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Supplementary Notes 
 

Supplementary Note 1  

Detailed steps for collecting ligand–receptor interactions in CellChatDB 
CellChatDB is a database of literature-supported ligand-receptor interactions in mouse and human. The 
majority of ligand-receptor interactions were manually curated on the basis of KEGG signaling pathway 

database, and additional signaling molecular interactions were gathered from recent peer-reviewed studies. 

In particular, the detailed steps for collecting ligand-receptor interactions in mouse are as follows.  

 

Step 1: We collected the list of all major signaling pathway families, which are related to “Signal 

Transduction” and “Signaling Molecules and Interaction” (https://www.genome.jp/kegg/pathway.html)  in 

KEGG pathway database. 
 

Step 2: We manually curated ligand-receptor interactions by reviewing all relevant KEGG pathway maps. 

For each map, e.g., TGFβ signaling pathway (Supplementary Fig. 1a), each signaling molecule was 

classified as one of six categories: ligand, receptor, agonist, antagonist, co-stimulatory and co-inhibitory 

membrane-bound receptors. Signaling role of each molecule is clearly indicated in KEGG pathway maps. 

Note that agonist, antagonist, co-stimulatory and co-inhibitory receptors are considered as cofactor 

molecules, which only modulate ligand-receptor mediated signaling strength, and do not produce new 

ligand-receptor pairs. After a ligand-receptor pair was chosen, we determined its co-factor molecules. For 
example, for Tgfb1 ligand (green box) and its receptor complex Tgfbr1/Tgfbr2 (pink box) (new 

Supplementary Fig. 1a), Thbs1 (light orange box) is found to be an agonist because Thbs1 inhibits Ltbp1 

and Lrbp1 inhibits the ligand Tgfb1, implying a positive regulation of Tgfb1 by Thbs1. For this case, 

antagonists include Ltbp1, Lefty1, Fmod, Dcn (orange box) because they are negative regulators of Tgfb1. 

Co-inhibitory receptor is Bambi (purple) because of its negative role as a membrane-bound receptor. 

Similarly, we collected other ligand-receptor pairs as well as cofactors by reviewing all available KEGG 

pathway maps. Supplementary Figure 1a shows several other examples of ligand-receptor pairs and how 

we defined ligands, (multi-subunit) receptors and cofactors. Note that we did not consider ligand-co-
receptors pairs, agonist-receptor pairs and antagonist-receptor pairs because these co-factors usually 

either enhance or attenuate the main ligand-receptor interaction to modulate signaling. 

 

Step 3: We carefully reviewed several signaling molecule/compound families in the KEGG database, 

including Cytokine Receptors (ko04050), Cytokines and Growth Factors (ko04052), and Bioactive Peptides 

(br08005), to ensure that these ligands/receptors are included in the curated ligand-receptor pairs in Step 

2.   
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Step 4: We collected additional ligand-receptor interactions by reviewing the known signaling pathway 

families in recent peer-reviewed studies. For example, for TGFβ signaling pathway, we collected nine 

additional ligand-receptor pairs from two prominent papers1, 2. A recent experimental study showed that 

TGFβ uses a novel mode of receptor activation (i.e., TGFBR1 and ACVR1) to phosphorylate SMAD1/51. 
Another study also showed that TGFβ ligands can bind to type I receptor ACVR1B/ACVR1C2. The evidence 

for each literature-supported ligand-receptor interaction is provided in CellChatDB. Together, mouse 

CellChatDB contains 2,021 validated molecular interactions, including 60% of paracrine/autocrine signaling 

interactions, 21% of extracellular matrix (ECM)-receptor interactions and 19% of cell-cell contact 

interactions. 

 

To collect signaling interactions in human, mouse gene symbols in CellChatDB were mapped to human 

orthologues using the human orthologue information via MGI 
(http://www.informatics.jax.org/homology.shtml). We also manually added signaling interactions specific to 

human, including CXCL8, CCL13, CCL14, CCL15, CCL16, CCL23, XCL2, IFNW1, IL1F7, IL26, IL29. In 

sum, human CellChatDB contains 1,939 validated molecular interactions, including 61.8% of 

paracrine/autocrine signaling interactions, 21.7% of extracellular matrix (ECM)-receptor interactions and 

16.5% of cell-cell contact interactions. 

