
given the negative relationship for most annotations (higher heritability, and depletion of 
squared trans-ethnic genetic correlation) but positive relationship for the top quintile of 
average LLD and the bottom quintile of GERP (NS) (lower heritability, but depletion of squared 
trans-ethnic genetic correlation). We have added a sentence in the Discussion section (see page 
12) discussing this relationship. 

We believe that the fundamental cause of depletion of trans-ethnic genetic correlation is gene-
environment interaction (G×E), not heritability enrichment, although there is indeed a general 
trend that annotations enriched for heritability show depletion of squared trans-ethnic genetic 
correlation. Therefore, an annotation enriched for SNPs exhibiting G×E may show depletion of 
squared trans-ethnic genetic correlation, even if the annotation is depleted of heritability.  
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We believe that the depletion of squared trans-ethnic genetic correlation in the top quintile of 
the average LLD annotation is due to stronger G×E. Additionally, the top quintile of the average 
LLD annotation is likely to be impacted by positive selection, as recent positive selection could 
increase the frequency of the selected haplotypes, which are typically longer due to their 
younger age, leading to higher LD (Sabeti et al. 2002 Nature, Voight et al. 2006 PLoS Biol). The 
depletion of squared trans-ethnic genetic correlation in the bottom quintile of the GERP NS 
annotation can be partially explained by the moderate negative correlation between the GERP 
NS annotation and the average LLD annotation (R=-0.13). 

Finally, the depletion of ߣଶ(ܥ) in these quintiles could also be explained by their correlation 
with the background selection statistic annotation (see Figure S2 and Table S1) – the S-LDXR 
method cannot disentangle ߣଶ(ܥ) among correlated annotations, as genetic correlation is a 
quotient of trans-ethnic genetic covariance and square root of product of heritabilities. We 
discuss this limitation of S-LDXR in the limitations paragraph of the Discussion section (see page 
15). 

6. In the Supplementary Note, they have a section describing a two-population Eyre-Walker 
model and find that a result similar to the real data analysis can be observed only when the 
fitness effects for deleterious SNPs differ in both mean and variance across populations. I find 
this to be interesting. If this is true, we can expect that the relationship between effect sizes 
and MAF will be different in the two populations. Given that there are methods available to 
estimate such a relationship using GWAS summary data (Gazal et al 2018 NG; Speed et al 2019 
bioRxiv; Zeng et al 2019 bioRxiv), it would be interesting to test that in their data. 

We thank Reviewer 1 for their interest in our two-population Eyre-Walker model.  However, we 
respectfully disagree with the conclusion that we expect the relationship between effect size 
and MAF to be different in the two populations.  Under our model, fitness effects in the two 
populations have the same mean, but higher variance at SNPs with large fitness effect (i.e. 
strongly deleterious SNPs) and lower variance at SNPs with small fitness effect (i.e. weakly 
deleterious SNPs). Since both populations have the same mean fitness effect, we expect the 
relationship between effect size and MAF to be the same in the two populations for strongly 
deleterious SNPs, and we also expect the relationship between effect size and MAF to be the 
same in the two populations for weakly deleterious SNPs.  As we cannot think of any reason to 
expect the relationship between effect size and MAF to be different in the two populations, we 
elected not to test this in real data, which would be a very substantial undertaking, likely 
producing a new manuscript in itself. 

We caution that our proposed two-population Eyre-Walker model is a “proof-of-concept” 
explanation for the depletion of squared trans-ethnic genetic correlation in functionally 
important regions, demonstrating that population-specific causal disease effect sizes can in 
principle be explained by population-specific fitness effects. This model should not be viewed as 
a model that is confirmed by results on real traits.  
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We have updated the Supplementary Note (see page 11) to clarify these points. 

7. Besides SNP-specific Fst, have they looked at other per-SNP positive selection annotations, 
especially those for detecting recent selection? 

We thank the reviewer for this suggestion.  We performed a new analysis of a binary 
annotation reflecting the action of positive selection based on the iHS score (Voight et al. 2006 
PLoS Biol, ref. 43; Johnson & Voight 2018 Nat Ecol Evol, ref. 44).  We observed strong depletion 
of squared trans-ethnic genetic correlation (ߣଶ(ܥ)=0.88 (s.e. 0.03)).  This result strengthens our 
conclusion that gene-environment interaction at loci impacted by positive selection likely 
contributes to population-specific causal disease effect sizes. (Also see part (v) of part (b) of 
Response to Reviewer 1 Comment 5.) 

We have updated the Analysis of specifically expressed gene annotations subsection of the 
Results section (see page 10) and the Methods section (see page 26) to describe the iHS analysis. 

Minor: 

Line 90: It is not clear what C and C’ refer to and why C’ is needed here. 

We thank Reviewer 1 for pointing out the lack of clarity on the meaning of C and C’. 

Here, the C in the outer summation is the binary annotation under consideration – the outer 
summation sums per-SNP trans-ethnic genetic covariance of each SNP j in annotation C. And 
the C’ in the inner summation is an index of annotation – the inner summation sums the 
contribution of each annotation across the set of all baseline-LD-X model annotations to obtain 
the per-SNP trans-ethnic genetic covariance of SNP j.  

We have updated the Overview of methods subsection in the Results section (page 4) and 
Methods section (page 17) to clarify this point. 

Why they estimate lambda^2(C) for binary annotations only or quintiles of continuous-valued 
annotations? Is there a technical difficulty to estimate that for a continuous annotation as a 
whole? 

Defining stratified squared trans-ethnic genetic correlation (ݎ௚ଶ(ܥ)) and its enrichment (ߣଶ(ܥ)) 
is challenging for continuous-valued annotations, as squared correlation is a non-linear term 
involving a quotient of squared covariance and a product of variances. We elected to instead 
estimate ߣଶ(ܥ) for quintiles of continuous-valued annotations (analogous to our previous work; 
Gazal et al. 2017 Nat Genet, ref. 22) as an intuitive substitute. 

We have updated the Methods section (see page 18) to clarify this point. 

 

Line 419: As they define beta as per-allele effect size, the sum of per-SNP effect variance is not 
per-SNP heritability unless multiply by heterozygosity 2pq.  
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Reviewer 1 is correct that the sum of per-allele effect variances is not equal to heritability on 
the standardized scale.  We have updated the Methods section (see page 17), using the term 
“allelic-scale heritability”, to clarify this point. 

Figure S4 legend: panel # are incorrectly cited. Also, in “Shrinkage level, α, was set to 0.75 in a”, 
is the number 0.75 correct? I thought it would only make sense if alpha is less than 0.5. 
Otherwise, the pattern does not seem to be coherent with Figure 1a, where alpha is 0.5 by 
default. 

We thank Reviewer 1 for pointing out the inaccurate legend for Figure S4. 

Each panel in each Figure S4 corresponds to simulation results obtained with different 
shrinkage parameters (α=0.0, 0.25, 0.75, and 1.0 in panel a, b, c, and d, respectively). We did 
not include the result for α=0.5 in Figure S4, as this result is shown in Figure 1a. 

We have updated the legend of Figure S4 accordingly. 

Figure S5 legend: the difference between a/b and c/d is the later includes a flanking window of 
500bp for each annotation? 

We thank Reviewer 1 for pointing out the inaccurate legend for Figure S5. 

Each panel in Figure S5 corresponds to simulation results for binary functional annotations 
obtained with different shrinkage parameters (α=0.0, 0.25, 0.75, and 1.0 in panel a, b, c, and d, 
respectively). We did not include the result for α=0.5 in Figure S5, as this result is shown in 
Figure 1b. We have updated the legend of Figure S5 accordingly. 

Reviewer 3 also pointed out inaccurate legend for Figure S6 (see Reviewer 3 minor comment 1). 
In Figure S6, each panel corresponds to simulation results for 500bp-extended binary functional 
annotations obtained with different shrinkage parameters (α=0.0, 0.25, 0.5, 0.75, and 1.0 in 
panel a, b, c, d, and e, respectively). We have updated the legend of Figure S6 accordingly. 

Line 450: tau_1C and tau_2C. 

