# Active-site loop variations adjust activity and selectivity of the cumene dioxygenase

# **Supplementary Information**

#### Peter M. Heinemann<sup>a</sup>, Daniel Armbruster<sup>a</sup> and Bernhard Hauer <sup>a\*</sup>

<sup>a</sup> Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart (Germany)

\* Corresponding Author

E-mail address: bernhard.hauer@itb.uni-stuttgart.de

| . 10                                                                                                            |                                           | 20                      | 30                         | 40        | 50              | 6U                     |                          | 10                                        | . <sup>0</sup> | 0 .                     | 90    |                  | 100                    | 110                                   |                               | 120                 | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|----------------------------|-----------|-----------------|------------------------|--------------------------|-------------------------------------------|----------------|-------------------------|-------|------------------|------------------------|---------------------------------------|-------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| CDO/1-114 IPCNMKFAAEC                                                                                           | FCS <mark>D</mark> MYH                    | A <mark>G</mark> TMAHLS | 8GVLS                      | SLPPEMDL  | SQVKLPSSGI      | V F RA                 | кw <mark>g</mark> gн     | I <mark>G</mark> T <mark>G</mark> V       | F - N - DD     | FALLQ <mark>A</mark> I  | MG    | Р <mark>К</mark> | vv <mark>d</mark> ywti | KG <mark>P</mark> A <mark>A</mark> EF | RAKĖR <mark>lg</mark>         | K-VLPA              | ADRMVAQ <mark>H</mark> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT I F P T C           |
| CDO-SubfamilPCNWKFAAEG                                                                                          | FCS <mark>D</mark> MYH                    | GTMSHLS                 | 6GVLA                      | GLPPEMDL' | TQIQLSKNGI      | V FRS                  | SAW <mark>G</mark> GH    | I <mark>G</mark> -  -  A <mark>G</mark> V | /F - I - ND    | SSILLSV                 | V G   | Р <mark>К</mark> | ITQYWT                 | QG <mark>P</mark> A <mark>A</mark> Ek | AARRVP                        | QLPI                | I LDMFGQ <mark>H</mark> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTV <mark>FP</mark> TC |
| TDO/1-114 IPCNWKFAAEG                                                                                           | FCS <mark>D</mark> MYH                    | GTTSHLS                 | 6GILA                      | GLPEDLEM  | ADLAPPTVGI      | < 🛛 Y <mark>R</mark> A | ∖SW <mark>G</mark> GH    | I <mark>G</mark> -  -  S <mark>G</mark> F | Y - V - GD     | PNLMLAI                 | M G   | Р <mark>К</mark> | VTSY <mark>W</mark> TI | EG <mark>P</mark> ASE                 | (AAER <mark>lg</mark>         | SVER-0              | SKLMVE <mark>H</mark> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MTV <mark>FP</mark> TC |
| BDO/1-114 IPCNWKFAAEG                                                                                           | FCS <mark>D</mark> MYH                    | GTTAHLS                 | 6GIIA                      | GLPEDLEL/ | ADLAPPKFGI      | < 🛛 Y <mark>R</mark> A | ∖SW <mark>G</mark> GH    | I <mark>G</mark> -  -  S <mark>G</mark> F | Y - I - GD     | PNMMLAN                 | 1M G  | Р <mark>К</mark> | VTSYLT                 | EG <mark>P</mark> A <mark>A</mark> Eł | (AAER <mark>lg</mark>         | SIER-0              | €TKIMLE <mark>H</mark> Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTV <mark>FP</mark> TC |
| BPDO/1-114 IPCNWKFAAEG                                                                                          | FCS <mark>D</mark> MYH                    | AGTTTHLS                | 6GILA0                     | GIPPEMDL  | SQAQI-PTKO      | JQFR                   | AAWGG                    | HG S                                      | WY - V - D     | PEGSLLA                 | VM    | ₽К               | - VTQYW                | TEGP <mark>A</mark> AE                | LAEQRL                        | GHTGMF              | <sup>P</sup> VRRMV <mark>G</mark> QH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HMTIFPT                |
| NDO/1-114 IKANWKAPAEN                                                                                           | IF VG <mark>D</mark> AYH                  | GWTHAS                  | SLR <mark>SG</mark> ESIFS: | SLAGN/    | AALPPEGAGI      | _ <mark>0</mark> MTS   | SKY <mark>g</mark> -S    | G MG                                      | LWD - G Y      | 'SGVHS <mark>a</mark> d | L V   | РЕ               | LMAF I                 | GAKQEF                                | RLNKEIG                       | DVRARI              | Y-RSHLNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTV <mark>FPN</mark> N |
| NDO-SubfamilKANWKAPAEN                                                                                          | IF VG <mark>DAYH</mark>                   | GWTHAS                  | SLR <mark>SG</mark> QSIFA: | SLAGN/    | AALPPEGAGI      | MTS                    | зн                       | I <mark>G</mark> M <mark>G</mark> \       | LWS            |                         |       |                  |                        |                                       |                               |                     | HLNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ЭТV <mark>FPN</mark> N |
| Pi-DO4/1-115   TCNWKLAVDN                                                                                       | IL - F <mark>D</mark> F YH,               | SISHASA                 | YMSGERAIR                  | NPNSPQ    | TPDYVR          | S FRV                  | /VM <mark>G</mark> EY    | GHAIGO                                    | PKVTSE         | ALDKLEN                 | E     | DTNPRK           | RDLWRR                 | rk <mark>p</mark> gare                | I <mark>L G</mark>            | EVGM                | EAG <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNIFPNM                |
| Pi-D07/1-112 I GCNWK LANDN                                                                                      | IL - F <mark>D</mark> Y <mark>YH</mark> I | F <mark>DISHAS</mark> A | VMNNF IDRS                 | AGD       | HKKRQI          | <b>MEHR</b> N          | ILF <mark>G</mark> EY    | GHG I <mark>G</mark> O                    | PRLTEE         | TWAVVDK                 | KAAEG | AVDPL-           |                        | RTPENA                                | = M <mark>LG</mark>           | DQ - I              | DTK <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RLIFPNL                |
| <i>Pi-D</i> 08/1-113   H <mark>CNWKLA</mark> VDN                                                                | IL - F <mark>D</mark> YYH                 | GISHASA                 |                            | EKKVVA    | PL DPI          | инку                   | / I L <mark>G</mark> D Y | GHALG                                     | HRLRPD         | QLALMQP                 | D     | NIEASM           | HDHSWR                 | NR <mark>P</mark> GVA                 | A <mark>LG</mark>             | PVAI                | EFR <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNVFPNL                |
| Pi-D09/1-112 I GCNWK LAVDN                                                                                      | IL - F <mark>D</mark> YYH                 | GISHASA                 | FMSNFRARD                  | PEAPPA    | PPRFSF(         | <b>SICHR</b> V         | /WL <mark>G</mark> DY    | GHAIGO                                    | PRIPTC         | EMANIIA                 | Н     | DNPN             | LDETWR                 |                                       | 4I <mark>LG</mark>            | DQAI                | ESV <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI FPNL               |
| Pi-D010/1-1201 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> WYH                 | GISHASA                 |                            | NLPPT     | I AERTGPGTSDPI  | H <mark>AHR</mark> V   | /LL <mark>G</mark> DY    | GHA I <mark>G</mark> O                    | PRITPE         |                         | A G   | DPDVT-           | LDERWR                 | ok <mark>p</mark> a <mark>a</mark> ka | 4 <mark>A</mark> LG           | AA <mark>G</mark> A | DVR <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI <mark>FP</mark> NL |
| Pi-D014/1-1201 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> WYH                 | F <mark>QISHAS</mark> A | NMADERRQQ                  | SRLTDEER  | ELAAKAGIAGGGGAQ | RIPHR V                | /VM <mark>G</mark> AY    | GHA I <mark>G</mark> O                    | PRLTQE         | ARDARQQ                 | L R   | KIGGL-           | INDEFR                 | ET <mark>paa</mark> ke                | E A <mark>LG</mark>           | EVGA                | DTA <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI <mark>FP</mark> NL |
| Pi-D015/1-12-IGCNWKLAVDN                                                                                        | IL - F <mark>D</mark> WYH                 | F <mark>QISHAS</mark> A | FMAGAVREP                  | QNLTQQDM  | MQLQKAQIGGLSPI  |                        | / I L <mark>G</mark> G Y | GHA I <mark>G</mark> O                    | PRIEE          | ALDIRSK                 | F Y   | RVDPI-           | FDDRY <mark>R</mark>   | ED <mark>P</mark> KVQE                | ) -  -  -  V <mark>L G</mark> | GVGV                | TTA <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNIFPNL                |
| Pi-D016/1-12:1 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> WYH                 | F <mark>QISHAS</mark> A | FMSGFRPQLI                 | EKLSQEDQ  | ELAKIAGIGG-GGAR |                        | VL <mark>G</mark> AY     | GHA I <mark>G</mark> O                    | PRLTKI         | ERDARAK                 | L G   | KIEIL-           | NNDRF <mark>R</mark> I | EL <mark>P</mark> Q <mark>A</mark> QO | 2 V <mark>LG</mark>           | EVGI                | DTA <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI <mark>FP</mark> NL |
| Pi-D017/1-120 GCNWKLAVDN                                                                                        | IL - F <mark>D</mark> F YHI               | F <mark>QISHAS</mark> A | TMSGERKQV                  | DKLNAEER  | ELAAKAGIAGGSGVG | RIPHRV                 | /VF <mark>G</mark> AY    | с <mark>вн</mark> су <mark>в</mark> о     | PRLTPE         | IRAIRTG                 | L A   | KIDSL-           |                        | DW <mark>PQA</mark> QE                | A <mark>LG</mark>             | EVGI                | DTS <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI FPNL               |
| Pi-D018/1-12:1 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> F YHI               | F <mark>QISHAS</mark> A | TMSGERKQLI                 | NKLTTEEM  | DMAAKAGVLG-GGLR | PHHRV                  | /SM <mark>G</mark> KY    | GHAVG                                     | PRITEE         | MLEARAI                 | L G   | KLDGL -          | VQDQF <mark>R</mark> I | DR <mark>PQA</mark> QE                | E A <mark>lg</mark>           | EVGL                | KQG <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNIFPNL                |
| Pi-D021/1-12-1 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> F YHI               | F <mark>QISHAS</mark> A | FMSGFRKQLI                 | EGVDAAEQ  | AIVEKAEINGGIRI  | V. HRV                 | /VL <mark>G</mark> KY    | GHAIG                                     | PRLTKE         | VREARAL                 | L G   | RFEVL-           | TNDNF RI               | NTDSAQE                               | A <mark>LG</mark>             | EIGL                | DVN <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI FPNL               |
| Pi-D022/1-12:1 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> WYH                 | F <mark>QISHAS</mark> A | FMVGMLRGG                  | SKLTPEDH  | AVLEKARAVGMSRO  | HR V                   | /VF <mark>G</mark> AY    | GHA I GO                                  | PRGSQE         | ARDARRS                 | M A   | RIEPI-           | MEDLYR                 |                                       | ALG                           | EVGV                | DTS <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNIFPNL                |
| Pi-D023/1-11:1 GCNWKLAVDN                                                                                       | IL - F <mark>D</mark> F YH                | DISHASA                 | TMSGARKHAI                 | ЕТ        | GLFTPV          | MIHRV                  | /TL <mark>G</mark> DY    | GHA I GO                                  | NKIQPR         | LWEIVEE                 | MKAEG | (PLDQ-F          | LNQEWR                 | KRPEVA                                | E A <mark>LG</mark>           | DM- A               | DTS <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PN I FPNM              |
| Pi-D029/1-12 I GCNWKLAVDN                                                                                       | IL - Y <mark>DWYH</mark>                  |                         | ST <mark>MSG</mark> YSRPL  | VPAVVDEG  | AP KPPQQNQQN    | A HRV                  | LL <mark>G</mark> DY     | GHG I SO                                  | PRRSPE         | MREYQQL                 | V G   | KIEPL-           | NDDRWR                 | DEPAAKA                               | ALG                           | EAGA                | DTR <mark>GH</mark> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNI FPNL               |
| Pi-D030/1-12 GCNWKLAVDN                                                                                         | IL - F <mark>DWYH</mark>                  | SQISHASA                | FISGERPQLI                 | EKLSPEDQ  | ELARIADIGA-GGAR |                        | VL <mark>G</mark> AY     | GHAIG                                     | PRLTKI         | EREARAK                 | L G   | KVEILL           | YDDRF R                | EL <mark>P</mark> K <mark>a</mark> qe | VLG                           | EVGI                | DTAGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNIFPNL                |
|                                                                                                                 |                                           |                         |                            |           |                 |                        |                          | _                                         |                |                         |       | _                |                        |                                       |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| Conservation                                                                                                    |                                           |                         |                            | _         |                 |                        |                          | e 🕒                                       |                |                         |       |                  | _                      | _                                     |                               |                     | and the second se |                        |
| <u>*</u> 29 <u>***</u> 67699                                                                                    | 8-5_6**                                   | 5 <mark>4663458</mark>  | 3001103101                 | 210000    | 0 1 2           | 1 543                  | 01103                    | 4 08                                      | 210-00         | 00000000                | 0 0   | 0 0              | 000001                 | 0010000                               | ) 0 0 0                       | 0000                | 002352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2678676                |
| a series and |                                           | المحالي ا               |                            |           |                 |                        |                          |                                           |                |                         |       |                  | _                      |                                       |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| Quality                                                                                                         |                                           |                         |                            |           |                 |                        |                          |                                           |                |                         |       |                  |                        |                                       |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| •                                                                                                               |                                           |                         |                            |           |                 |                        | _                        |                                           |                |                         |       |                  |                        |                                       | _                             | _                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                      |
|                                                                                                                 |                                           |                         |                            |           |                 |                        |                          |                                           |                |                         | _ =   |                  | الد مر                 |                                       |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                                                                                                                 |                                           | GISHASA                 |                            | +IIPPE+I  |                 | ALL HRV                |                          | GHALGO                                    | DD+TDE         |                         |       | KIDPI +          | + 000/1/2              |                                       |                               | EVGLD               | ++DTAGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                                                                                                                 |                                           |                         |                            |           |                 |                        | 1 2001                   |                                           |                |                         |       |                  |                        |                                       | _/ \/ \L \\ L \               |                     | · · · · · AUIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |

Supplementary Fig. 1: Excerpt of the sequence alignment of a-subunits of the CDO from *Pseudomonas fluorescens* IP01 with the CDO subfamily, biphenyl dioxygenase (BPDO) from *Paraburkholderia xenovorans* (LB400), toluene dioxygenase (TDO) from *Pseudomonas putida* F1, benzene dioxygenase (BDO) from *Pseudomonas putida* ML2, naphthalene dioxygenase (NDO) from *Pseudomonas* sp. NCIB 9816-4, the NDO subfamily and 15 a-subunits from the genome of *Phenylobacterium immobile* E (Pi-DO). The degree of conservation is shown from low (white) to high (blue) as well as in the conservation line. The alignment quality, consensus sequence and occupancy are shown in the bottom lines. Loop 1 (green), loop 2 (purple) and the corresponding residues of the other ROs are highlighted by frames in the corresponding colors.



Supplementary Fig. 2: Phylogenetic tree of the aligned α-subunits of the oxygenases of CDO, CDO subfamily, BPDO, TDO, BDO, NDO, NDO-subfamily and from *Phenylobacterium immobile* E (Pi-DO).



Supplementary Fig. 3: CAVER analysis of the crystal structure of the  $\alpha$ -subunit of the CDO oxygenase from *Pseudomonas fluorescens* IP01 (PDB entry 1wql). Side view (left structure) and top view (right structure) of loop 1 (green) and loop 2 (purple) in the crystal structure of one  $\alpha$ -subunit (grey) of the CDO oxygenase (PDB entry 1wql). The simulated tunnel (blue), the catalytically active iron (orange sphere), molecular oxygen (red spheres) and active site residues (red sticks) are shown as well as the docked substrate *R*-limonene (green sticks). Iron was selected as starting point with a tunnel radius of 1.2 Å.

Supplementary Table 1: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the Wild-type and the variants obtained from the alanine scan of the CDO. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|           | Pf             | Selecti | vity (%) | Pf                                              |       | Selectivity (% | /0) | Pf                                              | Selectiv | ity (%) |
|-----------|----------------|---------|----------|-------------------------------------------------|-------|----------------|-----|-------------------------------------------------|----------|---------|
|           | (mM)           | 1a      | 1b       | ( <b>mM</b> )                                   | 2a    | 2b             | 2c  | ( <b>mM</b> )                                   | 3a       | 3b      |
| Wild-type | 6.68 ±<br>0.77 | 86.4    | 13.6     | 3.56 ±<br>0.44                                  | 98.8  | 0.7            | 0.5 | $\begin{array}{r} 0.64 \pm \\ 0.03 \end{array}$ | 93.0     | 7.0     |
| G236A     | 10.22 ± 1.07   | 28.4    | 71.6     | 3.77 ± 0.21                                     | 98.3  | 0.9            | 0.8 | 0.87 ±<br>0.03                                  | 91.7     | 8.3     |
| T237A     | 8.63 ±<br>1.32 | 72.1    | 27.9     | 2.60 ± 0.14                                     | 97.1  | 1.4            | 1.5 | 0.90 ±<br>0.02                                  | 94.9     | 5.1     |
| M238A     | $0 \pm 0$      | 0.0     | 0.0      | $\begin{array}{c} 0.29 \pm \\ 0.02 \end{array}$ | 100.0 | 0.0            | 0.0 | $0\pm 0$                                        | 0.0      | 0.0     |
| A239G     | 10.07 ± 1.35   | 85.5    | 14.5     | $0.84 \pm 0.03$                                 | 98.8  | 1.2            | 0.0 | 0.13 ±<br>0.01                                  | 89.2     | 10.8    |
| H240A     | $0 \pm 0$      | 0.0     | 0.0      | $0 \pm 0$                                       | 0.0   | 0.0            | 0.0 | $0 \pm 0$                                       | 0.0      | 0.0     |
| L241A     | 10.26 ± 1.80   | 77.0    | 23.0     | 2.44 ±<br>0.26                                  | 99.3  | 0.4            | 0.4 | 1.41 ± 0.08                                     | 92.9     | 7.1     |
| S242A     | 1.56 ±<br>0.26 | 84.4    | 15.6     | $\begin{array}{c} 0.37 \pm \\ 0.01 \end{array}$ | 97.0  | 0.8            | 2.2 | 0.15 ±<br>0.01                                  | 92.3     | 7.7     |
| G243A     | 0.33 ±<br>0.06 | 32.9    | 67.1     | 0.17 ±<br>0.00                                  | 97.0  | 0.0            | 3.0 | 0.07 ±<br>0.00                                  | 100.0    | 0.0     |
| V244A     | 0.73 ± 0.11    | 45.9    | 54.1     | 0.22 ±<br>0.01                                  | 95.7  | 1.4            | 2.9 | 0.09 ±<br>0.01                                  | 89.9     | 10.1    |
| L245A     | 4.94 ±<br>0.43 | 90.7    | 9.3      | $\begin{array}{c} 0.60 \pm \\ 0.06 \end{array}$ | 97.3  | 0.9            | 1.9 | 0.16 ±<br>0.01                                  | 93.5     | 6.5     |
| S246A     | 5.17 ±<br>0.07 | 89.9    | 10.1     | 1.23 ±<br>0.02                                  | 97.6  | 1.5            | 0.9 | 0.17 ±<br>0.01                                  | 93.7     | 6.3     |
| S247A     | 2.81 ± 0.17    | 80.7    | 19.3     | $\begin{array}{c} 0.56 \pm \\ 0.08 \end{array}$ | 96.1  | 1.5            | 2.4 | 0.15 ±<br>0.00                                  | 93.6     | 6.4     |
| L248A     | 4.42 ± 0.21    | 61.1    | 38.9     | 1.19 ±<br>0.04                                  | 97.9  | 0.6            | 1.5 | 0.69 ±<br>0.06                                  | 92.7     | 7.3     |
| P249A     | 8.11 ±<br>1.36 | 79.4    | 20.6     | $\begin{array}{c} 3.42 \pm \\ 0.02 \end{array}$ | 98.8  | 0.5            | 0.7 | 0.79 ±<br>0.00                                  | 93.4     | 6.6     |
| P250A     | 6.66 ±<br>0.30 | 80.8    | 19.2     | 2.81 ±<br>0.34                                  | 99.0  | 0.4            | 0.5 | 0.89 ±<br>0.02                                  | 93.1     | 6.9     |
| E251A     | 7.00 ±<br>0.29 | 72.7    | 27.3     | 2.92 ±<br>0.15                                  | 99.2  | 0.3            | 0.6 | 0.68 ±<br>0.02                                  | 93.1     | 6.9     |
| M252A     | 4.22 ± 0.28    | 77.3    | 22.7     | 3.10 ±<br>0.53                                  | 98.7  | 0.7            | 0.7 | 0.66 ±<br>0.02                                  | 93.2     | 6.8     |
| D253A     | 3.09 ±<br>0.35 | 69.5    | 30.5     | 2.44 ± 0.14                                     | 99.1  | 0.2            | 0.7 | 0.41 ± 0.03                                     | 95.4     | 4.6     |
| L254A     | 2.32 ±<br>1.95 | 76.3    | 23.7     | $\begin{array}{c} 1.81 \pm \\ 0.06 \end{array}$ | 99.2  | 0.0            | 0.8 | 0.57 ±<br>0.04                                  | 95.1     | 4.9     |
|           |                |         |          |                                                 | 4     | 4              | ±   |                                                 | L        |         |