 
Update CellChatDB by adding user-defined ligand-receptor pairs 
Users can update CellChatDB by adding their own curated ligand-receptor pairs. To do so, the format of 

the users’ lists must be compatible with the input files of CellChatDB. Users can update CellChatDB by 

submitting their lists via a pull request at Github (https://github.com/sqjin/CellChat) or following the four 

steps as follows.  

Step 1, extract the database information in CellChatDB and then save them in a local computer, including 
four files: 'geneInfo.csv', 'interaction_input_CellChat.csv', 'complex_input_CellChat.csv', 'and 

cofactor_input_CellChat.csv'. Users can do it by running the following codes in Rstudio: 
library(CellChat) 

options(stringsAsFactors = FALSE) 

CellChatDB <- CellChatDB.mouse # CellChatDB <- CellChatDB.human 

interaction_input <- CellChatDB$interaction 

complex_input <- CellChatDB$complex 

cofactor_input <- CellChatDB$cofactor 

geneInfo <- CellChatDB$geneInfo 

write.csv(interaction_input, file = "interaction_input_CellChatDB.csv") 

write.csv(complex_input, file = "complex_input_CellChatDB.csv") 

write.csv(cofactor_input, file = "cofactor_input_CellChatDB.csv") 

write.csv(geneInfo, file = "geneInfo_input_CellChatDB.csv") 
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Step 2, update these four .csv files by adding users’ curated ligand-receptor pairs. The main file is 

'interaction_input_CellChatDB.csv'. Users can first update the ligands, receptors and co-factors in the 

corresponding columns in 'interaction_input_CellChatDB.csv'. Users can then update 

"complex_input_CellChatDB.csv" and "cofactor_input_CellChatDB.csv" if any ligand complex, receptor 
complex and cofactors are updated. Users need to make sure that user-defined complex/cofactor names 

are the same in 'interaction_input_CellChatDB.csv' and "complex_input_CellChatDB.csv", 

'interaction_input_CellChatDB.csv' and " cofactor_input_CellChatDB.csv".   

"geneInfo_input_CellChatDB.csv" contains all gene information in mouse and it should have a column 

named ‘Symbol’, which does not need to be changed when updating CellChatDB.  

  

Step 3, update CellChatDB once updating the four .csv files. Users can do it by running the following codes 

in Rstudio: 
options(stringsAsFactors = FALSE) 

interaction_input <- read.csv(file = 'interaction_input_CellChatDB.csv', row.names = 1) 

complex_input <- read.csv(file = 'complex_input_CellChatDB.csv', row.names = 1) 

cofactor_input <- read.csv(file = 'cofactor_input_CellChatDB.csv', row.names = 1) 

geneInfo <- read.csv(file = ' geneInfo_input_CellChatDB.csv', row.names = 1) 

CellChatDB <- list() 

CellChatDB$interaction <- interaction_input 

CellChatDB$complex <- complex_input 

CellChatDB$cofactor <- cofactor_input 

CellChatDB$geneInfo <- geneInfo 

 

Step 4, re-build CellChat package by updating the database as follows 

setwd("/Users/USERS/Downloads/CellChat-master") # This is the folder of CellChat package downloaded 

from Github 
CellChatDB.mouse <- CellChatDB 

devtools::use_data(CellChatDB.mouse, overwrite = TRUE) 

 

 

Comparison of CellChatDB with KEGG database 
Although KEGG database contains the ligand-receptor interaction information, such information is not 

“ready-to-use” when developing a systematical approach for inferring cell-cell communication. By 

incorporating carefully reviewed KEGG pathway maps and recent peer-reviewed studies, CellChatDB 
provides the following added value.  

• It collects ligand-receptor pairs from KEGG signaling pathway maps. 

• It categories signaling molecules in each KEGG pathway map into different groups based on their 

roles in ligand-receptor interaction: agonist, antagonist, co-stimulatory receptor and co-inhibitory 

receptor. 
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• It arranges all collected information into a structured data format, allowing for easy computational 

analysis and provides new community resource to develop a systematical approach for cell-cell 

communication analysis. 