We thank Reviewer 1 for pointing out this typo. We have fixed this typo in our updated 
manuscript (see page 18).  
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Reviewer #2 (Remarks to the Author): 

The authors consider the problem of estimating genome-wide trans-ethnic genetic correlations. 
A new method named S-LDXR is proposed to measure trans-ethnic correlations for SNPs in 
different functional annotation categories. The S-LDXR method incorporates summary statistics 
from genome-wide association studies (GWAS) and linkage disequilibrium (LD) measures from 
reference panels The goal of S-LDXR is to identify functional annotation categories that have 
enrichment or depletion of squared trans-ethnic genetic correlation, where enrichment or 
depletion is calculated relative to genome-wide average genetic correlation. S-LDXR was 
evaluated in simulations studies using genotypes that were simulated based on haplotypes 
from East Asian and European populations. The authors find that estimated genome-wide 
average correlations for the two simulated populations were approximately unbiased for the 
simulated true values across different functional categories, and that S-LDXR yielded 
approximately unbiased estimates of relative enrichment/depletion of squared trans-ethnic 
genetic correlation for the null and causal simulations. S-LDXR was applied to ~93K East Asians 
and 274K Europeans using GWAS summary statistics for 30 phenotypes, which included 
diseases and complex traits. They meta-analyzed results across traits and find a depletion of 
squared trans-ethnic genetic correlation in functionally important regions, which the authors 
conclude implies more population-specific causal effect sizes. This phenomenon was observed 
when using annotation based on the top quintile for a background selection statistic, CpG 
content and SNP-specific Fst. They also applied the S-LDXR method using gene expression 
annotations for 53 tissues. For each tissue, squared trans-ethnic genetic correlation estimates 
were estimated and meta-analyzed across the 30 phenotypes for the European and East Asian 
summary statistics. There was depletion of squared trans-ethnic genetic correlation estimates 
for all 53 tissues, and the authors conclude that causal disease effect sizes are more population-
specific in regions surrounding specifically expressed genes.  

We thank Reviewer 2 for accurately summarizing our study. We would like to clarify two minor 
points (see text in yellow highlight above). 

(a) The S-LDXR method yields unbiased estimates of enrichment/depletion of stratified squared 
trans-ethnic genetic correlation (ߣଶ(ܥ)) in null simulations. However, S-LDXR is conservatively 
biased towards the null (ߣଶ(ܥ) = 1) in causal simulations (particularly for binary annotations of 
small size), due to our shrinkage estimator.  We have updated the Simulations subsection of the 
Results section (see pages 5-6) to clarify this point. 

(b) For specifically expressed gene annotations, we did not observe significant depletion of 
squared trans-ethnic genetic correlation at SNPs surrounding genes specifically expressed in 
brain tissues (see Figure 4), which are impacted by negative selection. (The strongest depletion 
of squared trans-ethnic genetic correlation was observed for genes specifically expressed in skin 
and immune tissues (see Figure 4), which are impacted by positive selection). We have updated 
the Analysis of specifically expressed gene annotations subsection of the Results section (see 
page 10) to clarify this point. 
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This is paper that builds on the work of the Brown et al. paper entitled "Trans-ethnic Genetic-
Correlation Estimates from Summary Statistics" [AJHG 99:66-88; 2016] where differences in 
average genetic correlation for a pair of populations for different classes of SNPs based on 
functional annotation are assessed relative to genome-wide averages. I find that the S-LDXR 
results that identifies a deficit in squared trans-ethnic genetic correlation for SNPs in functional 
regions to be interesting. However, the S-LDXR does not appear to be providing reliable or 
consistent estimates of deficit/enrichment of squared trans-ethnic genetic correlation in many 
of the simulation settings. In Figures 1a and 1b, the true casual enrichment/deficit value is 
outside of the standard error bars for both the continuous and binary annotations. This is 
problematic and has serious implications for the reliability of the results presented in the real 
data applications.  

We thank the reviewer for suggesting that our results on real traits are interesting.  The 
reviewer concerns about the robustness of S-LDXR in simulations are addressed below. 

We emphasize that the S-LDXR method is approximately unbiased in null simulations, in which 
the true enrichment/depletion of stratified squared genetic correlation (ߣଶ(ܥ)) is equal to 1 
(Figure 1a and Figure 1b). We have updated the Simulations subsection of the Results section 
(see pages 5-6) to clarify this point. (Also see part (a) of response to Reviewer 2 Introductory 
comments, paragraph 1). 

The reviewer is correct that S-LDXR is biased in causal simulations.  Specifically, S-LDXR is 
conservatively biased towards the null (ߣଶ(ܥ)=1) in causal simulations (particularly for binary 
annotations of small size).  The bias in causal simulations is due to the shrinkage estimator that 
we applied to reduce variance in the estimated ߣଶ(ܥ) (see Overview of methods subsection of 
Results section (page 4-5) and Methods section (page 20)). The shrinkage estimator shrinks the 
estimates of ߣଶ(ܥ) towards the null (ߣଶ(ܥ) = 1). Thus, we believe that for real traits, the true 
enrichment/depletion of stratified trans-ethnic genetic correlation is stronger than our 
estimates. We have updated the Simulations subsection of the Results section (see page 6) to 
clarify this point. (Also see part (a) of response to Reviewer 2 Introductory comments, 
paragraph 1). 

Also, additional work is needed to provide sufficient insight into plausible causes of deficit or 
enrichment of squared trans-ethnic genetic correlation. In the discussion, the authors note that 
reductions in trans-ethnic genetic correlation as inferred by the S-LDXR could be caused by 
gene-environment (G×E) interaction and gene-gene (G×G) interaction, for example. However, 
this was not explored in the simulation studies. How robust is the S-LDXR method? A more 
thorough investigation of S-LDXR is needed.  

The reviewer has raised two separate questions: (a) Could simulation studies shed light on the 
hypothesized role of G×E interaction, and (b) How robust is the S-LDXR method.  We address 
each of these questions in turn. 
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(a) Could simulation studies shed light on the hypothesized role of G×E interaction. 

We hypothesize that G×E is likely the primary cause of depletion of trans-ethnic correlation.  If 
individual-level measurements of environmental factors were available, one could explicitly 
model and incorporate environmental factors.  However, this is beyond the focus and scope of 
this manuscript, as environmental variables are typically not publicly available (more generally, 
individual-level data is not publicly available for the East Asian summary statistic data sets that 
we analyzed).  We agree that this is an interesting direction for future research.  We note that 
although we do not explicitly simulate G×E, G×E would induce population-specific causal effect 
sizes, which we do explicitly simulate in our simulations.  We note that we hypothesize a 
greater role for G×E (supported by e.g. Robinson et al. 2017 Nat Genet, ref. 51) than G×G or 
dominance variation, which have been reported in recent studies to explain little heritability 
(Hill et al. 2008 PLoS Genet, ref. 52; Maki-Tanila and Hill 2014 Genetics, ref. 53; Zhu et al. 2015 
Am J Hum Genet, ref. 54).  We have updated the Discussion section (see page 14) to discuss 
these points. 

(b) How robust is the S-LDXR method. 

The S-LDXR method is approximately unbiased in null simulations, and conservatively biased 
towards the null in causal simulations.  See part (b) of response to Reviewer 1 Comment 1, part 
(b) of response to Reviewer 1 comment 2, response to Reviewer 2 Introductory comments 
paragraph 1, and response to Reviewer 2 Introductory comments paragraph 2. 

I have a few additional comments for the authors. 

Comments: 

1. It is stated on lines 186-187 on page 7 that the average genetic correlations across 30 traits 
was around 0.83 for European and East Asians. This seems quite high, particularly in light of 
previously mentioned Brown et al. [AJHG 99:66-88; 2016] paper where "mean trans-ethnic 
genetic correlation across all genes was low" for Europeans and East Asians, with an average 
around 0.32. The authors should provide some insight into this. 