|        | 5.41 ±          |      | 1     | 256                                             |       | -    |      | $0.80 \pm$     |      |      |
|--------|-----------------|------|-------|-------------------------------------------------|-------|------|------|----------------|------|------|
| \$255A | 0.29            | 77.9 | 22.1  | $2.56 \pm 0.08$                                 | 98.7  | 0.6  | 0.6  | 0.03           | 93.5 | 6.5  |
| Q256A  | 6.53 ±<br>0.60  | 79.1 | 20.9  | 2.81 ±<br>0.16                                  | 99.0  | 0.6  | 0.4  | 0.71 ± 0.02    | 93.2 | 6.8  |
| V257A  | 6.14 ±<br>0.54  | 69.6 | 30.4  | $\begin{array}{c} 2.77 \pm \\ 0.07 \end{array}$ | 98.8  | 0.4  | 0.8  | 0.74 ± 0.05    | 95.3 | 4.7  |
| K258A  | 1.32 ± 0.40     | 77.3 | 22.7  | 2.85 ± 0.07                                     | 98.7  | 0.6  | 0.7  | 0.46 ± 0.10    | 92.7 | 7.3  |
| L259A  | 2.20 ±<br>0.31  | 93.8 | 6.2   | 2.72 ±<br>0.17                                  | 97.9  | 0.8  | 1.2  | 0.53 ±<br>0.11 | 92.8 | 7.2  |
| P260A  | $0\pm 0$        | 0.0  | 0.0   | $\begin{array}{c} 1.78 \pm \\ 0.15 \end{array}$ | 97.9  | 1.0  | 1.1  | 0.11 ±<br>0.01 | 84.0 | 16.0 |
| S261A  | 0.94 ±<br>0.25  | 74.9 | 25.1  | 2.50 ± 0.13                                     | 98.3  | 0.8  | 0.9  | 0.33 ±<br>0.02 | 89.7 | 10.3 |
| S262A  | 1.73 ±<br>0.04  | 87.2 | 12.8  | $\begin{array}{c} 0.29 \pm \\ 0.01 \end{array}$ | 100.0 | 0.0  | 0.0  | 0.53 ±<br>0.01 | 92.9 | 7.1  |
| G263A  | 0.56 ± 0.11     | 0.0  | 100.0 | $\begin{array}{c} 3.25 \pm \\ 0.64 \end{array}$ | 99.3  | 0.7  | 0.0  | 0.25 ± 0.00    | 87.5 | 12.5 |
| N264A  | 3.04 ± 0.31     | 87.4 | 12.6  | $\begin{array}{c} 2.66 \pm \\ 0.28 \end{array}$ | 100.0 | 0.0  | 0.0  | 0.25 ± 0.01    | 92.5 | 7.5  |
| F278A  | 14.24 ±<br>0.49 | 75.8 | 24.2  | $\begin{array}{c} 3.36 \pm \\ 0.15 \end{array}$ | 99.3  | 0.5  | 0.1  | 2.67 ± 0.11    | 85.8 | 14.2 |
| N279A  | 14.71 ±<br>1.38 | 73.7 | 26.3  | 2.88 ± 0.12                                     | 97.8  | 1.0  | 1.2  | 1.26 ±<br>0.11 | 92.2 | 7.8  |
| D280A  | 16.21 ±<br>0.18 | 76.3 | 23.7  | 3.06 ± 0.10                                     | 99.2  | 0.7  | 0.1  | 1.28 ± 0.09    | 93.1 | 6.9  |
| D281A  | 14.56 ±<br>0.94 | 12.6 | 87.4  | 1.29 ±<br>0.02                                  | 93.0  | 2.6  | 4.4  | 1.56 ± 0.03    | 89.2 | 10.8 |
| F282A  | 12.31 ±<br>2.86 | 95.0 | 5.0   | 4.24 ±<br>0.17                                  | 100.0 | 0.0  | 0.0  | 9.99 ±<br>0.40 | 98.6 | 1.4  |
| A283G  | 5.30 ±<br>0.70  | 70.5 | 29.5  | 2.89 ±<br>0.13                                  | 98.2  | 0.9  | 0.8  | 1.02 ±<br>0.06 | 93.1 | 6.9  |
| L284A  | 5.04 ±<br>0.51  | 27.9 | 72.1  | 2.01 ±<br>0.24                                  | 61.6  | 20.1 | 18.3 | 1.32 ± 0.04    | 90.5 | 9.5  |
| L285A  | 4.98 ±<br>0.85  | 15.2 | 84.8  | 0.16 ±<br>0.00                                  | 100.0 | 0.0  | 0.0  | 0.28 ±<br>0.02 | 83.3 | 16.7 |
| Q286A  | 4.87 ±<br>0.84  | 51.1 | 48.9  | $\begin{array}{c} 1.32 \pm \\ 0.01 \end{array}$ | 98.7  | 1.3  | 0.0  | 0.36 ±<br>0.02 | 90.7 | 9.3  |
| A287G  | 6.42 ±<br>0.11  | 29.5 | 70.5  | 1.29 ±<br>0.10                                  | 97.8  | 2.2  | 0.0  | 0.38 ±<br>0.02 | 88.2 | 11.8 |
| I288A  | 5.06 ±<br>1.12  | 82.2 | 17.8  | $\begin{array}{c} 0.45 \pm \\ 0.03 \end{array}$ | 100.0 | 0.0  | 0.0  | 0.48 ±<br>0.01 | 93.5 | 6.5  |
| M289A  | 5.63 ±<br>0.56  | 53.3 | 46.7  | 1.94 ±<br>0.09                                  | 54.1  | 6.2  | 39.8 | 10.05 ± 0.13   | 93.3 | 6.7  |
| G290A  | 6.57 ±<br>0.37  | 68.8 | 31.2  | 2.75 ±<br>0.26                                  | 98.8  | 0.6  | 0.6  | 0.35 ±<br>0.02 | 90.1 | 9.9  |



Supplementary Fig. 4: Product distribution and formation of the two products 3-vinylcyclohexa-3,5-diene-1,2-diol 1a (VCHDD, red, bottom bars) and phenylethan-1,2-diol 1b (PED, blue, top bars) for the biotransformation of styrene with the wild-type and variants obtained from the alanine scan of loop 1 and 2 of the CDO. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Source data are provided as a Source Data file.



Supplementary Fig. 5: Product distribution and formation of the products (+)-carveol 2a (green, bottom bars), (+)-mentha-1.8-dien-10-ol 2b (MDEO, blue, middle bars) and (+)-perillyl alcohol 2c (orange, top bars) for the biotransformation of (*R*)-limonene 2 with the wild-type and variants obtained from the alanine scan of loop 1 and 2 of the CDO. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Source data are provided as a Source Data file.



Supplementary Fig. 6: Product distribution of the products 1,2-dihydroxy-3-(2'pyridyl)cyclohexa-3,5-diene 3a (green, bottom bars) and 2-phenylpyridine-5-ol 3b (purple, top bars) for the biotransformation of 2-phenylpyridine 3 with the wild-type and variants obtained from the alanine scan of loop 1 and 2 of the CDO. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Source data are provided as a Source Data file.

**Supplementary Table 2: Conversion of styrene 1,** (*R*)-limonene 2 and 2-phenylpydridine 3 with the Wild-type and selected saturation variants. Biotransformations were performed in technical triplicates and standard deviation (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|           | Pf             | Selecti    | vity (%) | Pf             | 1     | Selectivity (% | (0)  | Pf             | Selectiv | ity (%) |
|-----------|----------------|------------|----------|----------------|-------|----------------|------|----------------|----------|---------|
| _         | (mM)           | <b>1</b> a | 1b       | ( <b>mM</b> )  | 2a    | 2b             | 2c   | ( <b>mM</b> )  | 3a       | 3b      |
| Wild-type | 6.68 ±<br>0.77 | 86.4       | 13.6     | 3.58 ± 0.44    | 98.8  | 0.7            | 0.5  | 0.64 ± 0.03    | 93.0     | 7.0     |
| F278V     | 0.24 ± 0.07    | 100.0      | 0.0      | 5.31 ±<br>0.79 | 100.0 | 0.0            | 0.0  | 1.57 ±<br>0.04 | 94.1     | 5.9     |
| F282V     | 1.31 ± 0.06    | 69.4       | 30.6     | 5.15 ± 0.28    | 100.0 | 0.0            | 0.0  | 1.28 ± 0.02    | 97.0     | 3.0     |
| F282T     | 0.05 ±<br>0.00 | 100.0      | 0.0      | 2.78 ±<br>0.24 | 100.0 | 0.0            | 0.0  | 9.82 ±<br>0.20 | 97.3     | 2.7     |
| L284G     | 0.31 ± 0.08    | 84.7       | 15.3     | 2.08 ± 0.19    | 30.8  | 19.4           | 49.7 | 0.74 ± 0.04    | 91.4     | 8.6     |
| Q286F     | 0.65 ±<br>0.05 | 67.5       | 32.5     | 1.86 ±<br>0.16 | 100.0 | 0.0            | 0.0  | 0.40 ± 0.05    | 93.8     | 6.2     |
| I288S     | 0.02 ± 0.03    | 41.6       | 58.4     | 1.31 ±<br>0.41 | 69.9  | 3.5            | 26.5 | 1.11 ±<br>0.03 | 93.3     | 6.7     |
| I288T     | 0.10 ±<br>0.01 | 73.9       | 26.1     | 2.14 ± 0.20    | 96.4  | 0.1            | 3.4  | 1.96 ± 0.02    | 93.6     | 6.4     |
| M289K     | 0.09 ±<br>0.01 | 0.0        | 100.0    | 0.06 ± 0.00    | 100.0 | 0.0            | 0.0  | 0.15 ±<br>0.01 | 86.7     | 13.3    |



Supplementary Fig. 7: Excerpt of the sequence alignment of CDO with α-subunits of the oxygenases from *Phenylobacterium immobile* E and variant selection for the adaption library. Single point mutations are indicated in green, single point deletions in red. Introduced sequence-alignment based insertions are highlighted in yellow, the loops 1 and 2 of the CDO together with the longest corresponding loops from oxygenases originated from *Phenylobacterium immobile* E are framed in yellow. Slashes in the variant designation represent stepwise insertions

Supplementary Table 3: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the wild-type, and deletion and single-point mutation variants based on loops in oxygenases from *Phenylobacterium immobile* E. Biotransformations were performed in technical triplicates and standard deviation (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|           | Pf             | Selecti | vity (%) | Pf                                              |       | Selectivity ( | %)  | Pf             | Selectiv | ity (%) |
|-----------|----------------|---------|----------|-------------------------------------------------|-------|---------------|-----|----------------|----------|---------|
|           | (mM)           | 1a      | 1b       | ( <b>mM</b> )                                   | 2a    | 2b            | 2c  | ( <b>mM</b> )  | 3a       | 3b      |
| Wild-type | 6.68 ±<br>0.77 | 86.4    | 13.6     | $\begin{array}{c} 3.58 \pm \\ 0.44 \end{array}$ | 98.8  | 0.7           | 0.5 | 0.64 ± 0.03    | 93.0     | 7.0     |
| T237del   | $0\pm 0$       | 0.0     | 0.0      | $0\pm 0$                                        | 0.0   | 0.0           | 0.0 | $0\pm 0$       | 0.0      | 0.0     |
| M238del   | $0\pm 0$       | 0.0     | 0.0      | 0.12 ±<br>0.00                                  | 100.0 | 0.0           | 0.0 | $0\pm 0$       | 0.0      | 0.0     |
| T237I     | 7.99 ±<br>0.13 | 78.5    | 21.5     | 0.44 ± 0.03                                     | 100.0 | 0.0           | 0.0 | 0.06 ±<br>0.01 | 100.0    | 0.0     |
| A239S     | 6.89 ±<br>0.21 | 69.8    | 30.2     | 0.86 ± 0.02                                     | 97.4  | 0.8           | 1.8 | 0.55 ±<br>0.02 | 91.0     | 9.0     |
| L245M     | $0\pm 0$       | 0.0     | 0.0      | 0.10 ±<br>0.00                                  | 100.0 | 0.0           | 0.0 | $0\pm 0$       | 0.0      | 0.0     |
| S247G     | $0 \pm 0$      | 0.0     | 0.0      | $0 \pm 0$                                       | 0.0   | 0.0           | 0.0 | $0 \pm 0$      | 0.0      | 0.0     |
| L248F     | $0 \pm 0$      | 0.0     | 0.0      | $0 \pm 0$                                       | 0.0   | 0.0           | 0.0 | $0 \pm 0$      | 0.0      | 0.0     |
| P249R     | $0 \pm 0$      | 0.0     | 0.0      | $0\pm 0$                                        | 0.0   | 0.0           | 0.0 | $0 \pm 0$      | 0.0      | 0.0     |
| S255L     | 5.35 ±<br>0.10 | 71.8    | 28.2     | 0.58 ±<br>0.02                                  | 96.7  | 2.3           | 1.0 | 0.05 ±<br>0.01 | 81.4     | 18.6    |
| F266H     | 8.14 ± 0.42    | 75.8    | 24.2     | 1.38 ± 0.02                                     | 98.0  | 0.9           | 1.1 | 0.11 ±<br>0.01 | 86.6     | 13.4    |
| A268V     | 4.18 ± 0.07    | 73.6    | 26.4     | 0.84 ±<br>0.06                                  | 97.4  | 1.9           | 0.7 | $0\pm 0$       | 0.0      | 0.0     |
| W270L     | 2.52 ± 0.12    | 84.4    | 15.6     | 2.74 ±<br>0.41                                  | 99.1  | 0.4           | 0.5 | 0.22 ±<br>0.02 | 92.4     | 7.6     |
| H273Y     | $0 \pm 0$      | 0.0     | 0.0      | 0.14 ±<br>0.00                                  | 100.0 | 0.0           | 0.0 | 0 ± 0          | 0.0      | 0.0     |
| Т275Н     | 1.46 ±<br>0.07 | 84.4    | 15.6     | 1.39 ±<br>0.02                                  | 99.2  | 0.4           | 0.5 | 0.51 ±<br>0.01 | 95.4     | 4.6     |
| G276A     | $0\pm 0$       | 0.0     | 0.0      | 1.22 ±<br>0.06                                  | 100.0 | 0.0           | 0.0 | 0.19 ±<br>0.01 | 92.1     | 7.9     |
| W277I     | $0 \pm 0$      | 0.0     | 0.0      | $0 \pm 0$                                       | 0.0   | 0.0           | 0.0 | $0 \pm 0$      | 0.0      | 0.0     |
| F278G     | 0.93 ±<br>0.13 | 75.5    | 24.5     | 2.12 ±<br>0.05                                  | 96.7  | 0.9           | 2.4 | 0.49 ±<br>0.02 | 86.2     | 13.8    |
| D280E     | 2.24 ± 0.04    | 89.1    | 10.9     | 3.21 ± 0.18                                     | 99.5  | 0.5           | 0.0 | 0.37 ± 0.01    | 93.4     | 6.6     |
| D281E     | 14.25 ± 0.49   | 55.9    | 44.1     | 0.64 ± 0.03                                     | 100.0 | 0.0           | 0.0 | 0.07 ± 0.01    | 90.9     | 9.1     |

Supplementary Table 4: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the wild-type and insertion variants based on loops in oxygenases from *Phenylobacterium immobile* **E.** Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|                               | Pf                | Selecti   | vity (%) | Pf             | 5         | Selectivity (% | <b>%</b> ) | Pf             | Selectiv   | ity (%) |
|-------------------------------|-------------------|-----------|----------|----------------|-----------|----------------|------------|----------------|------------|---------|
|                               | (mM)              | <u>1a</u> | 1b       | (mM)           | <u>2a</u> | 2b             | 2c         | (mM)           | <u>3</u> a | 3b      |
| Wild-type                     | 6.68 ±<br>0.77    | 86.4      | 13.6     | 3.58 ± 0.44    | 98.8      | 0.7            | 0.5        | 0.64 ± 0.03    | 93.0       | 7.0     |
| V257_K258<br>insED            | 12.81 ± 1.50      | 79.7      | 20.3     | 7.81 ±<br>0.31 | 98.4      | 0.7            | 0.9        | 0.64 ± 0.05    | 92.8       | 7.2     |
| V257_K258<br>insEDQE          | 4.42 ± 0.50       | 79.9      | 20.1     | 0.44 ±<br>0.01 | 97.3      | 1.2            | 1.5        | 0.08 ±<br>0.01 | 89.8       | 10.2    |
| V257_K258<br>insEDQELA        | 5.25 ±<br>0.74    | 82.3      | 17.7     | 0.314 ± 0.00   | 95.0      | 3.2            | 1.8        | 0.09 ±<br>0.01 | 90.1       | 9.9     |
| V257_K258<br>insEDQELA<br>RI  | 8.78293<br>± 0.86 | 81.0      | 19.0     | 2.75 ±<br>0.19 | 98.6      | 0.8            | 0.6        | 0.42 ±<br>0.02 | 94.9       | 5.1     |
| V257_K258<br>insEDQELA<br>RIA | 8.61 ±<br>0.68    | 81.3      | 18.7     | 0.77 ±<br>0.02 | 100.0     | 0.0            | 0.0        | 0.38 ±<br>0.12 | 94.7       | 5.3     |
| L259_P260<br>insG             | 6.68 ±<br>0.15    | 72.6      | 27.4     | 0.62 ±<br>0.01 | 97.0      | 0.0            | 3.0        | 0.12 ±<br>0.00 | 91.2       | 8.8     |
| P260_S261<br>insG             | 11.23 ± 0.29      | 78.6      | 21.4     | 1.22 ±<br>0.01 | 98.7      | 1.3            | 0.0        | 0.10 ±<br>0.01 | 92.5       | 7.5     |
| V257_K258<br>insEE            | 13.81 ± 0.15      | 46.5      | 53.5     | 1.37 ±<br>0.04 | 97.2      | 0.9            | 2.0        | 0.10 ±<br>0.01 | 91.7       | 8.3     |
| V257_K258<br>insEERE          | 1.86 ±<br>0.11    | 64.0      | 36.0     | 0.12 ±<br>0.01 | 100.0     | 0.0            | 0.0        | $0\pm 0$       | 0.0        | 0.0     |
| V257_K258<br>insEERELA        | 4.88 ± 0.07       | 77.2      | 22.8     | 0.43 ±<br>0.03 | 92.1      | 3.9            | 4.0        | 0.12 ±<br>0.01 | 90.2       | 9.8     |
| V257_K258<br>insEERELA<br>A   | 13.14 ± 0.82      | 84.9      | 15.1     | 6.39 ±<br>0.23 | 98.4      | 0.7            | 1.0        | 1.97 ±<br>0.13 | 96.2       | 3.8     |
| K258_L259<br>insAG            | 17.75 ± 0.91      | 56.3      | 43.7     | 0.35 ±<br>0.01 | 100.0     | 0.0            | 0.0        | 0.26 ±<br>0.01 | 91.7       | 8.3     |
| L259_P260<br>insA             | 22.06 ± 1.51      | 76.4      | 23.6     | 5.55 ±<br>0.46 | 96.3      | 1.7            | 1.9        | 1.05 ±<br>0.07 | 92.5       | 7.5     |
| P260_S261<br>insGS            | $0\pm 0$          | 0.0       | 0.0      | 0.092 ± 0.01   | 100.0     | 0.0            | 0.0        | $0\pm 0$       | 0.0        | 0.0     |
| P260_S261<br>insGG            | 10.55 ± 0.27      | 66.2      | 33.8     | 0.63 ±<br>0.27 | 100.0     | 0.0            | 0.0        | 0.07 ±<br>0.01 | 92.3       | 7.7     |
| N279_D280<br>insE             | 23.72 ± 1.59      | 67.5      | 32.5     | 2.65 ±<br>0.07 | 100.0     | 0.0            | 0.0        | 1.03 ±<br>0.10 | 91.9       | 8.1     |
| Q286_A287<br>insKK            | 0.83 ±<br>0.05    | 0.0       | 100.0    | 0.10 ±<br>0.00 | 100.0     | 0.0            | 0.0        | $0\pm 0$       | 0.0        | 0.0     |
| Q286_A287<br>insKKAA          | $0\pm 0$          | 0.0       | 0.0      | $0\pm 0$       | 0.0       | 0.0            | 0.0        | $0\pm 0$       | 0.0        | 0.0     |
| Q286_A287<br>insKKAAEG        | 0.64 ± 0.02       | 12.2      | 87.8     | 0.12 ±<br>0.01 | 100.0     | 0.0            | 0.0        | $0\pm 0$       | 0.0        | 0.0     |