• It adds ligand-receptor interactions that are not in KEGG database through careful review of known 

signaling pathways in recent peer-reviewed studies. 

 
Comparison of CellChatDB with other existing ligand-receptor databases 
CellChatDB incorporates not only multi-subunit structure of ligand-receptor (L-R) complexes but also 
soluble and membrane-bound stimulatory and inhibitory cofactors, leading to a more comprehensive 

database than other existing ligand-receptor databases. We quantitatively showed the differences and the 

strengths of CellChatDB in comparison to other existing analogous databases, including CellTalkDB3, 

CellPhoneDB4, iTALK5, SingleCellSignalR6, Ramilowski20157, NicheNet8 and ICELLNET9. Among these 

databases, only CellChatDB and CellTalkDB contain ligand-receptor interactions in mouse. Therefore, we 

first performed comparison of the human version of CellChatDB with the above databases by counting the 

number of L-R pairs, L-R pairs with multi-subunits, and L-R pairs with cofactors (e.g., agonist, antagonist, 

co-stimulatory and co-inhibitory receptors) (Supplementary Fig. 1b). First, the number of L-R pairs in 
CellChatDB (i.e., 1,939 pairs) is higher than both in CellPhoneDB and ICELLNET, but lower than in other 

five databases, among which NicheNet has the largest number of L-R pairs (i.e., 12,651 pairs). Second, 

the number of L-R pairs with multi-subunits in CellChatDB (i.e., 928 pairs) is twice larger than in 

CellPhoneDB and three times larger than in ICELLNET, whereas other four databases do not consider L-

R pairs with multi-subunits. Third, only CellChatDB contains L-R pairs with cofactors. Moreover, we 

performed comparison of the mouse version of CellChatDB with CellTalkDB, which showed comparable 

number of L-R pairs (2021 vs. 2033). However, CellTalkDB does not consider the L-R pairs with multi-
subunits as well as the cofactors. Taking into an account subunit structure of ligands and receptors is 

essential because cell-cell communication often relies on multi-subunit protein complexes. Cofactors also 

modulate cell-cell communication both positively and negatively for certain signaling pathways. Therefore, 

CellChatDB provides an important resource for identifying biologically meaningful cell-cell communication.  
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Supplementary Note 2 

Communication pattern analysis using different number of patterns 
In the examples of communication pattern analysis on skin wound dataset and E14.5 embryonic 

skin pseudotime dataset, we showed how different cell populations coordinate with each other and how 

they coordinate with certain signaling pathways to drive and respond to signals by predicting five latent 

patterns (Fig. 2g-h and Fig. 3g-h). Here we also employed unsupervised method to infer the number of 

patterns based on two metrics including Cophenetic and Silhouette10 (see Methods). A suitable number of 
patterns is the one at which Cophenetic and Silhouette values begin to suddenly drop. By applying these 

two metrics to the two aforementioned datasets, we found that the inferred number of patterns was ranging 

from 4 to 6 (Supplementary Fig. 15a-b). For the outgoing communication patterns in the wound dataset and 

the incoming communication patterns in the E14.5 pseudotime dataset, these two metrics predicted that 

the number of patterns was 4 and 6, respectively. Comparing to the five outgoing communication patterns 

in the wound dataset (Fig. 2g), the four outgoing communication patterns merged two fibroblast-related 

patterns into one pattern. Specifically, FIB-H and other three fibroblast subpopulations (FIB-D, FIB-F and 
FIB-I) that were originally associated with two different patterns (Fig. 2g) were now associated with a single 

pattern (Supplementary Fig. 15d). For the E14.5 embryonic DC_Placode dataset with four spatially 

colocalized cell populations, the two metrics predicted that the number of incoming communication patterns 

was two (Supplementary Fig. 15c). Compared to the three incoming communication patterns (Fig. 4f), the 

two incoming patterns merged the pre-DC-enriched pattern with the DC-enriched pattern (Supplementary 