The reviewer is correct that our average trans-ethnic genetic correlation of 0.83 for 30 complex 
traits is higher than the average (cis) trans-ethnic genetic correlation of 0.32 for gene 
expression traits in Brown et al. 2016 Am J Hum Genet (Popcorn method, ref. 2).  We believe 
that our average estimate of 0.83—which is still substantially lower than 1—is accurate, 
because (a) gene expression traits are expected to have a very different genetic architecture 
than complex traits, (b) Brown et al. reported that their average estimate of 0.32 increases to 
0.77 when restricting their analysis to gene expression traits with (cis) heritability greater than 
0.2 in both populations, (c) Martin et al. 2019 Nat Genet (ref. 6) reported an average trans-
ethnic genetic correlation of 0.88 for 22 complex traits, which is similar to our average estimate 
of 0.83 for 30 complex traits, and (d) our S-LDXR method and the Popcorn method of Brown et 
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al. produced similar average estimates of trans-ethnic genetic correlation for the complex traits 
that we analyzed (Figure S13).  We have updated the Analysis of baseline-LD-X model 
annotations across 31 diseases and complex traits subsection of the Results section to clarify 
these points (see page 7). 

We note that our average estimate of 0.83 across 30 complex traits has changed to an average 
estimate of 0.85 across 31 complex traits, due to the addition of schizophrenia (see Additional 
change 3 above).  

2. Is the genome-wide average genetic correlation used in S-LDXR calculated using all SNPs, 
even those that are not in functional regions, or is it it based on the average genetic correlation 
across all of the different functional annotations considered? This wasn't clear to me. 

Our estimates of genome-wide trans-ethnic genetic correlation pertain to causal effects of all 
SNPs with minor allele frequency (MAF) greater than 5% in both populations (heritability SNPs), 
regardless of whether the SNPs belong to a functional annotation or not.  We have updated 
Methods section (page 19) to clarify this point. (Also see part (a) of response to Reviewer 1 
Comment 1, part (a) of response to Reviewer 1 Comment 4, response to Reviewer 2 Comment 9, 
and corresponding updates to the Introduction section (see page 3), Overview of methods 
subsection of the Results section (see pages 4-5) and Methods section (see pages 18-19).) 

3. The S-LDXR provides a statistic measuring enrichment/depletion, but it is not clear to me 
what the formal statistical test being used to assess deviations from the null hypothesis. How is 
the test being conducted for continuous value annotation that is split into quintiles as well as 
for binary annotations? Additional material is needed on this and should appear prominently in 
the manuscript.  

When evaluating enrichment/depletion of squared trans-ethnic genetic correlation (ߣଶ(ܥ)), the 
null hypothesis is that there is no enrichment/depletion of squared trans-ethnic genetic 
correlation, i.e. that ߣଶ(ܥ) is equal to 1. 

To test whether stratified squared trans-ethnic genetic correlation is enriched/depleted for an 
annotation for a trait, we test whether the estimate ߣመଶ(ܥ) for that annotation is different from 
1. This is equivalent to testing D෡ଶ(C) = ρො୥ଶ(C) − rො୥ଶh෠୥ଵଶ (C)h୥ଶଶ (C), where rො୥ଶ is the genome-wide 

squared trans-ethnic genetic correlation. We compute a t-statistic as ୈ෡మ(େ)௦.௘.ቀୈ෡మ(େ)ቁ , and a two-

tailed p-value from the t distribution with degree of freedom set to B-1, where B is the number 
of blocks used in the block-jackknife procedure. 

To test whether meta-analyzed squared trans-ethnic genetic correlation is enriched/depleted 

for an annotation, we compute a t-statistic as ఒ෡మ(େ)ିଵ௦.௘.ቀఒ෡మ(େ)ቁ, and a two-tailed p-value from the 

normal distribution. 



Page 15 of 25 
 

The procedure to test for enrichment/depletion in binary functional annotations and in 
quintiles of continuous-valued annotations are the same. For a binary annotation, ܥ denotes 
the set of SNPs that belong to the binary annotation. For a quintile of continuous-valued 
annotation, ܥ denotes the set of SNPs having annotation value in that quintile.  

We have updated the Overview of methods subsection of the Results section (see pages 4-5) 
and the Methods section (see page 21 (new Significance Testing subsection) and page 24) to 
clarify these points. In light of the Reviewer 3 request to reduce the length of the Overview of 
methods subsection of the Results section (Reviewer 3 Major comment 1), our updates to 
Overview of methods were necessarily limited to a brief mention of significance testing, citing 
further details in the Methods section, even though Reviewer 2 requested that this material 
should appear prominently in the manuscript.  

4. Related to comment 3 above, the authors should provide type I error a power estimates 
(with standard errors) for all of the simulation studies considered.  

We thank the reviewer for this suggestion. We now include type I error rate for null simulations 
and power estimates for causal simulations (see Figures S7, S11, Tables S4-S12, cited in the 
Simulations subsection of the Results section; see pages 6-7). (Also see response to Reviewer 1 
Comment 3 regarding factors impacting power to detect enrichment/depletion.) 

5. The authors largely focus on depletion of genetic correlation. Under what settings would 
enrichment be expected? It would be helpful if the authors provide some material and/or a 
discussion about this.  

Since we hypothesize that depletion of trans-ethnic genetic correlation is primarily due to 
stronger gene-environment interactions in functionally important regions, we expect trans-
ethnic genetic correlation to be enriched in less functionally important regions, where gene-
environment interaction is weaker. Indeed, trans-ethnic genetic correlation is enriched for SNPs 
in the bottom quintile of background selection statistic, which are less functionally important. 
We primarily focus on depletion of trans-ethnic genetic correlation, as our study aims to 
understand why trans-ethnic genetic correlation of many diseases and complex traits is less 
than 1. 

We have updated the Discussion section (page 12) to include a discussion of scenarios where 
trans-ethnic genetic correlation is expected to be enriched. 

6. The authors compare European and Asian populations. How would the results change when 
considering more distant continental populations, such as European vs. African populations or 
Asian vs. African populations? What impact does the level of divergence of the two populations 
have on average genetic correlation and the S-LDXR statistic for measuring 
enrichment/depletion?  
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Given our hypothesis that imperfect genome-wide trans-ethnic genetic correlation (ݎ௚) is 
primarily driven by gene-environment interaction, we expect the ݎ௚ between African and East 
Asian populations and the ݎ௚ between African and European populations to be similar, if the 
level of gene-environment interaction (G×E) is similar across these pairs of populations. 
However, if G×E is stronger in a particular pair of populations, then we expect ݎ௚ to be lower. 

Accordingly, we expect enrichment/depletion of squared trans-ethnic genetic correlation 
 .௚ is similar for the two pairs of populationsݎ to be similar for two pairs of populations if ((ܥ)ଶߣ)
However, if ݎ௚ is lower for a particular pair of populations, then we expect to see higher 
variance in ߣଶ(ܥ) across annotations, i.e. stronger enrichments/depletions. (Conversely, for 
two very similar populations with very similar E, we expect both ݎ௚ and ߣଶ(ܥ) to be close to 1.) 

Unfortunately, we are currently unable to include an analysis of European vs. African or East 
Asian vs. African populations, both due to the limited number of very large GWAS in African 
populations (and because most large African-ancestry data sets involve admixed individuals, 
which introduces additional technical challenges that our methods do not currently address).   

We have updated the Discussion section (see page 14) to clarify these points. 

7. The authors recommend using alpha= 0.5 as the default shrinkage parameter for the S-LDXR 
shrinkage estimator based on the simulation studies. Is this shrinkage value expected to be 
appropriate for other populations, such as, such as European and African populations? In 
practice, how should this shrinkage value be identified? 

The reviewer makes a good point that the optimal choice of α may be specific to the pair of 
populations analyzed. In our simulations, we found that a shrinkage of 0.5 yields conservative 
estimates of ߣଶ(ܥ) across a wide range of values of polygenicity and power (see Figure 1, 
Figures S4-S6, Tables S4-S9). Thus, it is reasonable to hypothesize that setting α to 0.5 would 
also result in conservative estimates for other pairs of populations. However, we recommend 
that one should ideally perform simulations on the pair of populations being analyzed to select 
the optimal value of α. 

We have updated the Discussion section to clarify these points (see page 14).  