| F278_N279<br>insGP          | $0\pm 0$         | 0.0  | 0.0  | 0.19 ±<br>0.02 | 100.0 | 0.0 | 0.0 | $0\pm 0$       | 0.0  | 0.0  |
|-----------------------------|------------------|------|------|----------------|-------|-----|-----|----------------|------|------|
| F278_N279<br>insGPRL        | 17.28 ± 0.23     | 45.3 | 54.7 | 0.10 ±<br>0.01 | 100.0 | 0.0 | 0.0 | 0.85 ±<br>0.01 | 93.2 | 6.8  |
| N279_D280<br>insP           | 13.437<br>± 0.63 | 38.1 | 61.9 | 1.74 ± 0.04    | 91.2  | 3.6 | 5.3 | 0.12 ±<br>0.02 | 84.1 | 15.9 |
| Q286_A287<br>insEM          | $0\pm 0$         | 0.0  | 0.0  | 0.85 ±<br>0.04 | 93.5  | 2.7 | 3.8 | $0\pm 0$       | 0.0  | 0.0  |
| Q286_A287<br>insEMKA        | 9.59 ±<br>0.10   | 68.4 | 31.6 | 0.16 ± 0.02    | 100.0 | 0.0 | 0.0 | 0.04 ±<br>0.00 | 82.8 | 17.2 |
| Q286_A287<br>insEMKAE<br>G  | 1.81 ±<br>0.14   | 8.2  | 91.8 | 0.13 ± 0.01    | 100.0 | 0.0 | 0.0 | 0.03 ±<br>0.02 | 75.7 | 24.3 |
| Q286_A287<br>insEMKAE<br>GK | 0 ± 0            | 0.0  | 0.0  | 0.03 ±<br>0.00 | 100.0 | 0.0 | 0.0 | 0.17 ±<br>0.01 | 84.8 | 15.2 |



Supplementary Fig. 8: Product distribution and formation of the two products 3-vinylcyclohexa-3,5-diene-1,2-diol 1a (VCHDD, red, bottom bars) and phenylethan-1,2-diol 1b (PED, blue, top bars) for the biotransformation of styrene with the wild-type and insertion variants based on loops in oxygenases from *Phenylobacterium immobile* E. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Source data are provided as a Source Data file.



Supplementary Fig. 9: Product distribution and formation of the products (+)-carveol 2a (green, bottom bars), (+)-mentha-1.8-dien-10-ol 2b (MDEO, blue, middle bars) and (+)-perillyl alcohol 2c (orange, top bars) for the biotransformation of (*R*)-limonene 2 with the wild-type and insertion variants based on loops in oxygenases from *Phenylobacterium immobile* E. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Source data are provided as a Source Data file.



Supplementary Fig. 10: Product distribution and formation of the products 1,2-dihydroxy-3-(2'pyridyl)cyclohexa-3,5-diene 3a (green, bottom bars) and 2-phenylpyridine-5-ol 3b (purple, top bars) for the biotransformation of 2-phenylpyridine 3 with the wild-type and insertion variants based on loops in oxygenases from in *Phenylobacterium immobile* E. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Source data are provided as a Source Data file.

Supplementary Table 5: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the wild-type and deletion variants. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|                  | Pf              | Selecti | vity (%) | Pf                                              | 1     | Selectivity (% | <b>(0)</b> | Pf                                              | Selectiv | ity (%) |
|------------------|-----------------|---------|----------|-------------------------------------------------|-------|----------------|------------|-------------------------------------------------|----------|---------|
|                  | (mM)            | 1a      | 1b       | ( <b>mM</b> )                                   | 2a    | 2b             | 2c         | ( <b>mM</b> )                                   | 3a       | 3b      |
| Wild-type        | 6.68 ±<br>0.77  | 86.4    | 13.6     | $\begin{array}{c} 3.58 \pm \\ 0.44 \end{array}$ | 98.8  | 0.7            | 0.5        | $\begin{array}{c} 0.64 \pm \\ 0.03 \end{array}$ | 93.0     | 7.0     |
| E251del          | 13.14 ± 2.74    | 84.5    | 15.5     | 3.38 ± 0.21                                     | 97.2  | 1.3            | 1.5        | 2.18±<br>0.21                                   | 94.7     | 5.3     |
| P250_M252<br>del | 12.57 ± 2.20    | 82.4    | 17.6     | 2.01 ± 0.16                                     | 96.3  | 1.6            | 2.1        | 2.74 ± 0.10                                     | 94.2     | 5.8     |
| L248_L254<br>del | $0\pm 0$        | 0.0     | 0.0      | 0.17 ±<br>0.00                                  | 100.0 | 0.0            | 0.0        | 0 ± 0                                           | 0.0      | 0.0     |
| V257del          | 13.36 ± 0.54    | 77.1    | 22.9     | 2.57 ± 0.16                                     | 96.6  | 1.2            | 2.1        | 2.49 ±<br>0.049                                 | 93.6     | 6.4     |
| Q256_K258<br>del | 15.26 ±<br>0.56 | 44.1    | 55.9     | 3.68 ± 0.16                                     | 97.4  | 1.1            | 1.6        | 1.96 ±<br>0.04                                  | 91.5     | 8.5     |
| L254_P260<br>del | $0\pm 0$        | 0.0     | 0.0      | 0.04 ± 0.00                                     | 100.0 | 0.0            | 0.0        | 0 ± 0                                           | 0.0      | 0.0     |
| A283del          | 15.82 ±<br>1.99 | 89.2    | 10.8     | 8.92 ±<br>0.80                                  | 98.2  | 0.8            | 1.0        | 10.16 ± 0.47                                    | 98.7     | 1.3     |
| F282_L284<br>del | 19.93 ±<br>1.97 | 6.3     | 93.7     | 0.60 ± 0.02                                     | 100.0 | 0.0            | 0.0        | 3.68 ± 0.11                                     | 93.0     | 7.0     |
| D280_Q286<br>del | $0 \pm 0$       | 0.0     | 0.0      | $0\pm 0$                                        | 0.0   | 0.0            | 0.0        | $0\pm 0$                                        | 0.0      | 0.0     |

Supplementary Table 6: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the wild-type and insertion variants after V257 based on LILI. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|                            | Pf              | Selecti | vity (%) | Pf                                              |       | Selectivity (% | <b>/</b> 0) | Pf                                              | Selectiv   | ity (%)    |
|----------------------------|-----------------|---------|----------|-------------------------------------------------|-------|----------------|-------------|-------------------------------------------------|------------|------------|
|                            | (mM)            | 1a      | 1b       | (mM)                                            | 2a    | 2b             | 2c          | ( <b>mM</b> )                                   | <b>3</b> a | 3b         |
| Wild-type                  | $6.68 \pm 0.77$ | 86.4    | 13.6     | 3.58 ± 0.44                                     | 98.8  | 0.7            | 0.5         | $\begin{array}{c} 0.64 \pm \\ 0.03 \end{array}$ | 93.0       | 7.0        |
| V257_K258<br>insGG         | $0\pm 0$        | 0.0     | 0.0      | $\begin{array}{c} 1.96 \pm \\ 0.11 \end{array}$ | 97.6  | 1.2            | 1.2         | 0.61 ± 0.00                                     | 92.2       | 7.8        |
| V257_K258                  | 0.07 ±          | 100.0   | 0.0      | 1.49 ±                                          | 98.8  | 1.2            | 0.0         | 0.48 ±                                          | 92.1       | 7.9        |
| N257 K259                  | 0.01            |         |          | 1.61                                            |       |                |             | 0.52                                            |            |            |
| v257_K258<br>insGGGG       | $0.22 \pm 0.07$ | 100.0   | 0.0      | $1.01 \pm 0.14$                                 | 98.9  | 1.1            | 0.0         | $0.52 \pm 0.02$                                 | 92.5       | 7.5        |
| V257_K258                  | 0.49 ±          | 04.0    |          | 1.32 ±                                          | 00.6  |                |             | 0.51 ±                                          | 0.0.1      | <b>7</b> 0 |
| insGGGGG                   | 0.22            | 94.8    | 5.2      | 0.08                                            | 98.6  | 1.4            | 0.0         | 0.01                                            | 92.1       | 7.9        |
| V257_K258<br>insGGGGG<br>G | 0.17 ±<br>0.09  | 100.0   | 0.0      | 1.32 ±<br>0.08                                  | 99.8  | 0.2            | 0.0         | 0.37 ± 0.03                                     | 92.8       | 7.2        |
| V257_K258                  | 0.05 ±          | 100.0   | 0.0      | 2.22 ±                                          | 00 0  | 1.2            | 0.0         | 0.77 ±                                          | 02.6       | 74         |
| insGS                      | 0.02            | 100.0   | 0.0      | 0.04                                            | 90.0  | 1.2            | 0.0         | 0.05                                            | 92.0       | 7.4        |
| V257_K258<br>insGSG        | 0.22 ± 0.10     | 95.6    | 4.4      | 1.19 ±<br>0.27                                  | 98.8  | 1.2            | 0.0         | 0.41 ±<br>0.01                                  | 91.6       | 8.4        |
| V257_K258<br>insGSGS       | 0.09 ± 0.03     | 100.0   | 0.0      | 1.13 ± 0.01                                     | 100.0 | 0.0            | 0.0         | 0.43 ± 0.02                                     | 92.7       | 7.3        |
| V257_K258<br>insGSGSG      | 0.87 ± 0.11     | 94.1    | 5.9      | 1.75 ± 0.47                                     | 99.4  | 0.6            | 0.0         | 0.58 ± 0.05                                     | 93.1       | 6.9        |
| V257_K258                  | 0.41 ±          | 11.3    | 88.7     | 1.126 ±                                         | 100.0 | 0.0            | 0.0         | 0.52 ±                                          | 92.5       | 7.5        |
| V257 K258                  | 0.03 +          |         |          | 0.95 +                                          |       |                |             | 0.05                                            |            |            |
| insPA                      | 0.04            | 100.0   | 0.0      | 0.04                                            | 100.0 | 0.0            | 0.0         | 0.03                                            | 92.9       | 7.1        |
| V257_K258<br>insPAP        | 0.10 ± 0.02     | 100.0   | 0.0      | 0.33 ±<br>0.02                                  | 100.0 | 0.0            | 0.0         | $\begin{array}{c} 0.08 \pm \\ 0.05 \end{array}$ | 97.0       | 3.0        |
| V257_K258<br>insPAPA       | $0\pm 0$        | 0.0     | 0.0      | $0.88 \pm 0.07$                                 | 100.0 | 0.0            | 0.0         | 0.27 ± 0.02                                     | 93.7       | 6.3        |
| V257_K258<br>insPAPAP      | $0\pm 0$        | 0.0     | 0.0      | 0.73 ± 0.01                                     | 100.0 | 0.0            | 0.0         | 0.31 ± 0.04                                     | 94.9       | 5.1        |
| V257_K258<br>insPAPAPA     | 0.01 ± 0.02     | 100.0   | 0.0      | 0.55 ±<br>0.06                                  | 100.0 | 0.0            | 0.0         | 0.22 ± 0.02                                     | 93.5       | 6.5        |
| V257_K258<br>insGP         | $0\pm 0$        | 0.0     | 0.0      | 0.58 ± 0.04                                     | 100.0 | 0.0            | 0.0         | 0.25 ± 0.05                                     | 93.2       | 6.8        |
| V257_K258<br>insGPG        | 0.10 ±<br>0.04  | 100.0   | 0.0      | 0.84 ±<br>0.18                                  | 100.0 | 0.0            | 0.0         | 0.24 ± 0.01                                     | 92.5       | 7.5        |
| V257_K258<br>insGPGP       | $0 \pm 0$       | 0.0     | 0.0      | 0.58 ± 0.04                                     | 100.0 | 0.0            | 0.0         | $0\pm 0$                                        | 0.0        | 0.0        |
| V257_K258<br>insGPGPG      | 0.07 ± 0.02     | 100.0   | 0.0      | 0.67 ±<br>0.07                                  | 100.0 | 0.0            | 0.0         | 0.27 ±<br>0.01                                  | 93.1       | 6.9        |
| V257_K258<br>insGPGPGP     | 0.09 ± 0.02     | 100.0   | 0.0      | 1.15 ± 0.20                                     | 100.0 | 0.0            | 0.0         | 0.17 ±<br>0.02                                  | 94.4       | 5.6        |

Supplementary Table 7: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the wild-type and insertion variants after F278 based on LILI. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|                            | Pf                                               | Selecti | vity (%) | Pf                                              |      | Selectivity (% | <b>/</b> 0) | Pf                                              | Selectiv   | ity (%) |
|----------------------------|--------------------------------------------------|---------|----------|-------------------------------------------------|------|----------------|-------------|-------------------------------------------------|------------|---------|
|                            | (mM)                                             | 1a      | 1b       | (mM)                                            | 2a   | 2b             | 2c          | ( <b>mM</b> )                                   | <b>3</b> a | 3b      |
| Wild-type                  | 6.68 ±<br>0.77                                   | 86.4    | 13.6     | $\begin{array}{c} 3.58 \pm \\ 0.44 \end{array}$ | 98.8 | 0.7            | 0.5         | $\begin{array}{c} 0.64 \pm \\ 0.03 \end{array}$ | 93.0       | 7.0     |
| F278_N279<br>insGG         | $\begin{array}{c} 15.74 \pm \\ 1.85 \end{array}$ | 50.2    | 49.8     | $\begin{array}{c} 3.73 \pm \\ 0.54 \end{array}$ | 92.7 | 4.9            | 2.4         | 3.49 ± 0.16                                     | 94.1       | 5.9     |
| F278_N279                  | 13.44 ±                                          | 55.0    | 45.0     | 4.18 ±                                          | 93.3 | 2.7            | 4.0         | 2.48 ±                                          | 93.5       | 6.5     |
| E279 N270                  | 7.07                                             |         |          | 2 97                                            |      |                |             | 0.11                                            |            |         |
| insGGGG                    | 1.56                                             | 40.4    | 59.6     | 0.30                                            | 95.2 | 1.3            | 3.5         | 0.43 ± 0.08                                     | 92.3       | 7.7     |
| F278_N279                  | 4.59 ±                                           | EE 4    | 11.0     | 1.58 ±                                          | 05.5 | 2.1            | 1.4         | 1.37 ±                                          | 02.5       | 7.5     |
| insGGGGG                   | 0.46                                             | 55.4    | 44.6     | 0.06                                            | 95.5 | 3.1            | 1.4         | 0.06                                            | 92.5       | 7.5     |
| F278_N279<br>insGGGGG<br>G | 20.69 ± 0.03                                     | 49.0    | 51.0     | 3.05 ±<br>0.05                                  | 95.7 | 2.4            | 2.0         | 2.31 ± 0.00                                     | 92.4       | 7.6     |
| F278_N279<br>insGS         | 14.23 ± 0.67                                     | 42.5    | 57.5     | 3.45 ± 0.38                                     | 94.0 | 6.0            | 0.0         | 0.57 ± 0.04                                     | 93.0       | 7.0     |
| F278_N279<br>insGSG        | 13.97 ± 0.33                                     | 33.2    | 66.8     | 1.60 ±<br>0.05                                  | 91.9 | 3.2            | 4.9         | 0.64 ±<br>0.04                                  | 93.3       | 6.7     |
| F278_N279<br>insGSGS       | 15.41 ± 0.18                                     | 34.1    | 65.9     | 1.30 ±<br>0.16                                  | 92.5 | 4.0            | 3.5         | 0.39 ±<br>0.05                                  | 91.8       | 8.2     |
| F278_N279<br>insGSGSG      | 20.31 ± 2.89                                     | 33.5    | 66.5     | 0.82 ±<br>0.17                                  | 94.1 | 4.4            | 1.5         | $\begin{array}{c} 0.39 \pm \\ 0.08 \end{array}$ | 91.0       | 9.0     |
| F278_N279<br>insGSGSGS     | 15.09 ± 2.03                                     | 36.4    | 63.6     | 0.90 ±<br>0.08                                  | 95.6 | 4.4            | 0.0         | 0.32 ± 0.04                                     | 91.0       | 9.0     |
| F278_N279<br>insPA         | 9.04 ± 1.31                                      | 27.8    | 72.2     | 0.97 ± 0.04                                     | 90.2 | 6.3            | 3.6         | 1.60±<br>0.32                                   | 92.8       | 7.2     |
| F278_N279<br>insPAP        | 11.29 ± 0.61                                     | 49.4    | 50.6     | 2.21 ± 0.03                                     | 92.1 | 4.6            | 3.3         | 2.86 ±<br>0.16                                  | 95.5       | 4.5     |
| F278_N279<br>insPAPA       | 14.23 ± 0.54                                     | 52.9    | 47.1     | 3.66 ±<br>0.11                                  | 92.7 | 3.7            | 3.7         | 6.16 ±<br>0.14                                  | 96.0       | 4.0     |
| F278_N279<br>insPAPAP      | 14.11 ± 1.25                                     | 15.8    | 84.2     | 6.03 ±<br>0.22                                  | 92.2 | 3.4            | 4.4         | 1.76 ±<br>0.01                                  | 94.0       | 6.0     |
| F278_N279<br>insPAPAPA     | 9.82 ±<br>3.56                                   | 0.0     | 100.0    | 2.29 ±<br>0.19                                  | 92.5 | 3.5            | 4.0         | 0.73 ± 0.00                                     | 93.9       | 6.1     |
| F278_N279<br>insGP         | 11.55 ± 0.73                                     | 58.2    | 41.8     | 1.21 ± 0.03                                     | 92.3 | 4.1            | 3.7         | 7.42 ± 0.00                                     | 95.6       | 4.4     |
| F278_N279<br>insGPG        | 11.76 ±<br>1.59                                  | 29.4    | 70.6     | 6.92 ±<br>0.68                                  | 89.0 | 5.2            | 5.7         | 1.72 ±<br>0.06                                  | 93.5       | 6.5     |
| F278_N279<br>insGPGP       | 13.71 ± 0.08                                     | 17.3    | 82.7     | 4.44 ± 0.12                                     | 87.6 | 6.8            | 5.6         | 1.31 ± 0.04                                     | 92.2       | 7.8     |
| F278_N279<br>insGPGPG      | 13.31 ±<br>0.53                                  | 15.4    | 84.6     | 3.28 ± 0.19                                     | 87.6 | 3.6            | 8.8         | 1.02 ±<br>0.06                                  | 92.5       | 7.5     |
| F278_N279<br>insGPGPGP     | 17.94 ±<br>1.41                                  | 11.6    | 88.4     | 2.37 ± 0.23                                     | 89.4 | 3.5            | 7.1         | 1.68 ± 0.05                                     | 92.2       | 7.8     |