Fig. 15e). In another words, pre-DC and DC that were originally enriched in two different patterns (Fig. 4f) 

were now enriched in a single pattern (Supplementary Fig. 15e). Different numbers of patterns provide 

different resolution to uncovering the coordinated responses among different cell types. CellChat R package 
provides a visual representation of Cophenetic and Silhouette metrics for a range of the numbers of patterns 

to enable users select the optimal setting for the number of patterns present in the dataset. Of note, we use 

matrix decomposition instead of tensor decomposition approach to perform the communication pattern 

analysis, which is partly because the tensor decomposition algorithm is not applicable to the following two 

situations: (1) numbers of outgoing and incoming patterns could be different, and (2) coordinated signaling 

pathways could be different for secreting and receiving cells. 

 

 

Influence of cell clustering on the inferred cell-cell communication network 
To explore how cell clustering results may affect the inferred cell-cell communication network, we 

used an example of E14.5 mouse embryonic skin dataset with four spatially colocalized cell subpopulations. 

First, we assessed how cell clustering affects the inferred interactions if the number of cell clusters remains 

the same. We used two different choices of parameters (e.g., different number of highly variable genes and 

principle components) to produce two different clustering results while keeping the number of cell clusters 

unchanged. The Jaccard similarities between these two new clustering results and our original clustering 



7 
 

result were 0.91 and 0.83, respectively. We then re-run CellChat analysis and found that all of the inferred 

interactions from our original clustering result were also predicted using these two newly added clustering 

results (Supplementary Fig. 16). Second, we used another choice of parameters to produce different 

number of cell clusters, leading to three subpopulations: Placode, preDC and DC. Applying CellChat to 
these three subpopulations, we found that 88% of interactions inferred from our original clustering result 

were also predicted using new clustering result (Supplementary Fig. 16). These results were not surprising 

for the following two reasons: 1) different number of cell clusters likely produces different ligand-receptor 

interactions because of the different resolution of cell-cell communication analysis; 2) the uncertainty of the 

clustering results will not likely give different ligand-receptor interactions because cell-cell communication 

is inferred at the clustering level and some degree of uncertainty will not likely affect the estimation of the 

average gene expression of the cell clusters. 

 
 

 

Supplementary Note 3 

Details of method comparisons  
Details for running SingleCellSignalR. SingleCellSignalR v0.0.1.46 was used for inferring intercellular 

communications in scRNA-seq datasets (https://github.com/SCA-IRCM/SingleCellSignalR_v1). To infer 

both "autocrine" and "paracrine" signaling, we used the “cell_signaling” function with the “int.type” 

parameter being "autocrine" and the “species” parameter being "mus musculus".   

 

Details for running iTALK. iTALK v0.1.05 was used for inferring intercellular communications in scRNA-
seq datasets (https://github.com/Coolgenome/iTALK). Since iTALK only provides ligand-receptor database 

for human, we first mapped gene symbols from mouse to human and then ran the default iTALK workflow 

provided in https://github.com/Coolgenome/iTALK/blob/master/example/example_code.r. 

 

Details for running CellPhoneDB. CellPhoneDB v2.0.04 was used for inferring intercellular 

communications in scRNA-seq datasets (https://github.com/Teichlab/cellphonedb). Since CellPhoneDB 

only provides ligand-receptor database for human, we first mapped the gene symbols from mouse to human 

and then ran “cellphonedb method statistical_analysis metadata.txt counts.txt --iterations=100 --threads=2”. 
 

Evaluation metrics  
We evaluated the robustness of inferred interactions from subsampled datasets using three measures, 

including true positive rate (TPR), false positive rate (FPR) and accuracy (ACC) by comparing the 

subsampled dataset with the original dataset. They are defined as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(1) 
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𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃	
(2) 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	
(3) 

