Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell

lymphoma

Christine L Jones¹, Andrea Degasperi^{2,3}, Vieri Grandi¹, Tauanne D Amarante^{2,3}, Genomics England Research Consortium⁴, Tracey J Mitchell¹, Serena Nik-Zainal^{2,3} and Sean J Whittaker^{1*}

¹ St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom.
 ² MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, United Kingdom CB2 0XZ
 ³ Academic Laboratory of Medical Genetics, Box 238, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ
 ⁴ Full list of Genomics England Research Consortium members provided in manuscript.

Supplementary Methods

Mutation calling from single cell RNA-seq data

Data processing was performed as outlined in the GATK best practices for calling variants in RNA-seq. SRA toolkit (http://ncbi.github.io/sra-tools/) was used to fetch fastq files for all T_{EM} and T_{CM} cells from donor 6, 12 and 16. 2-pass STAR¹ alignment was performed using the hg38 assembly and GENCODE v29 known genes annotation to build the genome index. Picard tools (http://broadinstitute.github.io/picard/) was then used to add read group information, sort, mark duplicates and index the BAM file. GATK² Split'n'trim was used to remove intronic overhangs followed by base recalibration. Finally, GATK

HaplotypeCaller was used to identify potential variants followed by GATK VariantFiltration to flag variants in a SNP cluster (-window 35 -cluster 3) and those with a Fisher strand value greater than 30 or quality by depth value of less than 2.

The VariantAnnotation³ package was used to import vcf files into \mathbb{R}^4 for further manipulation. Variants were restricted to SNVs which passed all filters applied by VariantFiltration. Variants were further restricted to those with a read depth of at least 6 as this has been shown to give a true positive rate of 68% for variant calling from RNA-seq data⁵. To exclude germline mutations, we excluded any variant which occurred in three or more cells from the same patient. Since the coverage of some genes was rather sparse, we included variants in the final analysis only if the reference allele was correctly called in at least 9 other cells from that patient. Finally, the mutation context of each variant was annotated using the SomaticSignatures⁶ package and mutational profiles were examined for presence of the UV Signature 7 by visual inspection looking for a prevalent C>T in a TCC context peak.

Supplementary Tables

Data in Supplementary 1_2020_06_24.xls

Supplementary Table 1: Number of mutations contributed by each signature to an individual's total exome SNV count. ND = Signature not included in the analysis as it was not present in the subtype analysis. NSA = No signatures assigned, either because there were too few mutations to clearly assign signatures or because the cosine similarity between model and data was poor (<0.6).

Disease	Tumour cell selection	Germline cell	Exon capture	Average	Variant	Variant calling criteria
		$\mathbf{selection}$		$\operatorname{coverage}/\operatorname{depth}$	caller	

Choi 2015	SS	CD3+TCRVβ+CD14-CD	CD14+CD3-CD8-CD1	NimbleGen 2.1	All > 140x	Not specified	P-value significance threshold
		8–CD19– from peripheral	9– monocytes	Exome reagent	Median $220x/184x$	-	determined independently for
		blood if clonal TCRVB		0	(tumour/normal)		each tumour
		detected, otherwise			(**************************************		
		CD3+CD26-CD14-CD8					
		- CD19-					
da Silva	MF/SS	Skin biopsies and/or	buccal swabs or	SureSelect Human	$143.51 \times \text{ with } 95.3\%$	SAVI	$\geq 15\%$ of tumour reads and
Almeida 2015		CD4+ T-cells from	granulocytes	All Exon 50 MB kit	of the target		absent in germline sample
		peripheral blood with TCR			sequence covered by		
		clonal rearrangement			> 30 imes		
Jiang 2015	NKTCL	Frozen tumour tissue	peripheral blood	SureSelect Human	$134.9\times$ with 90.9% of	GATK	Not specified, excluded those
				All Exon 50 MB kit	the target sequence	Unified	reported in matched control,
					covered ${\geq}10{\times}$	Genotyper	those with low depth, and those
						and muTect	described in dbSNP135
Kataoka 2015	ATLL	Peripheral blood, lymph	buccal swabs	SureSelect Human	$113 \mathrm{x}$ in tumour, $108 \mathrm{x}$	In-house	(i) Fisher's exact P ≤ 0.01 ; (ii)
		node or other tumour		All Exon v4 or v5 $$	in matched normal	pipeline	≥ 5 variant reads in tumor
		tissue		kits			samples; (iii) VAF in tumor
							samples ≥ 0.07 ; and (iv) a VAF
							in matched normal samples
							$<\!\!0.07$
McKinney	HSTL	FFPE tumour tissues	unaffected bone marrow	SureSelect Human	80x	MuTect	tumor LOD score cutoff 4.5
2017				All Exon 50MB kit		version $1.1.7$	
Moffitt 2017	EATL	FFPE tumour tissues	unaffected bone marrow	SureSelect Human	70x	MuTect	tumor LOD score cutoff 4.5
				All Exon 50 MB kit		version 1.1.7	
Palomero	AITL/EATL/	Tumour biopsy material	blood, buccal swab or	SureSelect Human	$45\times$ with 84% of the	SAVI	${>}15\%$ of tumour reads and ${<}3\%$
2014	NKTCL/PTCL		non-tumor infiltrated	All Exon 50 MB kit	target sequence		in germline sample
			biopsy material		covered $\geq 10 \times$		
Prasad 2016	SS	CD4+ T-cells from	granulocytes	Nextera rapid	37x	MuTect	MuTect standard
		peripheral blood with TCR		capture			recommendation
		clonal rearrangement		exome (37 Mb)			