Supplementary Table 8: Conversions of styrene 1, (*R*)-limonene 2 and 2-phenylpydridine 3 with the wild-type and insertion variants after Q286 based on LILI. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Pf: combined product formation in mM. Regioselectivity in %. Source data are provided as a Source Data file.

|                      | Pf             | Selecti | vity (%)  | Pf                                              |       | Selectivity (% | <b>(0)</b> | Pf                                              | Selectiv | ity (%) |
|----------------------|----------------|---------|-----------|-------------------------------------------------|-------|----------------|------------|-------------------------------------------------|----------|---------|
|                      | ( <b>mM</b> )  | 1a      | 1b        | (mM)                                            | 2a    | 2b             | 2c         | (mM)                                            | 3a       | 3b      |
| Wild-type            | 6.68 ±<br>0.77 | 86.4    | 13.6      | $3.58 \pm 0.44$                                 | 98.8  | 0.7            | 0.5        | $\begin{array}{c} 0.64 \pm \\ 0.03 \end{array}$ | 93.0     | 7.0     |
| Q286_A287<br>insGG   | 6.61 ±<br>0.70 | 11.2    | 88.8      | $\begin{array}{c} 0.45 \pm \\ 0.04 \end{array}$ | 93.5  | 1.9            | 4.6        | 0.89 ± 0.02                                     | 83.6     | 16.4    |
| Q286_A287            | 8.74 ±         | 91      | 90.9      | $0.57 \pm$                                      | 91.2  | 36             | 52         | 1.38 ±                                          | 83.9     | 16.1    |
| insGGG               | 0.97           | ,,,,    | , , , , , | 0.05                                            | ,     | 210            | 0.2        | 0.10                                            | 0017     | 1011    |
| Q286_A287<br>insGGGG | $0\pm 0$       | 0.0     | 0.0       | $0\pm 0$                                        | 0.0   | 0.0            | 0.0        | $0\pm 0$                                        | 0.0      | 0.0     |
| Q286_A287            | 6.84 ±         | 62      | 93.8      | 0.23 ±                                          | 100.0 | 0.0            | 0.0        | 0.99 ±                                          | 85.4     | 14.6    |
| insGGGGG             | 1.08           | 0.2     | 75.0      | 0.01                                            | 100.0 | 0.0            | 0.0        | 0.03                                            | 05.4     | 14.0    |
| Q286_A287            | 675+           |         |           | 0 19 +                                          |       |                |            | 0 67 +                                          |          |         |
| insGGGGG             | 0.75 ±         | 7.1     | 92.9      | 0.01                                            | 100.0 | 0.0            | 0.0        | 0.04                                            | 86.1     | 13.9    |
| G                    | 0.20           |         |           | 0.01                                            |       |                |            | 0.01                                            |          |         |
| Q286_A287            | 6.65 ±         | 0.0     | 100.0     | $0.48 \pm$                                      | 96.8  | 3.2            | 0.0        | 0.30 ±                                          | 84.9     | 15.1    |
| insGS                | 2.69           | 0.0     | 100.0     | 0.01                                            | 90.8  | 5.2            | 0.0        | 0.01                                            | 04.9     | 13.1    |
| Q286_A287            | 15.00 ±        | 0.0     | 100.0     | 0.56 ±                                          | 100.0 | 0.0            | 0.0        | 0.36 ±                                          | 80.9     | 10.1    |
| insGSG               | 0.38           | 0.0     | 100.0     | 0.05                                            | 100.0 | 0.0            | 0.0        | 0.01                                            | 80.9     | 19.1    |
| Q286_A287            | 0 + 0          | 0.0     | 0.0       | 0 + 0                                           | 0.0   | 0.0            | 0.0        | 0 + 0                                           | 0.0      | 0.0     |
| insGSGS              | 0±0            | 0.0     | 0.0       | 0±0                                             | 0.0   | 0.0            | 0.0        | 0±0                                             | 0.0      | 0.0     |
| Q286_A287            | 17.07 ±        | 0.0     | 100.0     | 0.25 ±                                          | 100.0 | 0.0            | 0.0        | 0.34 ±                                          | 83.4     | 16.6    |
| insGSGSG             | 1.03           | 0.0     | 100.0     | 0.02                                            | 100.0 | 0.0            | 0.0        | 0.01                                            | 05.4     | 10.0    |
| Q286_A287            | 0 + 0          | 0.0     | 0.0       | 0 + 0                                           | 0.0   | 0.0            | 0.0        | 0 + 0                                           | 0.0      | 0.0     |
| insGSGSGS            | 0 ± 0          | 0.0     | 0.0       | 0 ± 0                                           | 0.0   | 0.0            | 0.0        | 0 ± 0                                           | 0.0      | 0.0     |
| Q286_A287            | 16.32 ±        | 30.2    | 69.8      | 1.87 ±                                          | 89.0  | 55             | 55         | $1.26 \pm$                                      | 86.4     | 13.6    |
| insPA                | 1.13           | 50.2    | 07.0      | 0.22                                            | 07.0  | 5.5            | 5.5        | 0.08                                            | 00.4     | 15.0    |
| Q286_A287            | 19.14 ±        | 15.6    | 84.4      | 1.35 ±                                          | 80.1  | 5 /            | 5 5        | 1.34 ±                                          | 87.8     | 12.2    |
| insPAP               | 1.6            | 15.0    | 04.4      | 0.08                                            | 07.1  | 5.4            | 5.5        | 0.07                                            | 07.0     | 12.2    |
| Q286_A287            | 15.10 ±        | 75      | 92.5      | 0.96 ±                                          | 89.5  | 4.2            | 63         | 1.01 ±                                          | 85.8     | 14.2    |
| insPAPA              | 0.94           | 7.5     | 12.5      | 0.04                                            | 07.5  | 7.2            | 0.5        | 0.01                                            | 05.0     | 17.2    |
| Q286_A287            | 2.39 ±         | 12.2    | 87.8      | 0.88 ±                                          | 92.4  | 51             | 25         | 0.78 ±                                          | 91.2     | 8.8     |
| insPAPAP             | 0.50           | 12.2    | 07.0      | 0.05                                            | ,2.1  | 5.1            | 2.0        | 0.03                                            | >1.2     | 0.0     |
| Q286_A287            | 18.93 ±        | 7.1     | 92.9      | 0.73 ±                                          | 93.2  | 49             | 1.9        | 0.96 ±                                          | 89.6     | 10.4    |
| insPAPAPA            | 1.19           | ,       | /=//      | 0.078                                           | 2012  | ,              |            | 0.02                                            | 0710     | 10      |
| Q286_A287            | 11.52 ±        | 11.8    | 88.2      | 0.66 ±                                          | 92.4  | 3.4            | 42         | 1.37 ±                                          | 86.0     | 14.0    |
| insGP                | 0.79           | 11.0    | 00.2      | 0.05                                            | 72.7  | э.т            | 7.2        | 0.07                                            | 00.0     | 17.0    |
| Q286_A287            | 13.35 ±        | 75      | 92.5      | 1.23 ±                                          | 95.6  | 24             | 2.0        | 1.86 ±                                          | 79.8     | 20.2    |
| insGPG               | 1.26           | 1.5     | 12.3      | 0.08                                            | 75.0  | ∠.⊤            | 2.0        | 0.03                                            | 12.0     | 20.2    |
| Q286_A287            | 13.94 ±        | 79      | 92.1      | 0.59 ±                                          | 91.1  | 37             | 5 1        | 1.23 ±                                          | 88 5     | 11.5    |
| insGPGP              | 0.61           | 1.2     | 12.1      | 0.05                                            | >1.1  | 5.1            | 5.1        | 0.05                                            | 00.5     | 11.5    |
| Q286_A287            | 14.52±         | 58      | 94 2      | 0.86 ±                                          | 927   | 38             | 34         | 1.92 ±                                          | 814      | 18.6    |
| insGPGPG             | 0.61           | 5.0     | 77.2      | 0.04                                            | 12.1  | 5.0            | 5.7        | 0.08                                            | 01.7     | 10.0    |
| Q286_A287            | 15.67 ±        | 65      | 93.5      | 0.42 ±                                          | 88.1  | 7.0            | 48         | 1.04 ±                                          | 89 5     | 10.5    |
| insGPGPGP            | 0.24           | 0.5     |           | 0.03                                            | 00.1  | 7.0            | т.0        | 0.01                                            | 07.5     | 10.5    |



Supplementary Fig. 11: Biotransformation results with variants derived from the LILI approach. a, Product formation and distribution of the products 1a (red, bottom bars) and 1b (blue, top bars) obtained during the biotransformation of 1 with the wild-type and variants of the LILI library. b, Product formation and distribution of the products 2a (green, bottom bars), 2b (blue, middle bars) and 2c (orange, top bars) obtained during the biotransformation of 2 with the wild-type and variants of the LILI library. c, Product formation and distribution of the products 3a (green, bottom bars) and 3b (purple, top bars) obtained during the biotransformation of 3 with the wild-type and variants of the LILI library. The reaction conditions as mentioned in Fig. 2 were applied, the substrate concentrations are indicated in the reaction equation. The reactions were performed in technical triplicates (black dots) with average values (horizontal bar) and standard deviations (calculated using Excel version 2016) indicated. Error bars may be covered by markers. Source data are provided as a Source Data file.

# **Supplementary Table 9: Different wild-types and active-site variants known from literature compared to selected loop variants from this study.** t.w.: this work. n.d.: not determined. Source data are provided as a Source Data file.

|                |               |                                                 | Product              |                                                                           | Selectivity (%)                                          |      |                                                             |        |
|----------------|---------------|-------------------------------------------------|----------------------|---------------------------------------------------------------------------|----------------------------------------------------------|------|-------------------------------------------------------------|--------|
|                |               |                                                 | formation<br>(%)     | <b>1</b> a                                                                | 1b                                                       |      | Annotation                                                  | Source |
|                | CDO wild-type |                                                 | 13.4 ± 1.55          | 86.4                                                                      | 13.6<br>( <i>ee</i> 18.4 ±<br>1.1 <i>R</i> - <b>1b</b> ) |      | 50 mM substrate<br>0.1 g <sub>cww</sub> /ml <i>E. coli</i>  | t.w.   |
|                |               | CDO wild-type<br>(Pseudomonas fluorescens IP01) | 71 ± 6               | 99.7                                                                      | 0.3<br>( <i>ee</i> 43 ± 3<br><i>R</i> -1 <b>b</b> )      |      | 10 mM substrate,<br>0.2 g <sub>cww</sub> /ml <i>E. coli</i> | 1      |
|                | Literature    | NDO wild-type<br>(Pseudomonas sp. NCIB 9816-4)  | 74 ± 3               | 0                                                                         | >99<br>(ee 78 ± 1<br><i>R</i> - <b>1b</b> )              |      | 10 mM substrate,<br>0.2 g <sub>cww</sub> /ml <i>E. coli</i> | 2      |
|                |               | TDO wild-type<br>(Pseudomonas. putida F1)       | 9                    | 85                                                                        | 15<br>(ee >99 R-<br><b>1b</b> )                          |      | 10 mM substrate                                             | 3      |
|                |               | CDO_M232A                                       | 97 ± 10              | 8                                                                         | 92<br>(ee 95 ± 1<br><i>R</i> - <b>1b</b> )               |      | 10 mM substrate,<br>0.2 g <sub>cww</sub> /ml <i>E. coli</i> | 1      |
| Styrene 1      | Active-site   | NDO_H295A                                       | 92 ± 2               | <1                                                                        | >99<br>(ee 79 ± 1<br><i>R</i> - <b>1b</b> )              |      | 10 mM substrate,<br>0.2 g <sub>cww</sub> /ml <i>E. coli</i> | 2      |
| 5.             |               | TDO_T365N                                       | 14                   | 24                                                                        | 76<br>( <i>ee</i> >99<br><i>R</i> - <b>1b</b> )          |      | 10 mM substrate,                                            | 3      |
|                |               | CDO_N279_D280insE                               | 47.4 ± 3.2           | 67.5                                                                      | 32.5<br>( <i>ee</i> 11.4 ±<br>5.8 <i>R</i> - <b>1b</b> ) |      | 50 mM substrate<br>0.1 g <sub>cww</sub> /ml <i>E. coli</i>  | t.w.   |
|                | Loon          | CDO_F282A                                       | 24.6 ± 5.7           | 95.0                                                                      | 5.0<br>( <i>ee</i> 72.7 ±<br>0.6 <i>R</i> - <b>1b</b> )  |      | 50 mM substrate<br>0.1 g <sub>cww</sub> /ml <i>E. coli</i>  | t.w.   |
|                | Loop          | CDO_Q286_A287insGSGSG                           | 34.1 ± 2.1           | <1                                                                        | >99<br>( <i>ee</i> 6.4 ±<br>0.2 <i>R</i> - <b>1b</b> )   |      | 50 mM substrate<br>0.1 g <sub>cww</sub> /ml <i>E. coli</i>  | t.w.   |
|                |               | CDO_F282_L284del                                | 39.9 ± 4.0           | 6.3                                                                       | 93.7<br>( <i>ee</i> 1.4 ± 0.6 <i>R</i> - <b>1b</b> )     |      | 50 mM substrate<br>0.1 g <sub>cww</sub> /ml <i>E. coli</i>  | t.w.   |
|                |               |                                                 |                      | 2a                                                                        | 2b                                                       | 2c   |                                                             |        |
|                | CDO wild-type |                                                 | $35.8\pm4.4$         | 98.8<br>( <i>ee</i> 99.6 ±<br>0.1 1 <i>R</i> ,5 <i>S</i> -<br><b>2a</b> ) | 0.7                                                      | 0.5  | 0.1 g <sub>cww</sub> /ml <i>E. coli</i>                     | t.w.   |
|                |               | CDO wild-type<br>(Pseudomonas fluorescens IP01) | $46 \pm 10$          | > 95<br>( <i>ee</i> > 98 ±<br>0.1 1 <i>R</i> ,5 <i>S</i> -<br><b>2a</b> ) | <5                                                       | 0    | 0.2 g <sub>cww</sub> /ml <i>E. coli</i>                     | 1      |
|                | Literature    | CDO wild-type<br>(Pseudomonas putida S1)        | 40                   | >95<br>(ee >98<br>1 <i>R</i> ,5S- <b>2a</b> )                             | 0                                                        | 0    | OD <sub>600</sub> = 3.0<br>6.2 mM substrate                 | 4      |
| 5              |               | NDO wild-type<br>(Pseudomonas sp. NCIB 9816-4)  | n.d.                 | 92                                                                        | 8                                                        | 0    | 0.2 gcww/ml E. coli                                         | 2      |
| imonene        | A otivo oito  | CDO_M232A                                       | >99                  | 95<br>(ee > 98<br>1 <i>R</i> ,5 <i>S</i> - <b>2a</b> )                    | 5                                                        | 0    | 0.2 g <sub>cww</sub> /ml <i>E. coli</i>                     | 1      |
| ( <i>R</i> )-I | Active-site   | NDO_H295A_V260A                                 | 213% of<br>wild-type | 93<br>(ee 62<br>1 <i>R</i> ,5S- <b>2a</b> )                               | 7                                                        | 0    | 0.2 g <sub>cww</sub> /ml <i>E. coli</i>                     | 2      |
|                |               | CDO_A283del                                     | 89.2 ± 8.0           | 98.2<br>(ee 62<br>1R,5S- <b>2a</b> )                                      | 0.8                                                      | 1.0  | 0.1 g <sub>cww</sub> /ml <i>E. coli</i>                     | t.w.   |
|                | Loop          | CDO_L284G                                       | 20.8 ± 1.9           | 30.8<br>( <i>ee</i> >99<br>1 <i>R</i> ,5 <i>S</i> - <b>2a</b> )           | 19.4                                                     | 49.7 | 0.1 g <sub>cww</sub> /ml <i>E. coli</i>                     | t.w.   |
|                | Loop          | CDO_M289A                                       | 19.4 ± 0.9           | 54.1<br>( <i>ee</i> >99<br>1 <i>R</i> ,5 <i>S</i> - <b>2a</b> )           | 6.2                                                      | 39.8 | 0.1 g <sub>cww</sub> /ml <i>E. coli</i>                     | t.w.   |

|                     |               |                                                  |                | 3a                                                               | 3b   |                                                                                              |      |
|---------------------|---------------|--------------------------------------------------|----------------|------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------|------|
|                     | CDO wild-type |                                                  | $6.4\pm0.3$    | 93.0<br>( <i>ee</i> >99<br>1 <i>S</i> , 2 <i>R</i> - <b>3a</b> ) | 7.0  |                                                                                              | t.w. |
| 2-Phenyl-pyridine 3 | Literature    | TDO wild-type<br>(Pseudomonas putida UV4)        | 1% yield       | 100<br>( <i>ee</i> >98<br>1 <i>S</i> , 2 <i>R</i> - <b>3a</b> )  |      |                                                                                              | 5    |
|                     |               | NDO wild-type<br>(Pseudomonas sp. NCIB 9816-4)   | 25% yield      | ≥95                                                              |      | $\leq 5\% \ cis-3,4-$ dihydrodiol ( <i>ee</i><br>>98 1 <i>S</i> , 2 <i>R</i> ) was<br>formed | 5    |
|                     |               | BPDO wild-type (Sphingomomas yanoikuyae (B8/36)) | 59% yield      | ≥95                                                              | -    |                                                                                              | 5    |
|                     | Lоор          | CDO_A283del                                      | >99            | 98.7<br>( <i>ee</i> >99<br>1 <i>S</i> , 2 <i>R</i> - <b>3a</b> ) | 1.3  |                                                                                              | t.w. |
|                     |               | Loop CDO_F282A                                   | $99.9 \pm 4.0$ | 98.6<br>( <i>ee</i> >99<br>1 <i>S</i> , 2 <i>R</i> - <b>3a</b> ) | 1.4  |                                                                                              | t.w. |
|                     |               | CDO_Q286_A287insGPG                              | 18.6 ± 0.3     | 79.8<br>( <i>ee</i> >99<br>1 <i>S</i> , 2 <i>R</i> - <b>3a</b> ) | 20.2 |                                                                                              | t.w. |

Supplementary Table 10: Enantiomeric excesses of the biotransformations of styrene 1, (*R*)limonene 2 and 2-phenylpydridine 3 with the selected variants from Supplementary Table S19, and saturation and deletion variants. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Enantiomeric excess in %. n.d.: not determined. -: not detected. Source data are provided as a Source Data file.

| _             | Product (%)                     |                                                        |                                                     |  |
|---------------|---------------------------------|--------------------------------------------------------|-----------------------------------------------------|--|
| Variant       | Phenylethan-1,2-diol            | Carveol                                                | 1,2-Dihydroxy-3-(2'pyridyl)-<br>cyclohexa-3,5-diene |  |
|               | 1b                              | 2a                                                     | 3a                                                  |  |
| Wild-type     | $18.43 \pm 1.08 \ (R)$ -1b      | 99.73 ± 0.13 (1 <i>R</i> ,5 <i>S</i> )- <b>2</b> a     | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |
| F282A         | $72.72 \pm 0.63 \ (R)$ -1b      | n.d.                                                   | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |
| M289A         | n.d.                            | 99.97 $\pm$ 0.05 (1 <i>R</i> ,5 <i>S</i> )- <b>2</b> a | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| N279_D280insE | $11.42 \pm 5.84 \ (R)$ -1b      | n.d.                                                   | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| A283del       | $42.00 \pm 0.59 \ (R)$ -1b      | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b>             | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| F282_L284del  | 1.49 ± 0.15 ( <i>R</i> )-1b     | $93.30 \pm 0.72 (1R,5S)$ - <b>2a</b>                   | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| F278V         | $41.32 \pm 6.64 \ (R)$ -1b      | $99.99 \pm 0.01 (1R,5S)$ - <b>2</b> a                  | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| F282V         | 69.83 ± 3.61 ( <i>R</i> )-1b    | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b>             | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |
| F282T         | -                               | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b>             | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |
| L284G         | 26.03 ± 1.08 ( <i>R</i> )-1b    | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b>             | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |
| Q286F         | $15.83 \pm 0.23 \ (R)$ -1b      | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b>             | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |
| I288S         | $15.56 \pm 0.70$ (S)- <b>1b</b> | 99.76 $\pm$ 0.02 (1 <i>R</i> ,5 <i>S</i> )- <b>2</b> a | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| I288T         | 1.17 ± 0.83 (S)- <b>1b</b>      | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b>             | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3</b> a     |  |
| M289K         | 23.97 ± 0.44 ( <i>R</i> )-1b    | >99.9 (1 <i>R</i> ,5 <i>S</i> )- <b>2</b> a            | >99 % (+)-(1 <i>S</i> ,2 <i>R</i> )- <b>3a</b>      |  |

The enantiomeric excess of **3a** was determined by comparison to two in-house standards of (+)-(1S,2R)-**3a**. The configuration was determined by optical rotation.<sup>5</sup> Multiple columns and methods were applied, which all reveal only one enantiomer.