8. It would be helpful for the authors to provide insight as to how the S-LDXR statistic behaves 
when the two populations have the same causal variants but different allele frequencies, as 
well as when the causal variants are different. It isn't clear to me if the authors considered 
these settings in the simulation studies.  

The reviewer has asked about (a) simulations with same causal variants but different allele 
frequencies across populations, and (b) simulations with different causal variants across 
populations.  We address each of these questions in turn. 

(a) simulations with same causal variants but different allele frequencies across populations. 
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Our current simulation framework involves same causal variants but different allele frequencies 
across populations. This is because we simulated genotypes (using HAPGEN2; Su et al. 2011 
Bioinformatics, ref. 25) using real East Asian and European haplotypes, preserving population-
specific MAF and LD patterns.  We have updated the Simulations subsection of the Results 
section (see page 5) and the Methods section (page 22) to clarify this point. 

(b) simulations with different causal variants across populations. 

Motivated by the reviewer’s suggestion, we performed additional null simulations in which 80% 
of causal variants (in either population) are shared across the two populations (with the same 
per-allele causal effect size), and the remaining causal variants are causal in one population but 
not the other. We note that this is an alternative way to achieve genome-wide trans-ethnic 
genetic correlation of 0.80, as in our main simulations. In these simulations, S-LDXR yielded 
unbiased estimates of enrichment/depletion of squared trans-ethnic genetic correlation 
 We have updated the Simulations subsection of the Results section (see page 7, Figure .((ܥ)ଶߣ)
S11, Table S12) and the Methods section (see page 23) to include these simulations. 

(We did not perform simulations with entirely different causal variants between populations, 
because in this case ݎ௚ would be 0, and ߣଶ(ܥ) would be undefined.) 

9. For GWAS, the true "causal" variants may not have been genotyped, so SNPs that may be in 
LD with the casual variant are used for assessing trans-ethnic genetic correlations instead of the 
true casual variants. How does using SNPs in LD with the causal variant impact the S-LDXR 
statistic when there are differential LD patterns in the causal region across populations? It 
would be helpful for the authors to provide some insight into this setting, which often occurs in 
GWAS.  

The reviewer’s question is related to Reviewer 1 Comment 1, which asked if results pertain to 
HapMap3 SNPs only (given that only HapMap3 SNPs are analyzed) and may thus be impacted 
by tagging of other SNPs.  See part (a) of response to Reviewer 1 Comment 1. Also see part (a) 
of response to Reviewer 1 Comment 4. 

S-LDXR analyzes summary statistics from HapMap3 SNPs with MAF > 5% in both populations 
(regression SNPs) together with reference panel LD from SNPs present in either population in 
1000 Genomes (reference SNPs) to estimate enrichment/depletion (defined as a function of 
causal effect sizes) for all SNPs with MAF > 5% in both populations (heritability SNPs), 
accounting for tagging effects (analogous to S-LDSC; Finucane et al. 2015 Nat Genet, ref. 21).  
Thus, the results pertain to causal effects of all SNPs with MAF > 5% in both populations 
(heritability SNPs).  We recognize that it is our responsibility to verify that not just the definition 
but also the actual estimates achieve this result.  Thus, we simulated traits using SNPs present 
in either population in 1000 Genomes (including non-HapMap3 SNPs) as causal SNPs in our 
simulations, including simulations with annotation-dependent MAF-dependent architectures. 
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We have updated the Introduction section (see page 3), Overview of methods subsection of the 
Results section (see pages 4-5) and Methods section (see pages 18-19) to clarify this point.
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Reviewer #3 (Remarks to the Author): 

The authors describe a novel method to measure trans-ethnic squared genetic correlation, or a 
way to quantify the enrichment/depletion of similarity of causal effect sizes between 
populations. This new method can be useful in identifying annotations that may have increased 
population-differentiation of causal effect sizes, to hopefully downstream improve prediction 
and understanding of the underlying biology of traits. They provide simulations and the 
application of these methods to 30 traits comparing Europeans and Japanese summary 
statistics.  

We thank Reviewer 3 for accurately summarizing our study, and for suggesting that our method 
can be useful. 

In general, the manuscript would benefit from an expansion of potential uses for this novel 
method and interpretations of results when applied across traits. It is unclear as it currently 
stands why other investigators would adopt this method, especially in a trait-specific manner as 
the majority of analyses are conducted as a meta-analysis across all traits. This would require 
expansion in both the Introduction and Discussion sections. 

The reviewer has raised several related questions/suggestions: (a) Is it of interest to apply S-
LDXR in a trait-specific fashion; (b) How should results be interpreted when S-LDXR is applied to 
a meta-analysis across traits; and (c) The discussion of potential uses of S-LDXR should be 
expanded.  We address each of these questions/suggestions in turn. 

(a) Is it of interest to apply S-LDXR in a trait-specific fashion. 

We thank the reviewer for the suggestion to explore trait-specific analyses in greater depth.  
Based on the reviewer suggestion, we have added new content (including a new Figure 5) on 
trait-specific analyses.  Although statistically significant results were limited due to the reduced 
power of trait-specific analyses, we determined that SNPs around genes specifically expressed 
in pituitary and fibroblasts have population-specific causal effect sizes for BMI and height, 
respectively (see Figure 5, Table S21), suggesting that biological mechanisms for BMI and height 
may be different across East Asians and Europeans (also see response to Reviewer 3 Major 
Comment 2). We have updated the Analysis of specifically expressed gene annotations 
subsection of the Results section (see pages 10-11) to include this result.  

Above and beyond assessing the statistically significant results, we conducted a comparison of 
BMI and height results for SNPs around specifically expressed genes in the 53 tissues (also see 
response to Reviewer 3 Major Comment 2).  We determined that enrichment/depletion of 
squared trans-ethnic genetic correlation is similar for BMI and height across the 53 tissues, 
despite trait-specific depletion in pituitary and fibroblasts respectively (see Figure 5). We have 
updated the Analysis of specifically expressed gene annotations subsection of the Results 
section (see pages 10-11) to include this result.   
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We have also updated the Introduction section (see page 3) and Discussion section (see page 12) 
to discuss the motivation for assessing meta-analyzed vs. trait-specific results (also see 
response to Reviewer 3 Major comment 2).  

(b) How should results be interpreted when S-LDXR is applied to a meta-analysis across traits. 

Although biological processes differ across diseases and complex traits, patterns of functional 
enrichment/depletion are often similar (particularly for non-tissue-specific annotations), 
motivating previous studies to meta-analyze functional enrichment/depletion results across 
traits (e.g. S-LDSC; Finucane et al. 2015 Nat Genet, ref. 21).  Therefore, we report most findings 
based on meta-analyses across the 31 traits. (We emphasize that we are meta-analyzing 
enrichment/depletion, not GWAS summary statistics.)  Our interpretation of the meta-analyzed 
findings is that depletion of trans-ethnic genetic correlation in functional regions is likely 
attributable to stronger gene-environment interaction at functional regions impacted by 
positive selection.  

We have updated the Introduction section (see page 3) and Discussion section (see page 12) to 
clarify these points. 

(c) The discussion of potential uses of S-LDXR should be expanded. 

We agree that additional discussion of the potential uses of S-LDXR is warranted.  In addition to 
further discussion of trait-specific analyses (see (a) above), we have added additional discussion 
of applications to trans-ethnic PRS to the Discussion section (see pages 13-14).  See our 
response to Reviewer 3 Major Comment 3. 

Major Comments (Numbers added to each Major Comment) 

1. The manuscript is currently written with much of the methods in the results section. This is 
understandable, as it is a methods development manuscript, but for this specific audience it 
should be rewritten with the methods in the results section simplified and the vast majority of 
this text in the methods section.  

We have reduced the length of the Overview of methods subsection of the Results section by 35% 
(see pages 4-5), as recommended by the reviewer; this content has been moved to the 
Methods section (see pages 18-19). We found it challenging to reduce the length of the 
Overview of methods subsection any further, as certain quantities (e.g. enrichment/depletion of 
squared trans-ethnic genetic correlation) are described throughout the manuscript, making it a 
high priority to first define them. 