Roberti 2016	EATL	Microdissected FFPE	Microdissected FFPE	SureSelect	$195 \mathrm{x}/213 \mathrm{x}$	samtools	$>\!\!22\%$ of tumour reads and $<$
		intestinal tissue - area with	intestinal tissue -area		(tumour/normal) ~	mpileup	15% of normal with difference
		highest tumour cell	devoid of neoplastic cells		89% of target	(v1.2) and	between tumour and normal
		content			sequence covered	VarScan	${<}22\%$
					≥50x	(v2.3.7)	
Sakata-	AITL/PTCL	Tumour biopsy material	buccal mucosa, bone	SureSelect Human	86.5% was analyzed	samtools	P < 0.01, observed in
Yanagimoto			marrow MNCs without	All Exon 50Mb or	by $\geq\!\!20$ independent		bidirectional reads and allele
2014			apparent lymphoma	V4 kit	reads on average		frequency < 0.1 in the germline
			infiltration or peripheral				
			blood cells				
Ungewickell	MF/SS	Skin biopsies and/or	CD4-/Vbeta- PBMCs	EZexome V2.0	Not specified	GATK	Default parameters, $VAF > 0.1$
2015		CD4+ clonal V beta sorted		Early Access for		SeqGene	and supported by bidirectional
		T-cells from peripheral		Capture by Ambry		and VarScan	reads.
		blood		Genetics			
Wang 2015	SS	CD4+ T-cells from	fibroblasts	HGSC VCRome 2.1	$100\times$ with $~94\%$ of	Atlas-SNP2	tumour VAF ≥ 0.04 ;
		peripheral blood with TCR			the target sequence		normal VAF: tumour VAF \leq
		clonal rearrangement			covered ≥ 20		0.15
Woollard	SS	CD4+ T-cells from	fibroblasts	Not specified	82% of the target	VarScan	Varscan default parameters,
2016		peripheral blood with TCR			region covered $>20x$		${ m VAF}>6\%$
		clonal rearrangement					
Yoo 2014	AITL	Frozen lymph node	Buffy coat	SureSelect Human	92.5x	MuTect	(i) ≤ 1 read with the alternate
		tumour biopsy		All Exon V3 kit		1.1.4 and	allele in normal (ii) tumour
						Strelka 1.0.7	VAF:normal VAF > 5 (iii) $\leq \! 2$
							reads for the third allele

Supplementary Table 2: Key experimental and bioinformatic parameters of the studies included in this meta-analysis.

	Disease	Number of patients	Percentage treatment		
			naïve at time of sampling		
Choi 2015	SS	33	8%		
da Silva Almeida 2015	MF/SS	34	Not specified		
Jiang 2015	NKTCL	25	100%		
Kataoka 2015	ATLL	81	98%		
McKinney 2017	HSTL	64	Not specified		
Moffitt 2017	EATL	58	Not specified		
Palomero 2014	AITL/EATL/	10	Not aposified		
	NKTCL/PTCL	12	Not specified		
Prasad 2016	SS	12	8%		
Roberti 2016	EATL	15	Not specified		
Sakata-Yanagimoto 2014	AITL/PTCL	6	Not specified		
Ungewickell 2015	MF/SS	11	Not specified		
Wang 2015	SS	37	65%		
Woollard 2016	SS	10	100%		
Yoo 2014	AITL	5	0%		

Supplementary Table 3: Treatment status of patients included in this meta-analysis.

Supplementary References

- 1. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21 (2013).
- McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303 (2010).
- 3. Obenchain, V. et al. VariantAnnotation : a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30, 2076–2078 (2014).
- 4. R Core Team (2017). R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/).
- 5. Poirion, O., Zhu, X., Ching, T. & Garmire, L. X. Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotypephenotype linkage. *Nat. Commun.* **9**, 4892 (2018).
- Gehring, J. S., Fischer, B., Lawrence, M. & Huber, W. SomaticSignatures: inferring mutational signatures from single-nucleotide variants. *Bioinforma. Oxf. Engl.* 31, 3673–3675 (2015).