Supplementary Table 11: Diastereomeric excesses of the biotransformations (*R*)-limonene 2 with the selected variants from Supplementary Supplementary Table 10, saturation and deletion variants. Biotransformations were performed in technical triplicates and standard deviations (calculated using Excel version 2016) are indicated. Diastereomeric excess in %. Source data are provided as a Source Data file.

| Variant      | Carveol<br>2a                                     |
|--------------|---------------------------------------------------|
| Wild-type    | $94.70 \pm 0.37 \ (1R,5S)$ - <b>2a</b>            |
| M289A        | 97.05 ± 0.26 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| A283del      | 87.27 ± 1.14 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| F282_L284del | 98.41 ± 0.02 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| F278V        | 55.10 ± 2.53 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| F282V        | 99.14 ± 0.01 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| F282T        | 99.41 ± 0.20 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| L284G        | 38.14 ± 1.81 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| Q286F        | 98.11 ± 0.08 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| I288S        | 90.23 ± 1.53 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| I288T        | 99.12 ± 0.06 (1 <i>R</i> ,5 <i>S</i> )- <b>2a</b> |
| M289K        | $88.02 \pm 0.82 (1R,5S)$ -2a                      |



Supplementary Fig. 12: SDS-PAGE analysis of the empty vector, expressed wild-type and selected variants of the CDO. The analysis of the expression levels was performed in a RunBlue 12% Bis-Tris Gel from Expedeon (Abcam, Berlin, Germany) with PageRuler<sup>TM</sup> Unstained Protein Ladder (Thermo Scientific, Waltham, USA) as marker. Whole cell samples were standardized to  $OD_{600} = 4$ . The bands of the  $\alpha$ -subunit (52 kDa) and  $\beta$ -subunit (23 kDa) are clearly visible, except for the  $\alpha$ -subunit of Q286\_A287insGSGS. The bands of the reductase (44 kDa) and ferredoxin (12 kDa) were not observed. Source data are provided as a Source Data file. Dashed lines represent different gels and vertically sliced image. SDS-PAGE analysis was performed independently 15 times for the wildtype with comparable results. Other variants were analyzed *via* SDS-PAGE with the wildtype as positive control at least once and repeated when preparation errors occurred.

All obtained variants were analyzed *via* non-native SDS-PAGE of the whole cells as shown in Supplementary Fig. S12. All variants, also these which showed no activity for any of the tested variants, were expressed. No native SDS-PAGE was observed, so no conclusions about the solubility or correct folding could be drawn.

#### Supplementary Note 1: Synthesis of (+)-mentha-1.8-dien-10-ol (2b)



The synthesis of (+)-mentha-1.8-dien-10-ol 2b was performed according to Thomas and Bucher.<sup>6</sup>

Yellow oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,): δ 1.43-1.56 (2 H, m), 1.66 (3 H, s), 1.78-2.23 (6 H, m), 4.18 (2 H, d, *J* 5.7), 4.91 (1 H, s), 5.04-5.07 (1 H, m), 5.40 (1 H, br s); <sup>13</sup>C NMR (500 MHz CDCl<sub>3</sub>,): δ 23.48, 28.18, 30.53, 31.36, 36.91, 65.19, 107.83, 120.45, 133.85, 153.67. MS (GC, EI): m/z (%) =153 (1, M<sup>+</sup>), 152 (11.8, M), 134 (47), 121 (17), 119 (91), 107 (14), 106 (100), 105 (39), 94 (34), 93 (61), 92 (46), 91 (82), 84 (25), 83 (16), 79 (80), 77 (42), 68 (60), 67 (72), 65 (16)

GC-MS and NMR analysis revealed contaminations with formed perillyl alcohol.

Supplementary Note 2: Determination of product formation, distribution, enantiomeric excess and diastereomeric excess



Supplementary Fig. 13: Conversion of styrene to 3-vinylcyclohexa-3,5-diene-1,2-diol 1a and 1-phenylethan-1,2-diol 1b

#### 3-vinylcyclohexa-3,5-diene-1,2-diol (1a)

MS (GC, EI) m/z (%) = 139 (1.7, M+), 138 (19, M), 120 (94), 109 (21), 92 (39), 91 (100), 81 (19), 79 (23), 77 (24), 65 (17)

#### 1-phenyl-1,2-ethanediol (1b)

Rieske non-heme iron oxygenase (RO)-catalyzed biotransformations

MS (GC, EI) m/z (%) = 139 (0.8, M<sup>+</sup>), 138 (9, M), 108 (9), 107 (100), 91 (4), 79 (48), 77 (28)

#### Standard Sigma Aldrich

MS (GC, EI) m/z (%) = 139 (2, M<sup>+</sup>), 138 (23, M), 108 (22), 107 (100), 91 (10), 79 (100), 77 (77)



Supplementary Fig. 14: GC-FID chromatogram of CDO wild-type catalyzed biotransformation of styrene 1.



Supplementary Fig. 15: Conversion of (*R*)-(+)-limonene 2 to (+)-carveol 2a, (+)-mentha-1.8-dien-10-ol 2b and (+)-perillyl alcohol 2c.

#### (+)-carveol 2a

Rieske non-heme iron oxygenase (RO)-catalyzed biotransformation

MS (GC, EI) m/z (%) = 153 (1.2, M<sup>+</sup>), 152 (11, M), 137 (11), 119 (11), 109 (100), 108 (13), 95 (13), 94 (4), 93 (11), 92 (5), 91 (15), 84 (47), 83 (25), 81 (10), 80 (8), 79 (10), 69 (17), 55 (18)

#### Standard Sigma-Aldrich

MS (GC, EI) m/z (%) = 153 (0.3, M+), 152 (3, M), 137 (68), 119 (34), 109 (77), 108 (12), 95 (24), 94 (25), 93 (27), 92 (17), 91 (24), 84 (100), 83 (44), 81 (25), 80 (25), 79 (24), 69 (36), 55 (31)

#### (+)-mentha-1.8-dien-10-ol 2b

Rieske non-heme iron oxygenase (RO)-catalyzed biotransformation

MS (GC, EI) m/z (%) = 153 (5, M<sup>+</sup>), 152 (18, M), 134 (63), 121 (27), 119 (100), 107 (22), 106 (79), 105 (50), 95 (29), 94 (49), 93 (80), 92 (54), 91 (82), 84 (40), 79 (95), 77 (42), 68 (95), 67 (98), 55 (49)

#### (+)-perillyl alcohol 2c

Rieske non-heme iron oxygenase (RO)-catalyzed biotransformation

MS (GC, EI) m/z (%) = 153 (1.6, M<sup>+</sup>), 152 (9, M), 121 (83), 119 (31), 109 (26), 108 (28), 107 (37), 106 (18), 105 (22), 95 (38), 94 (52), 93 (95), 91 (53), 81 (37), 79 (100), 77 (30), 68 (90), 67 (80), 55 (44)

MS (GC, EI) m/z (%) = 153 (2, M+), 152 (18, M), 121 (87), 119 (48), 109 (35), 108 (33), 107 (14), 106 (28), 105 (28), 95 (18), 94 (18), 93 (90), 91 (61), 81 (29), 79 (100), 77 (32), 68 (86), 67 (77), 55 (39)



Supplementary Fig. 16: GC-FID chromatogram of CDO wild-type catalyzed biotransformation of (R)-(+)-limonene 2.



Supplementary Fig. 17: Conversion of 2-phenylpyridine 3 to 1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene 3a and 2-phenyl-pyridine-5-ol 3b.

1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene 3a

Rieske non-heme iron oxygenase (RO)-catalyzed biotransformations

MS (LC, ESI, positive) m/z (%) = 191 (M<sup>+</sup>, 12), 190 (100, M), 189 (58), 173 (4), 172 (35)

Standard from in-house library, derived from an upscaling of biotransformation of 2phenylpyridine with TDO Wild-type

MS (LC, ESI, positive) m/z (%) = 191 (M<sup>+</sup>, 6), 190 (100, M), 173 (6), 172 (48)

Brown solid;  $[\alpha]_D$ +161 (*c* 1.1, MeOH); <sup>1</sup>H NMR  $\delta$  (CDCl<sub>3</sub>, 500 MHz), 4.50 (1 H, m, H-1), 4.93 (1 H, d,  $J_{1,2}$  9.7, H-2), 6.18 (2 H, m, H-5, H-6), 6.65 (1 H, d,  $J_{4,5}$  5.4, H-4), 6.89 (1 H, dd,  $J_{4',3'}$  9.9,  $J_{4',5'}$  2.5, H-4'), 7.51 (1 H, d,  $J_{3',4'}$  5.4, H-3'), 7.6 (1 H, d,  $J_{5',4'}$  8, H-5'), 8.51 (1 H, d,  $J_{6',5'}$  4.6, H-6'); <sup>13</sup>C NMR  $\delta$  (500 MHz, CDCl<sub>3</sub>) 67.26, 69.24, 119.98, 122.13, 123.58, 124.82, 131.44, 136.21, 136.97, 148.19, 157.33; <sup>5</sup>

#### 2-phenyl-pyridine-5-ol 3b

Rieske non-heme iron oxygenase (RO)-catalyzed biotransformations

MS (LC, ESI, positive) m/z (%) = 173 (12, M<sup>+</sup>), 172 (100, M)

Standard Fluorochem

MS (LC, ESI, positive) m/z (%) = 173 (13, M<sup>+</sup>), 172 (100, M)

MS (GC, EI) m/z (%) = 172 (5.6, M<sup>+</sup>), 171 (52, M), 170 (100), 169 (2), 144 (1), 143 (7), 142 (7), 141 (3), 140 (2), 117 (6), 116 (9), 115 (27)



Supplementary Fig. 18: DAD chromatogram of CDO wild-type catalyzed biotransformation of 2-phenylpyridine at a wavelength of 210 nm.



Supplementary Fig. 19: LC-MS spectrum of the biotransformation of phenazone in SIM-mode (m/z 222). Comparison between the wild-type (blue, bottom line) with no product formation, F282\_L284del (green, top line) with product traces and A283del (red, middle line) with clear product formation.

#### **Product formations and distribution**

The quantification of the different products was performed with biphenyl as internal standard under the same conditions as the corresponding biotransformations. 1 M DMSO stocks of the corresponding products were applied for standard solutions, incubated, extracted and analyzed. LC/MS analysis of the in-house standard of 1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene (**3a**) showed traces of 2-phenyl-pyridine-5-ol (**3b**). Based on the corresponding calibration curve, the amount of 2-phenyl-pyridine-5-ol was subtracted from the used concentration of 1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene standard to ensure correct concentrations.



**Supplementary Fig. 20. Calibration curve of 1-phenyl-1,2-ethandiol (1b).** Data acquisition was performed in technical triplicates per concentration with average values and standard deviations (calculated using Excel version 2016) are indicated. Error bars may be covered by markers. Source data are provided as a Source Data file.



**Supplementary Fig. 21. Calibration curve of the mixture of isomers of (-)-carveol (2a).** Data acquisition was performed in technical triplicates per concentration with average values and standard deviations (calculated using Excel version 2016) are indicated. Error bars may be covered by markers. Source data are provided as a Source Data file.



**Supplementary Fig. 22. Calibration curve of** (+)-**perillyl alcohol (2c).** Data acquisition was performed in technical triplicates per concentration with average values and standard deviations (calculated using Excel version 2016) are indicated. Error bars may be covered by markers. Source data are provided as a Source Data file.



**Supplementary Fig. 23. Calibration curve of 2-phenyl-pyridine-5-ol (3b).** Data acquisition was performed in technical triplicates per concentration with average values and standard deviations (calculated using Excel version 2016) are indicated. Error bars may be covered by markers. Source data are provided as a Source Data file.



**Supplementary Fig. 24. Calibration curve of 1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene** (**3a**). Data acquisition was performed in technical triplicates per concentration with average values and standard deviations (calculated using Excel version 2016) are indicated. Error bars may be covered by markers. Source data are provided as a Source Data file.

The product 3-vinylcyclohexa-3,5-diene-1,2-diol **1a** polymerizes when concentrated in vacuo, so the synthesis of a standard for quantification is not possible. Also, the synthesis of (+)-mentha-1.8-dien-10-ol **2b** yielded a standard with impurities with perillyl alcohol, despite repeated column chromatography. To ensure correct quantification, we used the relative response factor to determine the concentrations in reference to a standard.<sup>7,8</sup> For **1a**, we used **1b** as standard, while **2c** was applied as reference standard for **2b**. The RF values were calculated from the effective carbon numbers (ECN) of the respective compound (ECN<sub>X</sub>) in relation the the ECN of the standard (ECN<sub>STD</sub>) with equation (1).

$$RF = \frac{ECN_X}{ECN_{STD}}$$
(1)

Calibration curves were determined by the quantification of the analytes by external calibration and normalization by the calculated RF values (Supplementary Table 12).

| Compound | ECN | RF    |  |
|----------|-----|-------|--|
| 1a       | 6.2 | 0.919 |  |
| 1b       | 6.5 | 0.717 |  |
| 2b       | 9.3 | 1     |  |
| 2c       | 9.3 |       |  |



Supplementary Fig. 25: Chiral HPLC analysis of 1-phenyl-1,2-ethandiol 1b enantiomers of the commercially available standards of (*R*)-1b (blue, Sigma Aldrich, 99 % optical purity), (*S*)-1b (green, Sigma Aldrich, 99 % optical purity) and the RO-catalyzed biotransformation of 1 (red).



Supplementary Fig. 26: Chiral GC-FID analysis of carveol 2a enantiomers. Commercially available isomer mixture of (-)-carveol (black, Sigma Aldrich, 97 %) containing (1S,5R)-2a and (1R,5R)-2a. (1S,5S)-carveol (pink) from our in-house library, synthesis according to Bermejo *et al.*.<sup>1,9</sup> (1R,5R)-carveol (blue) from our in-house library, synthesis according to Dhulut *et al.*.<sup>1,10</sup> (1R,5S)-carveol (green) derived from CDO\_M232A-catalyzed biotransformation of 1.<sup>1</sup> (1R,5S)-carveol (red) derived from CDO wild-type-catalyzed biotransformation of 1.



**Supplementary Fig. 27: Chiral HPLC analysis of** (*1S*,*2R*)-**1**,**2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3**,**5-diene 3a with normal phase CHIRALPAK IB column.** CDO wild-type (blue) and CDO\_A283del (red) catalyzed biotransformation of **3**. In-house standard of (*1S*,*2R*)-3a (green).

We also evaluated a normal phase CHIRALPAK IC (250 mm x 4.6 mm, 5 µm particle size, Daicel (Europa) GmbH, Raunheim, Germany) for additional enantiomers of (1S,2R)-1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene. 6 µl sample were injected and the compounds were separated with 1.4 ml/min isocratic mobile phase of 90:10 n-hexane/isopropanol at 30 °C on the same normal phase HPLC-DAD system mentioned in the methods section. Analysis was performed using the DAD at a wavelength of 310 nm. Despite a length of 90 min and previously successful separation of enantiomers of similar products with this column, no additional peak was observed.



**Supplementary Fig. 28: Chiral HPLC analysis of (1***S***,2***R***)-1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene 3a with normal phase CHIRALPAK IC column.** CDO wild-type (blue) and CDO\_A283del (red) catalyzed biotransformation of **3**. In-house standard of (1*S*,2*R*)-3a (green).

## **Primers**

| Name          | Sequence $(5^{\circ} \rightarrow 3^{\circ})$ |  |
|---------------|----------------------------------------------|--|
| pIP107D_seq1f | GATATGTACCATGCGGG                            |  |
| pIP107D_seq2f | CCAAAATGTACAGCTGTG                           |  |
| pIP107D_seq3f | GTGGATTTGCAGGTCGG                            |  |
| pIP107D_seq4f | GCCGCTGAAGATATATCCG                          |  |
| pIP107D_seq5f | GGTATCGCATGTGAGC                             |  |

Supplementary Table 13: Sequencing primers used in this study.

Supplementary Table 14: Site-directed mutagenesis primers used for the alanine scan.

| Mutation     | Name     | Sequence $(5^{\circ} \rightarrow 3^{\circ})$     |
|--------------|----------|--------------------------------------------------|
| C236A        | G236A_fw | GATATGTACCATGCGGCAACGATGGCGCATCTT                |
| G230A        | G236A_rv | GCGCCATCGTTGCCGCATGGTACATATC                     |
| T727A        | T237A_fw | GCGGGAGCGATGGCGCATCTTTC                          |
| 1237A        | T237A_rv | GAAAGATGCGCCATCGCTCCCGC                          |
| M728A        | M238A_fw | GTACCATGCGGGAACGGCGGCGCATCTTTCAGGT               |
| W1230A       | M238A_rv | ACCTGAAAGATGCGCCGCCGTTCCCGCATGGTAC               |
| A 230C       | A239G_fw | GGAACGATGGGCCATCTTTCAG                           |
| A239G        | A239G_rv | CTGAAAGATGGCCCATCGTTCC                           |
| 112404       | H240A_fw | CATGCGGGAACGATGGCGGCTCTTTCAGGTGTATTGTC           |
| H240A        | H240A_rv | GACAATACACCTGAAAGAGCCGCCATCGTTCCCGCATG           |
| T 241 A      | L241A_fw | GGACAATACACCTGAAGCATGCGCCATCGTTCCCG              |
| L241A        | L241A_rv | CGGGAACGATGGCGCATGCTTCAGGTGTATTGTCC              |
| D2424        | D242A_fw | GGGAACGATGGCGCATCTTGCAGGTGTATTGTCCAGCCTCCCG      |
| D242A        | D242A_rv | AAGATGCGCCATCGTTCCCGCATGGTACATATCGCTACAGAATTG    |
| C242C        | G243G_fw | GAACGATGGCGCATCTTTCAGCTGTATTGTCCAGCCTCCCGCC      |
| 62436        | G243G_rv | CTGAAAGATGCGCCATCGTTCCCGCATGGTACATATCGCTACAGAAT  |
| <b>V244A</b> | V244A_fw | GATGGCGCATCTTTCAGGTGCATTGTCCAGCCTCCCGCC          |
| V 244A       | V244A_rv | CACCTGAAAGATGCGCCATCGTTCCCGCATGGTACATATCGC       |
| T 245A       | L245A_fw | GATGGCGCATCTTTCAGGTGTAGCGTCCAGCCTCCCGCCTG        |
| L245A        | L245A_rv | TACACCTGAAAGATGCGCCATCGTTCCCGCATGGTACATATCGC     |
| 52464        | S246A_fw | GCGCATCTTTCAGGTGTATTGGCCAGCCTCCCGCCTGAAATG       |
| 5240A        | S246A_rv | CAATACACCTGAAAGATGCGCCATCGTTCCCGCATGGTACATATCG   |
| 52474        | S247A_fw | GCATCTTTCAGGTGTATTGTCCGCCCTCCCGCCTGAAATGGATTTGTC |
| 5247A        | S247A_rv | GGACAATACACCTGAAAGATGCGCCATCGTTCCCGCATGGTAC      |
| T 248A       | L248A_fw | GGTGTATTGTCCAGCGCCCGCCTGAAATGGATT                |
| L240A        | L248A_rv | AATCCATTTCAGGCGGGGGGCGCTGGACAATACACC             |
| D240A        | P249A_fw | GTATTGTCCAGCCTCGCGCCTGAAATGG                     |
| F 249A       | P249A_rv | CCATTTCAGGCGCGAGGCTGGACAATAC                     |
| D750A        | P250A_fw | TTGTCCAGCCTCCCGGCTGAAATGGATTTGTC                 |
| r 230A       | P250A_rv | GACAAATCCATTTCAGCCGGGAGGCTGG                     |
| E251 A       | E251A_fw | CAGCCTCCCGCCTGCAATGGATTTGTCCC                    |
| E231A        | E251A_rv | GGGACAAATCCATTGCAGGCGGGAGGCTG                    |
| N7252 A      | M252A_fw | CAGCCTCCCGCCTGAAGCGGATTTGTCCCAAGTAAAG            |
| W1252A       | M252A_rv | CTTTACTTGGGACAAATCCGCTTCAGGCGGGAGGCTG            |