2. All of the trait-related results are presented as a meta-analysis of all 30 diseases and complex 
traits. It would be great to have a section discussing trait- or trait group-specific trends. For 
example, do the two anthropometric traits (height, BMI) show different patterns, given that 
their heritability is much different? It would be beneficial to expand discussion of these trait-
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specific trends to inform the reader of possible uses for this method in more trait focused 
projects.  

We thank the reviewer for the suggestion to explore trait-specific analyses in greater depth.  
Based on the reviewer suggestion, we have added new content (including a new Figure 5) on 
trait-specific analyses.  Although statistically significant results were limited due to the reduced 
power of trait-specific analyses, we determined that SNPs around genes specifically expressed 
in pituitary and fibroblasts have population-specific causal effect sizes for BMI and BMI (see 
Figure S5, Table S21), suggesting that biological mechanisms for BMI may be different across 
East Asians and Europeans (also see response to Reviewer 3 Introductory comments, paragraph 
2). We have updated the Analysis of specifically expressed gene annotations subsection of the 
Results section (see pages 10-11) to include this result. 

Above and beyond assessing the statistically significant results, we conducted a comparison of 
BMI and height results for SNPs around specifically expressed genes in the 53 tissues (also see 
response to Reviewer 3 Introductory comments, paragraph 2).  We determined that 
enrichment/depletion of squared trans-ethnic genetic correlation is similar for BMI and height 
across the 53 tissues, despite trait-specific depletion in pituitary and fibroblasts respectively 
(see Figure 5). We have updated the Analysis of specifically expressed gene annotations 
subsection of the Results section (see pages 10-11) to include this result. We note that although 
S-LDXR results are different for height vs. BMI, enrichment/depletion of squared trans-ethnic 
genetic correlation is not expected to depend on heritability, as an increase in trait heritability 
would increase both the numerator (covariance) and denominator (variance) of trans-ethnic 
genetic correlation (Equation 2).  We have updated the Analysis of specifically expressed gene 
annotations subsection of the Results section (see page 9) to clarify this point. 

We have also updated the Introduction section (see page 3) and Discussion section (see page 12) 
to discuss the motivation for assessing meta-analyzed vs. trait-specific results.  

3. A possible implication is cited as reweighting PRS from European population training data 
based on enrichment/depletion of the squared trans-ethnic genetic correlation. How would this 
practically be done in respect to directionality of effect weights? Would this just be 
downweighting SNPs that are depleted (therefore more likely to be different) and upweighting 
SNPs that are enriched (more likely to transfer)? And subsequently, would this improve 
performance or trend towards the null in terms of prediction if the larger effect sizes are in 
differentiated regions? It would be great to expand on this point in the discussion, given it is 
also mentioned in the introduction.  

We agree that additional discussion of applications to trans-ethnic PRS is warranted.  The 
reviewer is correct that, when computing PRS in a non-European population using effect size 
estimates from European training data, SNPs that are expected to be depleted for squared 
trans-ethnic genetic correlation based on their functional annotations should be downweighed 
and SNPs that are expected to be enriched for squared trans-ethnic genetic correlation based 
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on their functional annotations should be upweighted.  For example, when applying LD-pruning 
+ p-value thresholding methods to marginal effect sizes, SNPs in the latter category should be 
preferentially retained.  Analogously, when applying more recent methods that estimate 
posterior mean causal effect sizes (including functionally informed methods), these estimates 
should subsequently be weighted according to the expected enrichment/depletion for squared 
trans-ethnic genetic correlation based on their functional annotations. We believe these 
approaches would improve prediction accuracy (by prioritizing SNPs that are more transferable 
across populations), even though the prioritized SNPs will tend to have slightly smaller causal 
effect sizes than the deprioritized SNPs (due to an inverse relationship between heritability 
enrichment and enrichment/depletion of squared trans-ethnic genetic correlation; see 
response to Reviewer 1 Comment 5).  

We have updated the Discussion section (see pages 13-14) to clarify these points. 

4. The authors note a limitation is that gene expression measurements were conducted in 
Europeans and may not be applicable to non-European groups. When looking at trans-ethnic 
correlations and annotation categories, which reference group do you pick for these 
annotations? These analyses were conducted in the European-derived reference datasets. 
Would you need to do two analyses, one in European and one in Asian reference sets, and then 
compare/contrast? 

The reviewer is correct that our manuscript stated that the specifically expressed gene (SEG) 
annotations analyzed in our study were defined primarily based on gene expression 
measurements in Europeans.  In detail, we used the SEG annotations from Finucane et al. 2018 
Nat Genet (ref. 24), which were derived from all GTEx samples, which include 84.6% European 
samples, 12.9% African American samples, and 1.3% Asian samples.  We have updated the 
Discussion section (see page 14) to clarify that these samples are predominantly but not 
exclusively European. 

We agree with the reviewer that the logical alternative analysis for comparison purposes would 
be to define SEG annotations based on gene expression measurements in East Asians.  We have 
updated the Discussion section (see page 14-15) to clarify this point. 

We hypothesize that results based on SEG annotations defined in Europeans vs. SEG 
annotations defined in East Asians would likely be similar, because heritability enrichments of 
functional annotations (ascertained predominantly in Europeans) are very similar across 
continental populations (see Kichaev and Pasaniuc 2015 Am J Hum Genet, ref. 31; Kanai et al. 
2018 Nat Genet, ref. 20; Figure 2, 3, Table S14, S17 of our manuscript, cited on page 28 and 
page 29).  We have updated the Discussion section (see pages 14-15) to clarify this point. 

5. There is currently not a description of the summary statistics used for trait-specific analyses. 
For example, were these summary statistics genome-wide on a genotyping array or after 
imputation to 1000Genomes or another reference panel? Besides MAF cut-offs, were there any 
other thresholds used to select inclusion? As many PRS use a thresholded approach, how would 
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this affect the weighting if the depletion/enrichment were limited to SNPs above a certain p-
value threshold, which would mean larger effect sizes given their common frequencies of 
MAF>5%? 

The reviewer has raised two related questions/suggestions: (a) A more detailed description of 
the summary statistic data sets is warranted; and (b) Do thresholds used to determine the set 
of SNPs analyzed impact PRS strategies? 

(a) A more detailed description of the summary statistic data sets is warranted. 

We agree that a more detailed description of the summary statistic data sets is warranted, 
beyond what was previously provided in the Methods section and Table S13. 

All summary statistics were based on imputation to an appropriate LD reference panel (e.g. 
Haplotype Reference Consortium for UK Biobank, 1000 Genomes for Biobank Japan). 

We analyzed summary statistic data for HapMap3 SNPs with MAF > 5% in both populations 
(regression SNPs), in conjunction with reference panel LD from SNPs present in either 
population in the 1000 Genomes Project (reference SNPs) (analogous to S-LDSC; Finucane et al. 
2015 Nat Genet, ref. 21) (see part (a) of response to Reviewer 1 Comment 1, part (a) of 
response to Reviewer 1 Comment 4, response to Reviewer 2 Comment 9).  HapMap3 SNPs 
consist predominantly of common, well-imputed SNPs, such that study-specific MAF and 
imputation accuracy thresholds are inconsequential.  No other criteria were used to select the 
summary statistic SNPs that we analyzed. 

We have updated the Methods section (see page 18 and page 24) to clarify these points. All 
GWAS summary statistics that we analyzed are publicly available (see Table S13), and we refer 
the readers to the corresponding publications (cited in Table S13) for a detailed description of 
how each GWAS was performed.  

(b) Do thresholds used to determine the set of SNPs analyzed impact PRS strategies? 

As noted above, we analyzed summary statistic data for HapMap3 SNPs (regression SNPs), 
which consist predominantly of common, well-imputed SNPs, such that study-specific MAF and 
imputation accuracy thresholds are inconsequential.  On the other hand, when constructing 
PRS, it might be advantageous to include non-HapMap3 SNPs. 

The reviewer mentioned the (LD-pruning +) p-value thresholding approach often used to 
construct PRS.  However, this type of threshold is distinct from the threshold used to determine 
the set of SNPs analyzed, as we did not restrict our S-LDXR analyses based on a p-value 
threshold, nor did we construct a genomic annotation based on a p-value threshold.  We do not 
recommend constructing a genomic annotation based on a p-value threshold, which would be 
confounded by LD and subject to overfitting. 