| D252A          | D253A_fw | CCTCCCGCCTGAAATGGCTTTGTCCCAAGTAAAG         |
|----------------|----------|--------------------------------------------|
| D255A          | D253A_rv | CTTTACTTGGGACAAAGCCATTTCAGGCGGGAGG         |
| T 254A         | L254A_fw | CTCCCGCCTGAAATGGATGCGTCCCAAGTAAAGTTAC      |
| L234A          | L254A_rv | GTAACTTTACTTGGGACGCATCCATTTCAGGCGGGAG      |
| SOFE A         | S255A_fw | CGCCTGAAATGGATTTGGCCCAAGTAAAGTTACCG        |
| 5255A          | S255A_rv | GTAACTTTACTTGGGCCAAATCCATTTCAGGCG          |
| 02564          | Q256A_fw | CGCCTGAAATGGATTTGTCCGCAGTAAAGTTACCGTCAAGTG |
| Q250A          | Q256A_rv | CACTTGACGGTAACTTTACTGCGGACAAATCCATTTCAGGCG |
| V257A          | V257A_fw | GGATTTGTCCCAAGCAAAGTTACCGTCAAGTGG          |
| V237A          | V257A_rv | CCACTTGACGGTAACTTTGCTTGGGACAAATCCATTTC     |
| K258A          | K258A_fw | GATTTGTCCCAAGTAGCGTTACCGTCAAGTG            |
| N230A          | K258A_rv | CACTTGACGGTAACGCTACTTGGGACAAATC            |
| T 250A         | L259A_fw | CCTGAAATGGATTTGTCCCAAGTAAAGGCACCGTCAAGTGGG |
| L237A          | L259A_rv | CCCACTTGACGGTGCCTTTACTTGGGACAAATCCATTTCAGG |
| <b>D</b> 260A  | P260A_fw | GATTTGTCCCAAGTAAAGTTAGCGTCAAGTGGG          |
| F 200A         | P260A_rv | CCCACTTGACGCTAACTTTACTTGGGACAAATC          |
| S261 A         | S261A_fw | CAAGTAAAGTTACCGGCAAGTGGGAATCAG             |
| 5201A          | S261A_rv | CTGATTCCCACTTGCCGGTAACTTTACTTG             |
| 52624          | S262A_fw | CCAAGTAAAGTTACCGTCAGCTGGGAATCAGTTCC        |
| 5202A          | S262A_rv | GAACTGATTCCCAGCTGACGGTAACTTTACTTGGGAC      |
| C263A          | G263A_fw | GTTACCGTCAAGTGCGAATCAGTTCCGGGC             |
| G203A          | G263A_rv | GCCCGGAACTGATTCGCACTTGACGGTAAC             |
| N264A          | N264A_fw | GTTACCGTCAAGTGGGGCTCAGTTCCGGGCTAAGTG       |
| 11204A         | N264A_rv | CACTTAGCCCGGAACTGAGCCCCACTTGACGGTAAC       |
| F278A          | F278A_fw | GACATGGGACCGGCTGGGCCAATGACGATTTCGCAC       |
| F270A          | F278A_rv | GTGCGAAATCGTCATTGGCCCAGCCGGTCCCATGTC       |
| N279A          | N279A_fw | CATGGGACCGGCTGGTTCGCTGACGATTTCGCACTTC      |
|                | N279A_rv | GAAGTGCGAAATCGTCAGCGAACCAGCCGGTCCCATG      |
| D280A          | D280A_fw | CTGGTTCAATGCCGATTTCGCAC                    |
| D20011         | D280A_rv | GTGCGAAATCGGCATTGAACCAG                    |
| D281A          | D281A_fw | CGGCTGGTTCAATGACGCTTTCGCACTTCTGCAAG        |
| <b>D2</b> 0111 | D281A_rv | CTTGCAGAAGTGCGAAAGCGTCATTGAACCAGCCG        |
| F282A          | F282A_fw | CAATGACGATGCCGCACTTCTGC                    |
|                | F282A_rv | GCAGAAGTGCGGCATCGTCATTG                    |
| A283G          | A283G_fw | GTTCAATGACGATTTCGGACTTCTGCAAGCCATC         |
|                | A283G_rv | GATGGCTTGCAGAAGTCCGAAATCGTCATTGAAC         |
| L284A          | L284A_fw | GTTCAATGACGATTTCGCAGCTCTGCAAGCCATCATG      |
|                | L284A_rv | GATGGCTTGCAGAGCTGCGAAATCGTCATTGAACCAG      |
| L285A          | L285A_fw | GACCCATGATGGCTTGCGCAAGTGCGAAATCGTCATTG     |
|                | L285A_rv | CAATGACGATTTCGCACTTGCGCAAGCCATCATGGGTC     |
| O286A          | Q286A_fw | GACGATTTCGCACTTCTGGCAGCCATCATGGGTCC        |
| <b>Q</b> =0011 | Q286A_rv | GGACCCATGATGGCTGCCAGAAGTGCGAAATCGTC        |
| A287G          | A287G_fw | CGCACTTCTGCAAGCAATCATGGGTCCTAAGG           |
|                | A287G_rv | CCTTAGGACCCATGATTGCTTGCAGAAGTGCG           |
| J288A          | I288A_fw | CGCACTTCTGCAAGCCGCCATGGGTCCTAAGGTTG        |
|                | I288A_rv | CAACCTTAGGACCCATGGCGGCTTGCAGAAGTGCG        |
| M289A          | M289A_fw | CACTTCTGCAAGCCATCGCGGGTCCTAAGGTTGTCG       |
|                | M289A_rv | CGACAACCTTAGGACCCGCGATGGCTTGCAGAAGTG       |
| G290A          | G290A_fw | CTGCAAGCCATCATGGCTCCTAAGGTTGTCGATTAC       |
| 3=> VII        | G290A_rv | CGACAACCTTAGGAGCCATGATGGCTTGCAG            |

| Mutation    | Name       | Sequence $(5^{\circ} \rightarrow 3^{\circ})$ |
|-------------|------------|----------------------------------------------|
| ESTONINU    | F278NNK_fw | CATGGGACCGGCTGGNNKAATGACGATTTCGCAC           |
| F2/dinink   | F278NNK_rv | GTGCGAAATCGTCATTMNNCCAGCCGGTCCCATG           |
| D280NNK     | D280NNK_fw | GACCGGCTGGTTCAATNNKGATTTCGCACTTCTG           |
| DZOUININK   | D280NNK_rv | CAGAAGTGCGAAATCMNNATTGAACCAGCCGGTC           |
| D281NNK     | D281NNK_fw | CGGCTGGTTCAATGACNNKTTCGCACTTCTGCAAG          |
| DZOIININK   | D281NNK_rv | CTTGCAGAAGTGCGAAMNNGTCATTGAACCAGCC           |
| F282NNK     | F282NNK_fw | CTGGTTCAATGACGATNNKGCACTTCTGCAAGCC           |
| F 2021 (11) | F282NNK_rv | GGCTTGCAGAAGTGCMNNATCGTCATTGAACCAG           |
| A 283NNK    | A283NNK_fw | GTTCAATGACGATTTCNNKCTTCTGCAAGCCATC           |
| AZOSININ    | A283NNK_rv | GATGGCTTGCAGAAGMNNGAAATCGTCATTGAAC           |
| L284NNK     | L284NNK_fw | CAATGACGATTTCGCANNKCTGCAAGCCATCATGG          |
|             | L284NNK_rv | CCATGATGGCTTGCAGMNNTGCGAAATCGTCATTG          |
| L285NNK     | L285NNK_fw | CAATGACGATTTCGCACTTNNKCAAGCCATCATGGGTC       |
|             | L285NNK_rv | GACCCATGATGGCTTGMNNAAGTGCGAAATCGTCATTG       |
| O286NNK     | Q286NNK_fw | CGATTTCGCACTTCTGNNKGCCATCATGGGTCCTAAG        |
| Q2001111    | Q286NNK_rv | CTTAGGACCCATGATGGCMNNCAGAAGTGCGAAATCG        |
| 4287NNK     | A287NNK_fw | GATTTCGCACTTCTGCAANNKATCATGGGTCCTAAGGTTG     |
|             | A287NNK_rv | CAACCTTAGGACCCATGATMNNTTGCAGAAGTGCGAAATC     |
| I288NNK     | I288NNK_fw | CGCACTTCTGCAAGCCNNKATGGGTCCTAAGGTTGTC        |
|             | I288NNK_rv | GACAACCTTAGGACCCATMNNGGCTTGCAGAAGTGCG        |
| M289NNK     | M289NNK_fw | GCACTTCTGCAAGCCATCNNKGGTCCTAAGGTTGTCG        |
|             | M289NNK_rv | CGACAACCTTAGGACCMNNGATGGCTTGCAGAAGTGC        |

Supplementary Table 15: Site-directed mutagenesis primers used for saturation of selected loop positions

Supplementary Table 16: Site-directed mutagenesis primers used for the adaption library based on the sequence alignment with oxygenases from *Phenylobacterium immobile* E.

| Mutation       | Name       | Sequence $(5' \rightarrow 3')$       |
|----------------|------------|--------------------------------------|
| T2274.1        | T237del_fw | GTACCATGCGGGAACGGCGCATCTTTCAGG       |
| 1257dei        | T237del_rv | CCTGAAAGATGCGCCGTTCCCGCATGGTAC       |
| M238dol        | M238del_fw | GTACCATGCGGGAATGGCGCATCTTTC          |
| W1250UEI       | M238del_rv | GAAAGATGCGCCATTCCCGCATGGTAC          |
| Т?37І          | T237I_fw   | GATATGTACCATGCGGGAATAATGGCGCATC      |
| 12371          | T237I_rv   | GATGCGCCATTATTCCCGCATGGTACATATC      |
| A 230S         | A239S_fw   | CATGCGGGAACGATGTCGCATCTTTCAGGTG      |
| A2378          | A239S_rv   | CACCTGAAAGATGCGACATCGTTCCCGCATG      |
| I 245M         | L245M_fw   | CATCTTTCAGGTGTAATGTCCAGCCTCCCGC      |
| 1.245101       | L245M_rv   | GCGGGAGGCTGGACATTACACCTGAAAGATG      |
| \$247G         | S247G_fw   | CTTTCAGGTGTATTGTCCGGCCTCCCGCCTGAAATG |
| 52470          | S247G_rv   | CATTTCAGGCGGGAGGCCGGACAATACACCTGAAAG |
| I 248F         | L248F_fw   | GGTGTATTGTCCAGCTTCCCGCCTGAAATGGATTTG |
| L2 <b>4</b> 01 | L248F_rv   | CAAATCCATTTCAGGCGGGAAGCTGGACAATACACC |
| P2/0P          | P249R_fw   | GTGTATTGTCCAGCCTCCGTCCTGAAATGGATTTG  |
| 1 247K         | P249R_rv   | CAAATCCATTTCAGGACGGAGGCTGGACAATACAC  |
| \$2551         | S255L_fw   | CCTGAAATGGATTTGCTGCAAGTAAAGTTACCG    |
| 5255L          | S255L_rv   | CGGTAACTTTACTTGCAGCAAATCCATTTCAGG    |
| F266H          | F266H_fw   | GTCAAGTGGGAATCAGCACCGGGCTAAGTGGGGTG  |
| г 200П         | F266H_rv   | CACCCCACTTAGCCCGGTGCTGATTCCCACTTGAC  |

| A 268V | A268V_fw | GAATCAGTTCCGGGTTAAGTGGGGTGGACATG     |
|--------|----------|--------------------------------------|
| A200 V | A268V_rv | CATGTCCACCCCACTTAACCCGGAACTGATTC     |
| W2701  | W270L_fw | CAGTTCCGGGCTAAGCTGGGTGGACATGGGACC    |
| W270L  | W270L_rv | GGTCCCATGTCCACCCAGCTTAGCCCGGAACTG    |
| H273V  | H273Y_fw | GCTAAGTGGGGTGGATATGGGACCGGCTGGTTC    |
| 112731 | H273Y_rv | GAACCAGCCGGTCCCATATCCACCCCACTTAGC    |
| т275н  | T275H_fw | GTGGGGTGGACATGGGCACGGCTGGTTCAATGAC   |
| 127511 | T275H_rv | GTCATTGAACCAGCCGTGCCCATGTCCACCCCAC   |
| C276A  | G276A_fw | GGTGGACATGGGACCGCCTGGTTCAATGACGATTTC |
| 6270A  | G276A_rv | GAAATCGTCATTGAACCAGGCGGTCCCATGTCCACC |
| W277I  | W277I_fw | GGACATGGGACCGGCATTTTCAATGACGATTTC    |
| VV2//1 | W277I_rv | GAAATCGTCATTGAAAATGCCGGTCCCATGTCC    |
| F278C  | F278G_fw | CATGGGACCGGCTGGGGCAATGACGATTTCGC     |
| F270G  | F278G_rv | GCGAAATCGTCATTGCCCCAGCCGGTCCCATG     |
| D280F  | D280E_fw | GACCGGCTGGTTCAATGAAGATTTCGCACTTCTG   |
| D200E  | D280E_rv | CAGAAGTGCGAAATCTTCATTGAACCAGCCGGTC   |
| D281F  | D281E_fw | GGCTGGTTCAATGACGAATTCGCACTTCTGCAAG   |
| D201E  | D281E_rv | CTTGCAGAAGTGCGAATTCGTCATTGAACCAGCC   |

Supplementary Table 17: Site-directed insertion mutagenesis primers used for the adaption library based on the sequence alignment with oxygenases from Phenylobacterium immobile E.

| Mutation   | Name                | Sequence $(5^{\circ} \rightarrow 3^{\circ})$ |
|------------|---------------------|----------------------------------------------|
| V257_K258  | V257InsED_fw        | GGATTTGTCCCAAGTAGAAGACAAGTTACCGTCAAGTGG      |
| insED      | V257InsED_rv        | CCACTTGACGGTAACTTGTCTTCTACTTGGGACAAATCC      |
|            | V257InsEDQE_fw      | GGATTTGTCCCAAGTAGAAGACCAGGAAAAGTTACCGTCAA    |
| V257_K258  |                     | GTGG                                         |
| insEDQE    | V257InsEDQE_rv      | CCACTTGACGGTAACTTTTCCTGGTCTTCTACTTGGGACAA    |
|            |                     | ATCC                                         |
| W257 W259  | V257InsEDQELA_fw    | GGATTTGTCCCAAGTAGAAGACCAGGAACTGGCGAAGTTAC    |
| V 257_K258 |                     | CGTCAAGTGG                                   |
| INSEDQEL   | V257InsEDQELA_rv    | CCACTTGACGGTAACTTCGCCAGTTCCTGGTCTTCTACTTG    |
| А          |                     | GGACAAATCC                                   |
| W257 W258  | V257InsEDQELARI_fw  | GGATTTGTCCCAAGTAGAAGACCAGGAACTGGCGCGTATTA    |
| v 257_R250 |                     | AGTTACCGTCAAGTGG                             |
| ADI        | V257InsEDQELARI_rv  | CCACTTGACGGTAACTTAATACGCGCCAGTTCCTGGTCTTC    |
| AKI        |                     | TACTTGGGACAAATCC                             |
| V257 K258  | V257InsEDQELARIA_fw | GGATTTGTCCCAAGTAGAAGACCAGGAACTGGCGCGTATTG    |
| v 257_R256 |                     | CGAAGTTACCGTCAAGTGG                          |
|            | V257InsEDQELARIA_rv | CCACTTGACGGTAACTTCGCAATACGCGCCAGTTCCTGGTC    |
| ANA        |                     | TTCTACTTGGGACAAATCC                          |
| L259_P260  | L259InsG_fw         | GATTTGTCCCAAGTAAAGTTAGGCCCGTCAAGTGGGAATC     |
| insG       | L259InsG_rv         | GATTCCCACTTGACGGGCCTAACTTTACTTGGGACAAATC     |
| P260_S261  | L260InsG_fw         | GTCCCAAGTAAAGTTACCGGGCTCAAGTGGGAATCAG        |
| insG       | L260InsG_rv         | CTGATTCCCACTTGAGCCCGGTAACTTTACTTGGGAC        |
| V257_K258  | V257InsEE_fw        | GGATTTGTCCCAAGTAGAAGAAAAGTTACCGTCAAGTGG      |
| insEE      | V257InsEE_rv        | CCACTTGACGGTAACTTTTCTTCTACTTGGGACAAATCC      |
|            | V257InsEERE_fw      | GGATTTGTCCCAAGTAGAAGAACGCGAAAAGTTACCGTCAA    |
| V257_K258  |                     | GTGG                                         |
| insEERE    | V257InsEERE_rv      | CCACTTGACGGTAACTTTTCGCGTTCTTCTACTTGGGACAA    |
|            |                     | ATCC                                         |

| V257 K258    | V257InsEERELA_fw               | GGATTTGTCCCAAGTAGAAGAACGCGAACTGGCAAAGTTAC |
|--------------|--------------------------------|-------------------------------------------|
| v 257_R256   |                                | CGTCAAGTGG                                |
| MSLLKEL<br>A | V257InsEERELA_rv               | CCACTTGACGGTAACTTTGCCAGTTCGCGTTCTTCTACTTG |
| A            |                                | GGACAAATCC                                |
| V257 K258    | V257InsEERELAA_fw              | GGATTTGTCCCAAGTAGAAGAACGCGAACTGGCGGCAAAGT |
| insFFRFI     |                                | TACCGTCAAGTGG                             |
|              | V257InsEERELAA_rv              | CCACTTGACGGTAACTTTGCCGCCAGTTCGCGTTCTTCTAC |
|              |                                | TTGGGACAAATCC                             |
| K258_L259    | K258InsAG_fw                   | GATTTGTCCCAAGTAAAGGCGGGCTTACCGTCAAGTGGG   |
| insAG        | K258InsAG_rv                   | CCCACTTGACGGTAAGCCCGCCTTTACTTGGGACAAATC   |
| L259_P260    | L259InsA_fw                    | GATTTGTCCCAAGTAAAGTTAGCGCCGTCAAGTGGGAATC  |
| insA         | L259InsA_rv                    | GATTCCCACTTGACGGCGCTAACTTTACTTGGGACAAATC  |
| P260_S261    | P260InsGS_fw                   | GTCCCAAGTAAAGTTACCGGGTAGCTCAAGTGGGAATCAG  |
| insGS        | P260InsGS_rv                   | CTGATTCCCACTTGAGCTACCCGGTAACTTTACTTGGGAC  |
| P260_S261    | P260InsGG_tw                   | GTCCCAAGTAAAGTTACCGGGTGGTTCAAGTGGGAATCAG  |
| insGG        | P260InsGG_rv                   | CTGATTCCCACTTGAACCACCCGGTAACTTTACTTGGGAC  |
| N279_D280    | N279InsE_fw                    | GGGACCGGCTGGTTCAATAACGACGATTTCGCACTTC     |
| insE         | N2/9InsE_rv                    | GAAGTGCGAAATCGTCGTTATTGAACCAGCCGGTCCC     |
|              | Q286InsKK_fw                   | CGATTTCGCACTTCTGCAAAAAAAGCCATCATGGGTCCTA  |
| Q286_A287    | 00001 1/1/                     | AG                                        |
| INSKK        | Q286InsKK_rv                   | CTTAGGACCCATGATGGCTTTTTTTTGCAGAAGTGCGAAAT |
|              | 0296 IncVV A A fru             |                                           |
| 0196 1 197   | Q280IIISKKAA_IW                |                                           |
| Q200_A207    | $O286 InsKK \Lambda \Lambda$ m |                                           |
| IIISKKAA     | Q200IIISKKAA_IV                |                                           |
|              | 0286InsKKAAFG_fw               |                                           |
| Q286_A287    | Q200III3IIII II ILO_IW         |                                           |
| insKKAAE     | O286InsKKAAEG rv               |                                           |
| G            | (                              | GAAGTGCGAAATCG                            |
| F278 N279    | F278InsGP_fw                   | CATGGGACCGGCTGGTTCGGCCCAAATGACGATTTCGCAC  |
| insGP        | F278InsGP_rv                   | GTGCGAAATCGTCATTTGGGCCGAACCAGCCGGTCCCATG  |
|              | F278InsGPRL_fw                 | CATGGGACCGGCTGGTTCGGCCCACGTCTGAATGACGATTT |
| F278 N279    |                                | CGCAC                                     |
| insGPRL      | F278InsGPRL_rv                 | GTGCGAAATCGTCATTCAGACGTGGGCCGAACCAGCCGGTC |
|              |                                | CCATG                                     |
| Q286_A287    | N279InsP_fw                    | GGGACCGGCTGGTTCAATCCGGACGATTTCGCACTTC     |
| insEM        | N279InsP_rv                    | GAAGTGCGAAATCGTCCGGATTGAACCAGCCGGTCCC     |
|              | Q286InsEM_fw                   | CGATTTCGCACTTCTGCAAGAAATGGCCATCATGGGTCCTA |
| Q286_A287    |                                | AG                                        |
| insEM        | Q286InsEM_rv                   | CTTAGGACCCATGATGGCCATTTCTTGCAGAAGTGCGAAAT |
|              |                                | CG                                        |
|              | Q286InsEMKA_fw                 | CGATTTCGCACTTCTGCAAGAAATGAAAGCCGCCATCATGG |
| Q286_A287    |                                | GTCCTAAG                                  |
| insEMKA      | Q286InsEMKA_rv                 | CTTAGGACCCATGATGGCGGCTTTCATTTCTTGCAGAAGTG |
|              |                                | CGAAATCG                                  |
| O286 A287    | Q286InsEMKAEG_fw               | CGATTTCGCACTTCTGCAAGAAATGAAAGCCGAAGGCGCCA |
| insEMKAE     |                                | TCATGGGTCCTAAG                            |
| G            | Q286InsEMKAEG_rv               | CTTAGGACCCATGATGGCGCCTTCGGCTTTCATTTCTTGCA |
| -            | 00000                          | GAAGTGCGAAATCG                            |
| Q286 A287    | Q286InsEMKAEGK_fw              | CGATTTCGCACTTCTGCAAGAAATGAAAGCCGAAGGCAAAG |
| <b>C</b>     |                                | CCATCATGGGTCCTAAG                         |

| insEMKAE | Q286InsEMKAEGK_rv | CTTAGGACCCATGATGGCTTTGCCTTCGGCTTTCATTTCTT |
|----------|-------------------|-------------------------------------------|
| GK       |                   | GCAGAAGTGCGAAATCG                         |

**Supplementary Table 18: Site-directed mutagenesis primers used for the deletion variants.** \* = mutations incorporated by overlap PCR

| Mutation  | Name        | Sequence $(5' \rightarrow 3')$                      |
|-----------|-------------|-----------------------------------------------------|
| E251 Jal  | P250DelE_fw | GTCCAGCCTCCCGCCTATGGATTTGTCCCAAGTAAAGTTACCG         |
| E251del   | P250DelE_rv | AGGCGGGAGGCTGGACAATACACCTGAAAGATGCGCCATC            |
|           | P249DelPEM_ | CAGGTGTATTGTCCAGCCTCCCGGATTTGTCCCAAGTAAAGTTACC      |
| P250_M252 | fw          |                                                     |
| del       | P249DelPEM_ | GGTAACTTTACTTGGGACAAATCCGGGAGGCTGGACAATACACCTG      |
|           | rv          |                                                     |
|           | S247DelLPPE | CGCATCTTTCAGGTGTATTGTCCAGCTCCCAAGTAAAGTTACCGTCA     |
| L248_L254 | MDL_fw      | AGTGGG                                              |
| del *     | S247DelLPPE | GCTGGACAATACACCTGAAAGATGCGCCATCGTTCCCGCATGGTACA     |
|           | MDL_rv      | TATC                                                |
|           | Q256DelV_fw | GCCTGAAATGGATTTGTCCCAAAAGTTACCGTCAAGTGGGAATCAGT     |
| V257del   |             | TC                                                  |
|           | Q256DelV_rv | TTGGGACAAATCCATTTCAGGCGGGAGGCTGGACAATACACCTG        |
|           | S255DelQVK_ | CGCCTGAAATGGATTTGTCCTTACCGTCAAGTGGGAATCAGTTCCG      |
| Q256_K258 | fw          |                                                     |
| del       | S255DelQVK_ | GGACAAATCCATTTCAGGCGGGAGGCTGGACAATACACCTGAAAG       |
|           | rv          |                                                     |
|           | D253DelLSQ  | GCCTCCCGCCTGAAATGGATTCAAGTGGGAATCAGTTCCGGGCTAAG     |
| L254_P260 | VKLP_fw     |                                                     |
| del *     | D253DelLSQ  | ATCCATTTCAGGCGGGGGGGGGGGCTGGACAATACACCTGAAAGATGCGCC |
|           | VKLP_rv     |                                                     |
| A 283dol  | F282DelA_fw | GGCTGGTTCAATGACGATTTCCTTCTGCAAGCCATCATGGGTC         |
| A20JUEI   | F282DelA_rv | GAAATCGTCATTGAACCAGCCGGTCCCATGTCCACCCCAC            |
|           | D281DelFAL_ | CCGGCTGGTTCAATGACGATCTGCAAGCCATCATGGGTCC            |
| F282_L284 | fw          |                                                     |
| del       | D281DelFAL_ | TCGTCATTGAACCAGCCGGTCCCATGTCCACCCCACTTAGC           |
|           | rv          |                                                     |
|           | N279DelDDF  | CATGGGACCGGCTGGTTCAATGCCATCATGGGTCCTAAGGTTGTCG      |
| D280_Q286 | ALLQ_fw     |                                                     |
| del *     | N279DelDDF  | ATTGAACCAGCCGGTCCCATGTCCACCCCACTTAGCCCGG            |
|           | ALLQ_rv     |                                                     |

| Mutation   | Name                 | Sequence $(5^{\circ} \rightarrow 3^{\circ})$    |
|------------|----------------------|-------------------------------------------------|
|            | V257_K258ins         | GGATTTGTCCCAAGTAGGTGGTAAGTTACCGTCAAGTGG         |
| V257_K258  | GG_fw                |                                                 |
| insGG      | V257_K258ins         | CCACTTGACGGTAACTTACCACCTACTTGGGACAAATCC         |
|            | GG_rv                |                                                 |
|            | V257_K258ins         | GGATTTGTCCCAAGTAGGTGGTGGTAAGTTACCGTCAAGTGG      |
| V257_K258  | GGG_fw               |                                                 |
| insGGG     | V257_K258ins         | CCACTTGACGGTAACTTACCACCACCTACTTGGGACAAATCC      |
|            | GGG_rv               |                                                 |
|            | V257_K258ins         | GGATTTGTCCCAAGTAGGTGGTGGTGGTAAGTTACCGTCAAGTGG   |
| V257_K258  | GGGG_fw              |                                                 |
| insGGGG    | V257_K258ins         | CCACTTGACGGTAACTTACCACCACCACCTACTTGGGACAAATCC   |
|            | GGGG_rv              |                                                 |
|            | V257_K258ins         | GGATTTGTCCCAAGTAGGTGGTGGTGGTGGTAAGTTACCGTCAAGTG |
| V257_K258  | GGGGG_fw             | G                                               |
| insGGGGG   | V257_K258ins         | CCACTTGACGGTAACTTACCACCACCACCACCTACTTGGGACAAATC |
|            | GGGGG_rv             | С                                               |
| V257 K258  | V257_K258ins         | GGATTTGTCCCAAGTAGGTGGTGGTGGTGGTGGTAAGTTACCGTCAA |
| insGGGGG   | GGGGGG_fw            | GTGG                                            |
| G          | V257_K258ins         | CCACTTGACGGTAACTTACCACCACCACCACCACCTACTTGGGACAA |
| •          | GGGGGG_rv            | ATCC                                            |
| V257_K258  | V257_K258ins         | GGATTTGTCCCAAGTAGGTTCTAAGTTACCGTCAAGTGG         |
| insGS      | GS_fw                |                                                 |
|            | V257_K258ins         | CCACTTGACGGTAACTTAGAACCTACTTGGGACAAATCC         |
|            | GS_rv                |                                                 |
| V257_K258  | V257_K258ins         | GGATTTGTCCCAAGTAGGTTCTGGTAAGTTACCGTCAAGTGG      |
| insGSG     | GSG_fW               |                                                 |
|            | $V_{25}/_K_{2581ns}$ | CCAUTTGAUGGTAAUTTAGAAUUAGATAUTTGGGAUAAATUU      |
| W257 W259  | U257 V258ing         |                                                 |
| v 257_K250 | $V237_K230IIIS$      | GGATTIGICCCAAGIAGGIICIGGIICIAAGIIACCGICAAGIGG   |
| 11150505   | V257 K258ins         | ССАСТТСАССТААСТТАСААССАСААСТТСССАСАААТСС        |
|            | GSGS rv              |                                                 |
| V257 K258  | V257 K258ins         | GGATTTGTCCCAAGTAGGTTCTGGTTAGGTAAGTTACCGTCAAGTG  |
| insGSGSG   | GSGSG fw             | G                                               |
| msdsdbd    | V257 K258ins         | CCACTTGACGGTAACTTAGAACCAGAACCAGATACTTGGGACAAATC |
|            | GSGSG rv             | C                                               |
| V257 K258  | V257 K258ins         | GGATTTGTCCCAAGTAGGTTCTGGTTCTGGTTCTAAGTTACCGTCAA |
| insGSGSG   | GSGSGS fw            | GTGG                                            |
| S          | V257 K258ins         | CCACTTGACGGTAACTTAGAACCAGAACCAGAACCTACTTGGGACAA |
|            |                      | ATCC                                            |
| V257 K258  | V257_K258ins         | GGATTTGTCCCAAGTACCGGCAAAGTTACCGTCAAGTGG         |
| insPA      | PA_fw                |                                                 |
|            | V257_K258ins         | CCACTTGACGGTAACTTTGCCGGTACTTGGGACAAATCC         |
|            | PA_rv                |                                                 |
| V257_K258  | V257_K258ins         | GGATTTGTCCCAAGTACCGGCACCGAAGTTACCGTCAAGTGG      |
| insPAP     | PAP_fw               |                                                 |
|            | V257_K258ins         | CCACTTGACGGTAACTTCGGTGCCGGTACTTGGGACAAATCC      |
|            | PAP_rv               |                                                 |

Supplementary Table 19: Site-directed mutagenesis primers used for the LILI library after position V257.

| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTACCGGCACCGGCAAAGTTACCGTCAAGTGG   |
|-----------|--------------|-------------------------------------------------|
| insPAPA   | PAPA_fw      |                                                 |
|           | V257_K258ins | CCACTTGACGGTAACTTTGCCGGTGCCGGTACTTGGGACAAATCC   |
|           | PAPA_rv      |                                                 |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTACCGGCACCGGCACCGAAGTTACCGTCAAGTG |
| insPAPAP  | PAPAP_fw     | G                                               |
|           | V257_K258ins | CCACTTGACGGTAACTTCGGTGCCGGTGCCGGTACTTGGGACAAATC |
|           | PAPAP_rv     | C                                               |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTACCGGCACCGGCACCGGCAAAGTTACCGTCAA |
| insPAPAP  | PAPAPA_fw    | GTGG                                            |
| Α         | V257_K258ins | CCACTTGACGGTAACTTTGCCGGTGCCGGTGCCGGTACTTGGGACAA |
|           | PAPAPA_rv    | ATCC                                            |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTAGGTCCGAAGTTACCGTCAAGTGG         |
| insGP     | GP_fw        |                                                 |
|           | V257_K258ins | CCACTTGACGGTAACTTCGGACCTACTTGGGACAAATCC         |
|           | GP_rv        |                                                 |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTAGGTCCGGGTAAGTTACCGTCAAGTGG      |
| insGPG    | GPG_fw       |                                                 |
|           | V257_K258ins | CCACTTGACGGTAACTTACCCGGACCTACTTGGGACAAATCC      |
|           | GPG_rv       |                                                 |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTAGGTCCGGGTCCGAAGTTACCGTCAAGTGG   |
| insGPGP   | GPGP_fw      |                                                 |
|           | V257_K258ins | CCACTTGACGGTAACTTCGGACCCGGACCTACTTGGGACAAATCC   |
|           | GPGP_rv      |                                                 |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTAGGTCCGGGTCCGGGTAAGTTACCGTCAAGTG |
| insGPGPG  | GPGPG_fw     | G                                               |
|           | V257_K258ins | CCACTTGACGGTAACTTACCCGGACCCGGACCTACTTGGGACAAATC |
|           | GPGPG_rv     | С                                               |
| V257_K258 | V257_K258ins | GGATTTGTCCCAAGTAGGTCCGGGTCCGGGTCCGAAGTTACCGTCAA |
| insGPGPG  | GPGPGP_fw    | GTGG                                            |
| Р         | V257_K258ins | CCACTTGACGGTAACTTCGGACCCGGACCCGGACCTACTTGGGACAA |
|           | GPGPGP_rv    | ATCC                                            |

| Mutation  | Name            | Sequence $(5^{\circ} \rightarrow 3^{\circ})$    |
|-----------|-----------------|-------------------------------------------------|
|           | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTGGTAATGACGATTTCGCACTTC  |
| F278_N279 | GG_fw           |                                                 |
| insGG     | F278_N279ins    | GAAGTGCGAAATCGTCATTACCACCGAACCAGCCGGTCCCATGTCC  |
|           | GG_rv           |                                                 |
|           | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTGGTGGTAATGACGATTTCGCACT |
| F278_N279 | GGG_fw          | TC                                              |
| insGGG    | F278_N279ins    | GAAGTGCGAAATCGTCATTACCACCACCGAACCAGCCGGTCCCATGT |
|           | GGG_rv          | CC                                              |
|           | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTGGTGGTGGTAATGACGATTTCGC |
| F278_N279 | GGGG_fw         | ACTTC                                           |
| insGGGG   | F278_N279ins    | GAAGTGCGAAATCGTCATTACCACCACCACCGAACCAGCCGGTCCCA |
|           | GGGG_rv         | TGTCC                                           |
|           | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTGGTGGTGGTGGTAATGACGATTT |
| F278_N279 | GGGGG_fw        | CGCACTTC                                        |
| insGGGGG  | F278_N279ins    | GAAGTGCGAAATCGTCATTACCACCACCACCGAACCAGCCGGTC    |
|           | GGGGG_rv        | CCATGTCC                                        |
| F278 N279 | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTGGTGGTGGTGGTGGTAATGACGA |
| insGGGGG  | GGGGGG_fw       | TTTCGCACTTC                                     |
| G         | F278_N279ins    | GAAGTGCGAAATCGTCATTACCACCACCACCACCGAACCAGCCG    |
|           | GGGGGG_rv       | GTCCCATGTCC                                     |
| F278_N279 | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTTCTAATGACGATTTCGCACTTC  |
| insGS     | GS_fw           |                                                 |
|           | F278_N279ins    | GAAGTGCGAAATCGTCATTAGAACCGAACCAGCCGGTCCCATGTCC  |
|           | GS_rv           |                                                 |
| F278_N279 | $F2/8_N2/9ins$  | GGACATGGGACCGGCTGGTTCGGTTCTGGTAATGACGATTTCGCACT |
| INSGSG    | E278 N270ing    |                                                 |
|           | $F2/6_N2/9IIIS$ | CC                                              |
| F278 N270 | E278 N270ins    |                                                 |
| insGSGS   | GSGS fw         | ACTTC                                           |
| msobob    | F278 N279ins    |                                                 |
|           | GSGS rv         | TGTCC                                           |
| F278 N279 | F278 N279ins    | GGACATGGGACCGGCTGGTTCGGTTCTGGTTCTGGTAATGACGATTT |
| insGSGSG  | GSGSG fw        | CGCACTTC                                        |
|           |                 | GAAGTGCGAAATCGTCATTACCAGAACCAGAACCGAACC         |
|           | GSGSG_rv        | CCATGTCC                                        |
| F278_N279 | F278_N279ins    | GGACATGGGACCGGCTGGTTCGGTTCTGGTTCTGGTTCTAATGACGA |
| insGSGSG  | GSGSGS_fw       | TTTCGCACTTC                                     |
| S         | F278_N279ins    | GAAGTGCGAAATCGTCATTAGAACCAGAACCAGAACCGAACCAGCCG |
|           | GSGSGS_rv       | GTCCCATGTCC                                     |
| F278_N279 | F278_N279ins    | GGACATGGGACCGGCTGGTTCCCGGCAAATGACGATTTCGCACTTC  |
| insPA     | PA_fw           |                                                 |
|           | F278_N279ins    | GAAGTGCGAAATCGTCATTTGCCGGGAACCAGCCGGTCCCATGTCC  |
|           | PA_rv           |                                                 |
| F278_N279 | F278_N279ins    | GGACATGGGACCGGCTGGTTCCCGGCACCGAATGACGATTTCGCACT |
| insPAP    | PAP_fw          | TC                                              |
|           | F278_N279ins    | GAAGTGCGAAATCGTCATTCGGTGCCGGGAACCAGCCGGTCCCATGT |
|           | PAP_rv          | CC                                              |

Supplementary Table 20: Site-directed mutagenesis primers used for the LILI library after position F278.

| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCCCGGCACCGGCAAATGACGATTTCGC |
|-----------|--------------|-------------------------------------------------|
| insPAPA   | PAPA_fw      | ACTTC                                           |
|           | F278_N279ins | GAAGTGCGAAATCGTCATTTGCCGGTGCCGGGAACCAGCCGGTCCCA |
|           | PAPA_rv      | TGTCC                                           |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCCCGGCACCGGCACCGAATGACGATTT |
| insPAPAP  | PAPAP_fw     | CGCACTTC                                        |
|           | F278_N279ins | GAAGTGCGAAATCGTCATTCGGTGCCGGTGCCGGGAACCAGCCGGTC |
|           | PAPAP_rv     | CCATGTCC                                        |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCCCGGCACCGGCACCGGCAAATGACGA |
| insPAPAP  | PAPAPA_fw    | TTTCGCACTTC                                     |
| Α         | F278_N279ins | GAAGTGCGAAATCGTCATTTGCCGGTGCCGGTGCCGGGAACCAGCCG |
|           | PAPAPA_rv    | GTCCCATGTCC                                     |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCGGTCCGAATGACGATTTCGCACTTC  |
| insGP     | GP_fw        |                                                 |
|           | F278_N279ins | GAAGTGCGAAATCGTCATTCGGACCGAACCAGCCGGTCCCATGTCC  |
|           | GP_rv        |                                                 |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCGGTCCGGGTAATGACGATTTCGCACT |
| insGPG    | GPG_fw       | TC                                              |
|           | F278_N279ins | GAAGTGCGAAATCGTCATTACCCGGACCGAACCAGCCGGTCCCATGT |
|           | GPG_rv       | CC                                              |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCGGTCCGGGTCCGAATGACGATTTCGC |
| insGPGP   | GPGP_fw      | ACTTC                                           |
|           | F278_N279ins | GAAGTGCGAAATCGTCATTCGGACCCGGACCGAACCAGCCGGTCCCA |
|           | GPGP_rv      | TGTCC                                           |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCGGTCCGGGTCCGGGTAATGACGATTT |
| insGPGPG  | GPGPG_fw     | CGCACTTC                                        |
|           | F278_N279ins | GAAGTGCGAAATCGTCATTACCCGGACCCGGACCGAACCAGCCGGTC |
|           | GPGPG_rv     | CCATGTCC                                        |
| F278_N279 | F278_N279ins | GGACATGGGACCGGCTGGTTCGGTCCGGGTCCGGGTCCGAATGACGA |
| insGPGPG  | GPGPGP_fw    | TTTCGCACTTC                                     |
| Р         | F278_N279ins | GAAGTGCGAAATCGTCATTCGGACCCGGACCCGGACCGAACCAGCCG |
|           | GPGPGP_rv    | GTCCCATGTCC                                     |

| Mutation   | Name                                                        | Sequence $(5^{\circ} \rightarrow 3^{\circ})$    |
|------------|-------------------------------------------------------------|-------------------------------------------------|
|            | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTGGTGCCATCATGGGTCCTAAGG  |
| Q286_A287  | GG_fw                                                       |                                                 |
| insGG      | Q286_A287ins                                                | CCTTAGGACCCATGATGGCACCACCTTGCAGAAGTGCGAAATCGTC  |
|            | GG_rv                                                       |                                                 |
|            | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTGGTGGTGCCATCATGGGTCCTAA |
| Q286_A287  | GGG_fw                                                      | GG                                              |
| insGGG     | Q286_A287ins                                                | CCTTAGGACCCATGATGGCACCACCACCTTGCAGAAGTGCGAAATCG |
|            | GGG_rv                                                      | TC                                              |
|            | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTGGTGGTGGTGCCATCATGGGTCC |
| Q286_A287  | GGGG_fw                                                     | TAAGG                                           |
| insGGGG    | Q286_A287ins                                                | CCTTAGGACCCATGATGGCACCACCACCACCTTGCAGAAGTGCGAAA |
|            | GGGG_rv                                                     | TCGTC                                           |
|            | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTGGTGGTGGTGGTGCCATCATGGG |
| Q286_A287  | GGGGG_fw                                                    | TCCTAAGG                                        |
| insGGGGG   | Q286_A287ins                                                | CCTTAGGACCCATGATGGCACCACCACCACCACCTTGCAGAAGTGCG |
|            | GGGGG_rv                                                    | AAATCGTC                                        |
| O286 A287  | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTGGTGGTGGTGGTGGTGCCATCAT |
| insGGGGG   | GGGGGG_fw                                                   | GGGTCCTAAGG                                     |
| G          | Q286_A287ins                                                | CCTTAGGACCCATGATGGCACCACCACCACCACCACCTTGCAGAAGT |
| _          | GGGGGG_rv                                                   | GCGAAATCGTC                                     |
| Q286_A287  | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTTCTGCCATCATGGGTCCTAAGG  |
| insGS      | GS_fw                                                       |                                                 |
|            | Q286_A28/ins                                                | CCTTAGGACCCATGATGGCAGAACCTTGCAGAAGTGCGAAATCGTC  |
| 0196 A 197 | $\frac{\text{OS}_{\text{IV}}}{\text{O286} \text{ A287ing}}$ |                                                 |
| Q200_A207  | $Q_{200}A_{207}$                                            | CC                                              |
| msd5d      | $\frac{030_{1W}}{0286}$                                     |                                                 |
|            | GSG rv                                                      | тс                                              |
| O286 A287  | $O_{286}$ A287ins                                           | GACGATTTCGCACTTCTGCAAGGTTCTGGTTCTGCCATCATGGGTCC |
| insGSGS    | GSGS fw                                                     | TAAGG                                           |
|            | 0286 A287ins                                                | CCTTAGGACCCATGATGGCAGAACCAGAACCTTGCAGAAGTGCGAAA |
|            | GSGS_rv                                                     | TCGTC                                           |
| Q286_A287  | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTTCTGGTTCTGGTGCCATCATGGG |
| insGSGSG   | GSGSG_fw                                                    | TCCTAAGG                                        |
|            | Q286_A287ins                                                | CCTTAGGACCCATGATGGCACCAGAACCAGAACCTTGCAGAAGTGCG |
|            | GSGSG_rv                                                    | AAATCGTC                                        |
| Q286_A287  | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAAGGTTCTGGTTCTGGTTCTGCCATCAT |
| insGSGSG   | GSGSGS_fw                                                   | GGGTCCTAAGG                                     |
| S          | Q286_A287ins                                                | CCTTAGGACCCATGATGGCAGAACCAGAACCAGAACCTTGCAGAAGT |
|            | GSGSGS_rv                                                   | GCGAAATCGTC                                     |
| Q286_A287  | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAACCGGCAGCCATCATGGGTCCTAAGG  |
| insPA      | PA_fw                                                       |                                                 |
|            | Q286_A287ins                                                | CCTTAGGACCCATGATGGCTGCCGGTTGCAGAAGTGCGAAATCGTC  |
|            | PA_rv                                                       |                                                 |
| Q286_A287  | Q286_A287ins                                                | GACGATTTCGCACTTCTGCAACCGGCACCGGCCATCATGGGTCCTAA |
| insPAP     | PAP_fw                                                      | GG                                              |
|            | Q286_A287ins                                                | CCTTAGGACCCATGATGGCCGGTGCCGGTTGCAGAAGTGCGAAATCG |
|            | PAP_rv                                                      | TC                                              |

Supplementary Table 21: Site-directed mutagenesis primers used for the LILI library after position Q286.

| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAACCGGCACCGGCAGCCATCATGGGTCC |
|-----------|--------------|-------------------------------------------------|
| insPAPA   | PAPA_fw      | TAAGG                                           |
|           | Q286_A287ins | CCTTAGGACCCATGATGGCTGCCGGTGCCGGTTGCAGAAGTGCGAAA |
|           | PAPA_rv      | TCGTC                                           |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAACCGGCACCGGCACCGGCCATCATGGG |
| insPAPAP  | PAPAP_fw     | TCCTAAGG                                        |
|           | Q286_A287ins | CCTTAGGACCCATGATGGCCGGTGCCGGTGCCGGTTGCAGAAGTGCG |
|           | PAPAP_rv     | AAATCGTC                                        |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAACCGGCACCGGCACCGGCAGCCATCAT |
| insPAPAP  | PAPAPA_fw    | GGGTCCTAAGG                                     |
| Α         | Q286_A287ins | CCTTAGGACCCATGATGGCTGCCGGTGCCGGTGCCGGTTGCAGAAGT |
|           | PAPAPA_rv    | GCGAAATCGTC                                     |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAAGGTCCGGCCATCATGGGTCCTAAGG  |
| insGP     | GP_fw        |                                                 |
|           | Q286_A287ins | CCTTAGGACCCATGATGGCCGGACCTTGCAGAAGTGCGAAATCGTC  |
|           | GP_rv        |                                                 |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAAGGTCCGGGTGCCATCATGGGTCCTAA |
| insGPG    | GPG_fw       | GG                                              |
|           | Q286_A287ins | CCTTAGGACCCATGATGGCACCCGGACCTTGCAGAAGTGCGAAATCG |
|           | GPG_rv       | TC                                              |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAAGGTCCGGGTCCGGCCATCATGGGTCC |
| insGPGP   | GPGP_fw      | TAAGG                                           |
|           | Q286_A287ins | CCTTAGGACCCATGATGGCCGGACCCGGACCTTGCAGAAGTGCGAAA |
|           | GPGP_rv      | TCGTC                                           |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAAGGTCCGGGTCCGGGTGCCATCATGGG |
| insGPGPG  | GPGPG_fw     | TCCTAAGG                                        |
|           | Q286_A287ins | CCTTAGGACCCATGATGGCACCCGGACCCGGACCTTGCAGAAGTGCG |
|           | GPGPG_rv     | AAATCGTC                                        |
| Q286_A287 | Q286_A287ins | GACGATTTCGCACTTCTGCAAGGTCCGGGTCCGGGTCCGGCCATCAT |
| insGPGPG  | GPGPGP_fw    | GGGTCCTAAGG                                     |
| р         |              |                                                 |
| r         | Q286_A287ins | CCTTAGGACCCATGATGGCCGGACCCGGACCCGGACCTTGCAGAAGT |

# NMR spectra



Supplementary Fig. 29: <sup>1</sup>H-NMR of the product of the synthesis of (+)-mentha-1.8-dien-10-ol 2b in CDCl<sub>3</sub>



Supplementary Fig. 30: <sup>13</sup>C-NMR of the product of the synthesis of (+)-mentha-1.8-dien-10-ol 2b in CDCl<sub>3</sub>



Supplementary Fig. 31: <sup>1</sup>H-NMR of the in-house standard of 1,2-dihydroxy-3-(2'-pyridyl)cyclohexa-3,5-diene 3a.



Supplementary Fig. 32: <sup>13</sup>C-NMR of the in-house standard of 1,2-dihydroxy-3-(2'-pyridyl)-cyclohexa-3,5-diene 3a.

#### Sequence of the Cumene Dioxygenase from Pseudomonas fluorescens IP01

CDO gene cluster (GenBank: D37828.1)<sup>11</sup>

cumA1 (Oxygenase  $\alpha$ -subunit)  $\rightarrow$  cumA2 (Oxygenase  $\beta$ -subunit)  $\rightarrow$  cumA3 (Ferredoxin)  $\rightarrow$  cumA4 (Reductase)

Overlapping sequence space between cumA3 and cumA4 is underlined.

ATGAGTTCAATAATAAATAAAGAAGTGCAGGAAGCCCCCTTTGAAAATGGGTGAAAAACTGGTCTGACGAGGAGAATAAAGCGCCT  ${\tt CGTTGATGAGGAAAAGGGGTTGCTTGATCCACGTATTTTCTCTGATCAGGATTTGTATGAGATCGAGCTTGAGAGGGTGTTTG$ CTCGATCCTGGCTGCTGCTTGGGCACGAGGGGCACATTCCCAAAGCCGGGGATTATCTGACCACCTACATGGGTGAAGACCCA GTAATTGTAGTGAGGCAGAAAGACCGGAGCATTAAAGTCTTTTTAAACCAATGTCGGCATCGCGGTATGCGTATTGAGCGATC **GGATTTTGGCAACGCAAAGTCATTTACCTGCACTTATCACGGGTGGGCCTATGACACCGCCGGTAATCTGGTCAATGTACCCT** ACGAGAAAGAGGCTTTTTGTGACAAAAAAGAGGGTGACTGCGGGTTCGACAAGGCCGACTGGGGGGCCGCTGCAAGCGCGGGTG GATACTTACAAGGGGCTGATTTTTGCCAACTGGGATACCGAAGCCCCTGATTTGAAGACCTATCTGAGCGATGCAACACCCTA TATGGACGTGATGCTCGATCGGACCGAGGCAGTTACTCAGGTCATCACCGGTATGCAAAAGACGGTAATCCCCCTGTAACTGGA AATTCGCCGCCGAGCAATTCTGTAGCGATATGTACCATGCGGGAACGATGGCGCATCTTTCAGGTGTATTGTCCAGCCTCCCG GTTCAATGACGATTTCGCACTTCTGCAAGCCATCATGGGTCCTAAGGTTGTCGATTACTGGACCAAAGGTCCAGCTGCTGAGC GTGCAAAAGAGCGTCTGGGTAAAGTTCTTCCGGCTGATCGCATGGTTGCTCAGCATATGACCATTTTTCCGACATGCTCATTT ATGGCGAAAACTGGGTGGAGGTTCAGCGGGGATTGCGCGGCTACAAGGCTAGAAGTAGACCTCTTTGTGCCCAGATGGGGGGCG GGTGTGCCAAACAAGAACAACCCGGAGTTTCCTGGAAAGACCAGCTACGTTTATAGCGAAGAAGCTGCGCGAGGGTTCTACCA CCACTGGAGCCGCATGATGTCCGAGCCGAGTTGGGACACGCTAAAGTCTTGAGCAGATAAAGTGACCGAAAAAAGCAATCACT TTCATCGGGTTTCTACCGTGGTAGACAAGGGTTTAGCCTGTTTTTTGGTTGCTGGAAGTGCCTAAGTGAATTGATTAACTTGG GTAAACCCCTGGCTTTGTCGGGGGGTATTTACTCGGGTGCATTCCAAAATGTACAGCTGTGCGTTTGGTGATAATCGTCATGCT ATGGATTTGCTATTTGCATGAGCCGAGTGCAGGTCGCCCCAACATATATACAGGAAACTAATTATGACATCCGCTGATTTGACA AAACCCATCGAGTGGCCAGAAATGCCCGTCAGTCTTGAATTGCAAAATGCCGTTGAGCAATTCTACTATCGCGAAGCACAGTT GCTTGATTATCAAAACTATGAGGCCTGGCTGGCTTTACTGACCCAAGACATCCAATATTGGATGCCAATTCGTACTACTCATA ATTCGGGCGAGGGTTTCGGGGCTTAACTGGACTGAAGATCCACCGTCGCGCAGCCGGCACATTGTAAGCAACGTTATCGTCCG  ${\tt CGAAACTGAGAGTGCTGGTACTTTGGAAGTTAGTTCTGCGTTCCTTTGTTACCGTAATCGATTGGAGCGTATGACGGACATCT}$ ATGTCGGTGAGCGTCGAGATATTTTGCTCCGTGTAAGTGACGGGCTGGGATTCAAAATTGCCAAGCGAACGATCTTGCTCGAC **CAGAGCACGATTACAGCGAATAATCTCAGCCAGTTTTTCTAA**CTAGGGAATGCTGGCCACTTACCCTATACCCAGCCTATTCA TGAGAGCGGCCTGAAAAATGAAGAGGAGCTACCCGATAGCTACGCAAACTAATCGCGCTCGCCCTTTCCTGATCGCGATCGGTA  ${\tt TCTTTTACTTGGCCAATCTCCTCGGGACTTTGCATTTCAGCAGCCTGCGGCTGTTCGGCATGATGTATTCGGGTGTGGATTTG$  ${\tt CAGGTCGGCGCTCCGGTATTCACCCTGCTGCAGGATGCCTGGGCCGTAGTCGGGCTGCAGCTGGGGGGCACTGGGCTGGTTGC}$ GTTGTGGGGCGCACGTCAGCCCGTGCGCTTCATGGCGGTTGTCCCCGTGGTCATCGTCACGGAAGTGCTCGACGGTATCTGGG ACTTGTACAGCATCGTTTGGAGTCACGAAGCCATGTGGTTCGGGCTCCTGACGTTCGCCATCCACGTGGTGTGGATCGTCTGG GGGTTACAGGTATGGCGCGTGTCGTCGTCGCCGGTCATCTGGCTTAACCGTCCCAACCTCCTGAATCTGTGGGCCTGAATTGAA CTATAGAAAACTCTGAAAAAAGGCTTGACCTCATGAGATATCCAGTCTGCAGTCCGCGTGGTTACTGGCGTGCATTTTCCGAGTG CGTACTTTTTCAGACCAACTCTATAATAAGAGACAAAAAAGAATGACTTTTTCCAAAGTTTGTGAAGTATCTGATGTGCCCGT  ${\tt CGGTGACGCCTTGCAGGTTGAAAGTAAGGGCGAAGCCGTCGCGATTTTCAACGTCGATGGAGAGTTGTTCGCAACACAGGACC}$ GTTGCACTCATGGTGACTGGTCCTTGTCCGAAGGCGGCTACCTAGAGGGTGACATTGTCGAATGCTCGCTGCACATGGGTAGG TTCTGTGTGCCGCACGGGCAAGGTAAAAGCAGCACCGCCCTGTGAGCCGCTGAAGATATATCCGATTCGAATAGATGGCAGCGA TGCCACTCGCTATCTTCGCGCCCCAAGGATATCAGGGAAAGATCCATCTGGTCGGGGAGGAGTTGCATGTGGCTTACGATCGCC  ${\tt cctccttatccaaggacaccctgtcaggaaaagtggtcgaaccacccgcaatcctggatccttgttggtatgcatcggccgat}$ ATAGATCTCCATTTAGGTGTACGCGTGACCGGTATTGATGTGGTAAACCACCAGGTACTTTTCGAATCCGGTGACATTCTAGC  ${\tt TGCGTGACCGCCGACAGCCAGGCGCTGAGGCAGGCGCTTGAGCCGGGCCAGTCTCTGGTAATTGTCGGCGGTGGCCTGATC}$ GGTTGCGAAGTGGCGACCACTGCTATTAATGCCGGTGCCCACGTCACTGTTCTGGAGGCCGGGGACGAACTGCTGTTGCGAGT GCTAGGCCGATCAACCGGGGCCTGGTGTCGCAACGAGTTGGAGCGTTTGGGTGTCCGGGTTGAACTGAACGCACAGGCAGCGC ATTTCGAGGGCGAGGGACACGTGCATGCCGTCGTTTGTGCCGATGGACGTCGGATAGCAGCTGGCACAGTTTTGGTGAGCATC GGTGCAGAACCAGCCGAACGGGCACGTGCGGCCGGGTATCGCATGTGAGCGCGCGTGGTAGTTGACGCTACGGGTGCAAG TGAACAGCCACATGCAGGCTGAAACTGCCGCCGCGGCCATGTTAGGCAAGTCTATCCCGGCTCTTCAGGTGCCAACCTCTTGG ACGGAGATTGCAGGGCATCGGATACAGATGGTTGGCGACATCGAAGGCCCCCGGAGAAGTTGTCTTGCGCGGTAACGTCGAGAA TGGTCAGCCGCTGGTGCAGTTCAGGGTTCTTGATGGTCGCGTTGAAGCCGCAACGGCTATCAATGCCCCGGAAGATTTTCCCG TTGCAACCCGATTGGTGGCTGACCACATTCCTGTATCGGCCACAAAATTGCAGGACGCTAGCTCTAACTTGCGGGGATTTTATG AAAGCTAAAGCTGAGCGATGCGAGTGA



Fig. 33: Plasmid map of pIP107D.<sup>1</sup>



Fig. 34: Plasmid map of pUC19. (Source: https://www.addgene.org/50005, July 2020)

### **Supplementary References**

- Gally, C., Nestl, B. M. & Hauer, B. Engineering Rieske Non-Heme Iron Oxygenases for the Asymmetric Dihydroxylation of Alkenes. *Angew. Chemie - Int. Ed.* 54, 12952–12956 (2015).
- Halder, J. M., Nestl, B. M. & Hauer, B. Semirational Engineering of the Naphthalene Dioxygenase from Pseudomonas sp. NCIB 9816-4 towards Selective Asymmetric Dihydroxylation. *ChemCatChem* 10, 178–182 (2018).
- 3. Vila, M. A. *et al.* Site-Directed Mutagenesis Studies on the Toluene Dioxygenase Enzymatic System: Role of Phenylalanine 366, Threonine 365 and Isoleucine 324 in the Chemo-, Regio-, and Stereoselectivity. *Adv. Synth. Catal.* **359**, 2149–2157 (2017).
- Groeneveld, M., van Beek, H. L., Duetz, W. A. & Fraaije, M. W. Identification of a novel oxygenase capable of regiospecific hydroxylation of D-limonene into (+)-trans-carveol. *Tetrahedron* 72, 7263–7267 (2016).
- Boyd, D. R. *et al.* Regioselectivity and stereoselectivity of dioxygenase catalysed cisdihydroxylation of mono- and tri-cyclic azaarene substrates. *Org. Biomol. Chem.* 6, 3957–3966 (2008).
- Alan, B. & Bucher, W. Menthatrienes and the Oxidation of limonene. *Helv. Chim. Acta* 53, 770–775 (1970).
- Scanlon, J. T. & Willis, D. E. Calculation of flame ionization detector relative response factors using the effective carbon number concept. *J. Chromatogr. Sci.* 23, 333–340 (1985).
- Szulejko, J. E. & Kim, K. H. Re-evaluation of effective carbon number (ECN) approach to predict response factors of 'compounds lacking authentic standards or surrogates' (CLASS) by thermal desorption analysis with GC-MS. *Analytica Chimica Acta* vol. 851 14–22 (2014).
- Bermejo, F. A., Rico-Ferreira, R., Bamidele-Sanni, S. & García-Granda, S. Total synthesis of (+)-ampullicin and (+)-isoampullicin: Two fungal metabolites with growth regulatory activity isolated from Ampulliferina sp. 27. *J. Org. Chem.* 66, 8287–8292 (2001).

- Dhulut, S. *et al.* Cyclic allyl carbamates in stereoselective syn SE' processes: Synthetic approach to sarcodictyins and eleutherobin. *European J. Org. Chem.* 5235–5243 (2007) doi:10.1002/ejoc.200700490.
- 11. Dong, X. *et al.* Crystal Structure of the Terminal Oxygenase Component of Cumene Dioxygenase from Pseudomonas fluorescens IP01. *J. Bacteriol.* **187**, 2483–2490 (2005).