It is possible that G×E is stronger at SNPs passing a p-value threshold (and stronger at SNPs with 
larger causal effects), implying depletion of trans-ethnic genetic correlation for such SNPs.  
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Prioritizing SNPs for trans-ethnic PRS should account for both the strength of association and 
trans-ethnic genetic correlation (see response to Reviewer 3 Major comment 3). We have 
updated the Discussion section (see pages 13-14) to clarify these points.  

6. Top 5% of simulations with highest standard errors were discarded to assess unbiasedness of 
estimator. However, the authors note that in the analysis of real traits, these estimates would 
contribute very little to the meta-analysis across traits. Does this mean this method should only 
be used across multiple traits and not for a few traits on their own? 

In the case of a meta-analysis across traits, the reviewer is correct that estimates with very high 
standard errors would contribute very little to the meta-analysis, as previously noted in the 
Simulations subsection of the Results section (p.6). 

In the case of trait-specific analyses, in the types of scenarios that occurred in our simulations, 
S-LDXR would produce trait-specific estimates with very high standard errors, which would be 
interpreted as being inconclusive.  We believe that the possibility of producing inconclusive 
estimates should not preclude trait-specific analyses using S-LDXR.  (Indeed, statistically 
significant results in our trait-specific analyses were broadly limited due to the reduced power 
of trait-specific analyses; see response to Reviewer 3, Introductory comments paragraph 2 and 
response to Reviewer 3, Major comment 2.)  We have updated the Simulations subsection of 
the Results section (p.6) to clarify this point. 

7. The method compares the similarity versus dissimilarity of effect sizes across different 
populations. However, it would also be useful to include a discussion of effect size magnitudes, 
which ties into the heritability and the number of SNPs considered.  

We agree with the reviewer that more discussion of the relationship between enrichment of 
heritability and enrichment/depletion of squared trans-ethnic genetic correlation is warranted 
(also see response to Reviewer #1 Comment 5).  

We observed a general trend that annotations enriched for heritability show depletions of 
squared trans-ethnic genetic correlation. However, we believe that the fundamental cause of 
depletion of trans-ethnic genetic correlation is gene-environment interaction (G×E), not 
heritability enrichment. Therefore, an annotation enriched for SNPs exhibiting G×E may show 
depletion of squared trans-ethnic genetic correlation, even if the annotation is depleted of 
heritability. Conversely, an annotation depleted of SNPs exhibiting G×E may show enrichment 
of squared trans-ethnic genetic correlation, even if the annotation is enriched for heritability. 
We discuss these points in the Discussion section (see page 12). 

Minor Comments 

- Figures S4-6: The legends for these figures are confusing. For each of these figures, the 
legends only refer to panels a and b (S4), c and d (S5), or e (S6). The legends should be 
expanded to explicitly state the differences between all panels.  
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We thank the reviewer for flagging the incomplete captions for Figures S4-S6. 

In Figures S4-S6, each panel corresponds to simulation results obtained with different shrinkage 
parameters (in Figure S4 and S5, α=0.0, 0.25, 0.75, and 1.0 in panel a, b, c, and d, respectively; 
in Figure S6, α=0.0, 0.25, 0.5, 0.75, and 1.0 in panel a, b, c, d, and e, respectively).  We have 
updated the captions of Figure S4-S6 accordingly. 

- Figure S7: What are the blue and red filled dots symbolizing? 

We thank the reviewer for flagging the inadequate description of blue and red filled dots in the 
caption of Figure S7.  

In Figure S7 (now Figure S12), red dots represent diseases/traits with estimated genome-wide 
trans-ethnic genetic correlation (ݎ௚) significantly less than 1 (one-tailed p < 0.05/53); blue dots 
represent traits for which estimated ݎ௚ is not significantly less than 1. We have updated the 
caption of this figure (now Figure S12) to clarify the interpretation of blue and red filled dots. 



Reviewer #1 (Remarks to the Author): 

I would like to thank the authors for responding each of my questions in detail. I have the following 

additional comments/questions based on their revised manuscript. 

1. They performed additional analysis on SCZ and found a high genetic correlation between EUR and 

EAS populations. Because SCZ is believed to be under relatively high negative selection, they use this 

result as a piece of evidence to support their hypothesis that positive selection contributed most to the 

population-specific causal effects. While their explanation is plausible, an alternative possible reason 

for the high rg could be due to the ignoring of SNPs with MAF < 5%. Negative selection would have 

largest impact on the variants with low frequency, so rg may be actually low if they have included 

those SNPs in the analysis. In addition, SCZ has the smallest sample size in both populations for which 

the power to detect a rg different from 1 may be compromised given their shrinkage parameter. I 

think these may worth to be noted in discussion. 

2. Background selection statistic seems to be the key annotation in their analysis, as almost all of the 

other annotations that shows depletion in lamba_C^2 are correlated with it, including average LLD, 

CpG content, recombination rate, binary functional annotations and tissue specifically expressed gene 

annotations. The authors demonstrate by simulations that their method is nearly unbiased to the null 

model. However, it seems there is systematic bias, although to a small magnitude, to the background 

selection statistic (Figure 1a), in a similar pattern to what observed in the real trait analysis (Figure 

2b). Another annotation that appears to be influential, average LLD, which is moderately correlated 

with background selection statistic, also shows a systematic bias (in a pattern coincide with the real 

trait result) when a MAF-dependent architecture is simulated (Figure S9), which is likely to be true in 

reality. Although these biases are not large, I am worried that these small systematic biases would 

increase with the increase of sample size, and ultimately give false positives of enrichment/depletion. 

I think it worth to check that by simulating a GWAS sample as large as the real data sets, since the 

most important conclusions of this paper rely heavily on the result of background selection statistic 

annotation. 

3. Table S13 shows a few traits with remarkably low rg. The authors attributed the low rg in Major 

Depressive Disorder to the discrepancy in diagnose criterion. Do they have an explanation to other 

traits that are well defined but have substantially lower rg, such as Age at menopause (rg=0.567), 

Basophil counts (rg=0.427) and LDL (rg=0.662)? 

Reviewer #2 (Remarks to the Author): 

The authors have adequately addressed my comments, and I find the revised manuscript to be much 

improved. The results presented in this paper illustrating that there are more population-specific 

causal effect sizes in functionally important regions is quite compelling. I think this work will be of 

interest to a broad range of genetic researchers, particularly those involved in complex trait mapping 

across diverse populations as well as population geneticists. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed all of my questions/comments satisfactorily. The following suggestions 

may improve the readability and impact of the paper, but are not necessary for acceptance. Great job! 

1. The limitations of the study are listed in the discussion. The way that they are structured right now 

does not flow very well and would benefit from being condensed and structured into themes, such as 

the 6th (MAF>5%) and 7th (population-specific variants) referring to allele frequency limitations. 



2. The authors note that a major limitation is restricting analyses to East Asian and European 

populations, given the unavailability of other large-scale GWAS summary statistics. Would they expect 

results to change, given a different number of variants would be included with an African and 

European comparison, given different allele frequencies and LD structures comparing the larger (EUR) 

to smaller (AFR) datasets? 

3. There are several run-on sentences that could either be simplified or shortened (Page 8, lines 236-

242, for example. There's also an extra period at the end of the sentence after the reference). 

4. Restricting the analyses to MAF>5% in both populations may lead to a selection bias in the results, 

in that the set of SNPs that are above 5% in East Asian populations are much smaller than above 5% 

in an African population given the SFS of East Asian groups versus European versus African. It would 

be great to see some discussion of how results may differ if EUR were compared to AFR in this regard. 

5. An expansion on how this method can help trans-ethnic meta-analysis (such as adapting MTAG) 

would be useful. 

6. The second point in the discussion for uses of this new method mentions improved trans-ethnic 

fine-mapping, moving beyond the assumption that causal variants are shared between populations. 

However, it is unclear how this conclusion is drawn from your results, given the high proportion of 

correlation between EUR and EAS results for many of the outcomes. For many of these statements in 

the discussion, it would be beneficial to expand on how or why these applications would be useful.
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Response to reviewers for NCOMMS-19-37936-T (Shi et al.) 
Reviewer #1 (Remarks to the Author): 

I would like to thank the authors for responding each of my questions in detail. I have the 
following additional comments/questions based on their revised manuscript. 

We thank Reviewer 1 for acknowledging our detailed responses. 

 

1. They performed additional analysis on SCZ and found a high genetic correlation between EUR 
and EAS populations. Because SCZ is believed to be under relatively high negative selection, 
they use this result as a piece of evidence to support their hypothesis that positive selection 
contributed most to the population-specific causal effects. While their explanation is plausible, 
an alternative possible reason for the high rg could be due to the ignoring of SNPs with MAF < 
5%. Negative selection would have largest impact on the variants with low frequency, so rg may 
be actually low if they have included those SNPs in the analysis. In addition, SCZ has the 
smallest sample size in both populations for which the power to detect a rg different from 1 
may be compromised given their shrinkage parameter. I think these may worth to be noted in 
discussion. 

The reviewer has raised two separate concerns: (i) exclusion of SNPs with MAF < 5% may bias 
trans-ethnic genetic correlation estimates for SCZ, and (ii) estimates of trans-ethnic genetic 
correlation for SCZ may be compromised by our shrinkage estimator due to low sample sizes for 
SCZ.  We response to each of these concerns in turn: 

(i) exclusion of SNPs with MAF < 5% may bias trans-ethnic genetic correlation estimates for SCZ. 

The reviewer is correct that we analyze regression SNPs with MAF > 5% in both populations (to 
draw inferences about causal effects of heritability SNPs with MAF > 5% in both populations).  
As previously noted in the Discussion section, this is a limitation of our analyses, necessitated 
by the lack of a large LD reference panel in East Asians.  However, we believe that our estimates 
of a trans-ethnic genetic correlation parameter defined based on MAF > 5% SNPs are robust, 
and that a comparison of this parameter for SCZ vs. other traits can be informative. 

The reviewer is also correct that negative selection has the largest impact on variants with low 
frequency (Zeng et al. 2018 Nat Genet; ref. 26), such that analyses of low-frequency SNPs would 
be particularly informative for drawing inferences about the action of negative selection.  
However, negative selection also impacts common variant architectures (Gazal et al. 2017 Nat 
Genet; ref. 22), such that analyses of common variants can also be informative for drawing 
inferences about the action of negative selection. 
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We have expanded our discussion of SCZ and negative selection in the Analysis of specifically 
expressed gene annotations subsection of the Results section (page 11), and our discussion of 
low-frequency SNPs in the Discussion section (page 16), to clarify these points. 

(ii) estimates of trans-ethnic genetic correlation for SCZ may be compromised by our shrinkage 
estimator due to low sample sizes for SCZ. 

S-LDXR does not use the shrinkage estimator when estimating genome-wide trans-ethnic 
genetic correlation.  We believe that estimates of genome-wide trans-ethnic genetic correlation 
for SCZ are robust (with well-calibrated standard errors), as shown by our simulations, and that 
our estimate for SCZ of 0.95 (s.e. 0.04) (for MAF > 5% SNPs) is clearly closer to 1 than the 
average of 0.85 (s.e. 0.01) across traits.  We have updated the Simulations subsection of the 
Results section (page 5), our discussion of SCZ and negative selection in the Analysis of 
specifically expressed gene annotations subsection of the Results section (page 11), and the S-
LDXR shrinkage estimator subsection of the Methods section (page 23), to clarify these points.  

 

2. Background selection statistic seems to be the key annotation in their analysis, as almost all 
of the other annotations that shows depletion in lamba_C^2 are correlated with it, including 
average LLD, CpG content, recombination rate, binary functional annotations and tissue 
specifically expressed gene annotations. The authors demonstrate by simulations that their 
method is nearly unbiased to the null model. However, it seems there is systematic bias, 
although to a small magnitude, to the background selection statistic (Figure 1a), in a similar 
pattern to what observed in the real trait analysis (Figure 2b). Another annotation that appears 
to be influential, average LLD, which is moderately correlated with background selection 
statistic, also shows a systematic bias (in a pattern coincide with the real trait result) when a 
MAF-dependent architecture is simulated (Figure S9), which is likely to be true in reality. 
Although these biases are not large, I am worried that these small systematic biases would 
increase with the increase of sample size, and ultimately give false positives of 
enrichment/depletion. I think it worth to check that by simulating a GWAS sample as large as 
the real data sets, since the most important conclusions of this paper rely heavily on the result 
of background selection statistic annotation. 

The reviewer is correct that estimates for the top quintile of background selection statistic 
show a small systematic bias in null simulations: -0.023 (s.e. 0.003) in Figure 1a, -0.013 (s.e. 
0.008) in annotation-dependent MAF-dependent architecture simulations of Figure S9a, where 
-0.023 and -0.013 are smaller in magnitude but in the same direction as  -0.18 (s.e. 0.01) for real 
traits in Figure 2b.  Similarly, average LLD also shows a small systematic bias in null simulations: 
-0.022 (s.e. 0.005) in Figure 1a, -0.037 (s.e. 0.008) in annotation-dependent MAF-dependent 
architecture simulations of Figure S9a, where -0.022 and -0.037 are smaller in magnitude but in 
the same direction as -0.13 (s.e. 0.03) for real traits in Figure 2b. 
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The reviewer is also correct that our HAPGEN2 simulated sample sizes (NEAS=18K, NEUR=37K) are 
smaller than sample sizes for real traits (average NEAS=90K, NEUR=267K).  The reviewer suggested 
that we perform simulations at much larger sample sizes (matching sample sizes for real traits), 
to rule out the possibility that small systematic biases might increase with sample size. 

We agree that performing simulations at much larger sample sizes, if feasible, would be ideal.  
However, we determined that it was not computationally feasible to analyze much larger 
simulated sample sizes, due to computational challenges in applying the relatedness filter to 
the HAPGEN2 simulated samples: the running time and memory cost of the relatedness filter 
scales with the square of the number of samples, and the relatedness filter removed roughly 
~64% of the 100,000 HAPGEN2 simulated samples in each population—a proportion that is 
expected to grow larger with larger simulation sample size, due to the limited number of EAS 
and EUR haplotypes provided as input to HAPGEN2.  We instead performed 3 new simulations, 
decreasing or increasing the reference panel size or decreasing the HAPGEN2 simulated GWAS 
sample size, based on the baseline-LD-X model (analogous to Figure 1). We also performed 3 
corresponding new simulations, based on the model with annotation-dependent MAF-
dependent architectures (analogous to Figure S9). 

First, we decreased or increased the size of the S-LDXR reference panel from 500 samples to 
250 or 1,000 samples, in order to probe the possible impact of mismatch between in-sample LD 
and reference panel LD.  We determined that the small systematic biases in null simulations of 
continuous-valued annotations were on the same order of magnitude as for 500 reference 
samples (Figures S12, S13 and Table 13 for 250 reference samples; Figures S14, S15 and Table 
S14 for 1,000 reference samples). For example, for the top quintile of background selection 
statistic (simulations using baseline-LD-X model), the bias of -0.023 (s.e. 0.003) in Figure 1a 
changed to +0.01 (s.e. 0.004) with 250 reference samples and also +0.01 (s.e. 0.004) with 1,000 
reference samples.  For the top quintile of average LLD (simulations using annotation-
dependent MAF-dependent architecture), the bias of -0.037 (s.e. 0.008) in Figure S9a changed 
to -0.052 (s.e. 0.008) with 250 reference samples and -0.01 (s.e. 0.009) with 1,000 reference 
samples.  

Second, we decreased the HAPGEN2 simulated GWAS sample sizes from NEAS=18K, NEUR=37K to 
NEAS=9K, NEUR=18K.  We determined that the small systematic biases in null simulations of 
continuous-valued annotations were generally on the same order of magnitude as for NEAS=18K, 
NEUR=37K (Figure S16, S17 and Table S15). For example, for the top quintile of background 
selection statistic (simulations using baseline-LD-X model), the bias of -0.023 (s.e. 0.003) in 
Figure 1a changed to +0.02 (s.e. 0.007).  For the top quintile of average LLD (simulations using 
annotation-dependent MAF-dependent architecture), the bias of -0.037 (s.e. 0.008) in Figure 
S9a changed to +0.01 (s.e. 0.01). However, the estimates in these simulations were generally 
less stable (higher standard error) and sometimes subject to larger biases (for both binary and 
continuously valued annotations), likely because our analytical bias correction starts to break 
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down when the GWAS has low power. For example, for the 5’ UTR annotation (simulations 
using baseline-LD-X model), the bias of -0.02 (s.e. 0.01) in Figure 1b changed to +0.09 (s.e. 0.03).  

Overall, these analyses do not provide a reason to believe that the small biases that we 
observed in some of our null simulations of continuously valued annotations would 
substantially increase at larger GWAS sample sizes.  We have updated the Simulations 
subsection of the Results section (page 7, citing Figures S12-S17 and Tables S13-S15), and the 
Simulations subsection of the Methods section (page 25), to report these new experiments. 
Recognizing that average LLD is the annotation most susceptible to bias across all of our 
simulations, we have also added an appropriate caveat to our average LLD results (which are 
not central to our overall conclusions) in the Analysis of baseline-LD-X model annotations across 
31 diseases and complex traits subsection of the Results section (page 8).   

We further note that our estimates are unbiased in null simulations of binary annotations 
(Figure 1b and Figure S8), implying that our results on real traits for binary annotations (Figure 
3a, corroborating results on real traits for continuous-valued annotations in Figure 2b) are 
extremely robust.  We have updated the Discussion section (page 15) to carefully note both the 
small biases in null simulations of continuous-valued annotations, and the lack of bias in null 
simulations of binary annotations. 

 

3. Table S13 shows a few traits with remarkably low rg. The authors attributed the low rg in 
Major Depressive Disorder to the discrepancy in diagnose criterion. Do they have an 
explanation to other traits that are well defined but have substantially lower rg, such as Age at 
menopause (rg=0.567), Basophil counts (rg=0.427) and LDL (rg=0.662)? 

The reviewer is correct that we have estimated low genome-wide trans-ethnic genetic 
correlations—with low standard errors—for Age at Menopause ( =0.57 (s.e. 0.09)), Basophil 
Count ( =0.43 (s.e. 0.06)), and LDL ( =0.66 (s.e. 0.11)). We hypothesize that the low genome-
wide trans-ethnic genetic correlations for these traits is due to pervasive gene-environment 
interaction across the genome. We have updated the Analysis of baseline-LD-X model 
annotations across 31 diseases and complex traits subsection of the Results section to clarify 
this point (page 8). 
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Reviewer #2 (Remarks to the Author): 

The authors have adequately addressed my comments, and I find the revised manuscript to be 
much improved. The results presented in this paper illustrating that there are more population-
specific causal effect sizes in functionally important regions is quite compelling. I think this work 
will be of interest to a broad range of genetic researchers, particularly those involved in 
complex trait mapping across diverse populations as well as population geneticists. 

We thank Reviewer 2 for suggesting that the revised manuscript is much improved, and that 
our results are quite compelling and of interest to a broad range of genetic researchers. 
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Reviewer #3 (Remarks to the Author): 

The authors have addressed all of my questions/comments satisfactorily. The following 
suggestions may improve the readability and impact of the paper, but are not necessary for 
acceptance. Great job! 

We thank Reviewer 3 for indicating that the questions/comments have been addressed.  The 
additional reviewer suggestions for improving readability and impact are addressed below. 

 

1. The limitations of the study are listed in the discussion. The way that they are structured 
right now does not flow very well and would benefit from being condensed and structured into 
themes, such as the 6th (MAF>5%) and 7th (population-specific variants) referring to allele 
frequency limitations. 

We thank the reviewer for the suggestion to restructure the presentation of the limitations in 
the Discussion section. Based on this suggestion, we have split the limitations part of the 
Discussion section (formerly a single paragraph) into two separate paragraphs; the first 
paragraph focuses on the limitations of the S-LDXR method (pages 15-16), and the second 
paragraph focuses on the limitations of our analysis of real traits (pages 16-17). 

We elected to retain the limitation of restricting to MAF > 5% SNPs and the limitation of not 
considering population-specific variants as separate limitations, as restricting to MAF > 5% SNPs 
is a function of the available data (specifically, the lack of a large LD reference panel in East 
Asians) whereas defining trans-ethnic genetic correlation for population-specific variants is a 
more fundamental challenge, as we now clarify in the Discussion section (page 16). 

 

2. The authors note that a major limitation is restricting analyses to East Asian and European 
populations, given the unavailability of other large-scale GWAS summary statistics. Would they 
expect results to change, given a different number of variants would be included with an 
African and European comparison, given different allele frequencies and LD structures 
comparing the larger (EUR) to smaller (AFR) datasets? 

The reviewer makes a good point that a different set of variants (with different MAF and LD 
patterns) would be included when analyzing data from African vs. European populations.  
However, we expect that estimates of genome-wide genetic correlation and enrichment of 
stratified squared trans-ethnic genetic correlation would be broadly similar for African vs. 
European as compared to East Asian vs. European if patterns of gene-environment interaction 
(G×E) in the African population are similar to those in the East Asian population.  Since we 
hypothesize that G×E is the fundamental factor impacting trans-ethnic genetic correlation, we 
do not expect a different set of variants (with different MAF and LD patterns) to lead to 
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differences in trans-ethnic genetic correlation. We have updated the Discussion section (page 
16-17) to clarify this point. (Also see response to Reviewer #3 Comment 4.) 

 

3. There are several run-on sentences that could either be simplified or shortened (Page 8, lines 
236-242, for example. There's also an extra period at the end of the sentence after the 
reference). 

We have updated the 2 sentences that the reviewer is referring to (page 9). 

 

4. Restricting the analyses to MAF>5% in both populations may lead to a selection bias in the 
results, in that the set of SNPs that are above 5% in East Asian populations are much smaller 
than above 5% in an African population given the SFS of East Asian groups versus European 
versus African. It would be great to see some discussion of how results may differ if EUR were 
compared to AFR in this regard.  

The reviewer makes a good point that a different set of variants (with different MAF and LD 
patterns) would be included when analyzing data from African vs. European populations.  
However, we expect that estimates of genome-wide genetic correlation and enrichment of 
stratified squared trans-ethnic genetic correlation would be broadly similar for African vs. 
European as compared to East Asian vs. European if patterns of gene-environment interaction 
(G×E) in the African population are similar to those in the East Asian population.  Since we 
hypothesize that G×E is the fundamental factor impacting trans-ethnic genetic correlation, we 
do not expect a different set of variants (with different MAF and LD patterns) to lead to 
differences in trans-ethnic genetic correlation. We have updated the Discussion section (page 
16) to clarify this point. (Also see response to Reviewer #3 Comment 2.) 

 

5. An expansion on how this method can help trans-ethnic meta-analysis (such as adapting 
MTAG) would be useful. 

We thank the reviewer for the suggestion to expand on the point that modeling population-
specific architectures may increase power in trans-ethnic meta-analysis, e.g. by adapting MTAG 
(Turley et al. 2018 Nat Genet; ref. 70) to two populations (instead of two traits).  We have 
updated the Discussion section (page 15) to expand on this point. 

 

6. The second point in the discussion for uses of this new method mentions improved trans-
ethnic fine-mapping, moving beyond the assumption that causal variants are shared between 
populations. However, it is unclear how this conclusion is drawn from your results, given the 
high proportion of correlation between EUR and EAS results for many of the outcomes. For 
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many of these statements in the discussion, it would be beneficial to expand on how or why 
these applications would be useful. 

We thank the reviewer for the suggestion to expand on the point about improving trans-ethnic 
fine-mapping. We have updated the Discussion section (page 15) to expand on this point. 



Reviewer #1 (Remarks to the Author): 

The authors have adequately addressed my questions. I would like to congratulate the authors on 

completing this important work!