 

where TP (true positive) is the number of interactions inferred from the subsampled dataset matched by 
the interactions inferred from the original dataset, FP (false positive) is the total number of interactions of 

the subsampled dataset minus TP, TN (true negative) is the number of interactions not in both the 

subsampled dataset and the original dataset, and FN (false negative) is the number of interaction of the 

original dataset that are not matched by the subsampled dataset. 
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Supplementary Figure 1: Details for manually curating CellChatDB and comparisons of CellChatDB 
with seven other known databases. (a) Examples of signaling pathways showing how we defined ligands, 

receptors, multi-subunit receptors, soluble agonist, soluble antagonist, co-A-receptor (co-stimulatory 

receptor) and co-I-receptor (co-inhibitory receptor) based on the KEGG pathway maps. Each panel shows 
one mouse KEGG pathway map, in which signaling molecules are colored based on their signaling roles 

on the ligand-receptor interaction. Note that we only show a part of each KEGG pathway map and CXCL8 

is not a mouse gene. (b) Comparison of CellChatDB with seven other known databases by counting the 

number of L-R pairs, L-R pairs with multi-subunits, and L-R pairs with co-factors (e.g., soluble agonist, 

antagonist, co-stimulatory and co-inhibitory receptors). Only CellChatDB and CellTalkDB contain ligand-

receptor interactions in mouse. The mouse version of CellChatDB contains 2,021 validated interactions, 

including 60% of secreting interactions. In addition, 48% of the interactions involve heteromeric molecular 

complexes. 
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Supplementary Figure 2: Classification of skin wound cells into groups. (a) Classification of day 12 

skin wound cells into major cell populations. Proportion of cells in each cell group is indicated. (b) High-

density bar chart showing the distribution of selected marker genes associated with each cell group. Colors 

correspond to cell populations defined in panel (a). (c) Classification of all skin wound fibroblasts into 
subpopulations. (d) Distribution of selected marker genes associated with each fibroblast subpopulation. 

(e) Classification of all skin wound myeloid cells into subpopulations. (f) Distribution of selected marker 

genes associated with each myeloid cell subpopulation. (g) Classification of all skin wound endothelial cells 

into subpopulations. (h) The distribution of selected marker genes associated with each endothelial 

subpopulation.  
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Supplementary Figure 3: Classification of cells from embryonic skin dataset into groups. (a) 
Classification of cells from embryonic E13.5 mouse skin into major cell populations. The proportion of cells 

in each population is indicated. (b) High-density bar chart showing the distribution of selected marker genes 

associated with each cell population from E13.5. (c) Classification of skin cells from embryonic day E14.5 
into major cell populations. Proportion of cells in each population is indicated. (d) High-density bar chart 

showing the distribution of selected marker genes associated with each cell population from E14.5. Colors 

correspond to the cell populations. (e) Classification of dermal condensate cells into subpopulations. The 

heatmap and the distribution of selected marker genes associated with each subpopulation are shown. (f) 
Left: Classification of basal epidermal cells into subpopulations. Right: The distribution of selected marker 

genes associated with each subpopulation. (g) Classification of melanocyte cells into subpopulations. Left: 

Cells are visualized in the UMAP space and colored by the inferred subpopulations. Right: Violin plot 

showing the distribution of selected marker genes associated with each subpopulation.  
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Supplementary Figure 4: Example of intercellular communication networks for continuous cell 
states along cell pseudotemporal trajectories. (a) Relative contribution of each ligand-receptor pair to 

the overall communication network of WNT signaling pathway, which is the ratio of the total communication 

probability of the inferred network of each ligand-receptor pair to that of a signaling pathway. (b) Heatmap 
showing the relative importance of each cell group based on the computed four network centrality measures 

of ncWNT signaling. (c) Relative contribution of each ligand-receptor pair to the overall communication 

network of ncWNT signaling pathway. (d) Hierarchical plot showing dermal and epidermal communications 

via FGF signaling. The hierarchical plot consists of two parts: Left and right portions highlight the autocrine 

and paracrine signaling to dermal and epidermal populations, respectively. Solid and open circles represent 

source and target, respectively. Circle sizes are proportional to the number of cells in each cell group and 

edge width represents the communication probability. Edge colors are consistent with the signaling source. 

(e) Violin plot showing the expression patterns of signaling genes involved in the inferred FGF signaling 
network. Normalized expression levels are shown in the violin plot. (f) Heatmap showing the relative 

importance of each cell group based on the computed four network centrality measures of FGF signaling. 
(g) Relative contribution of each ligand-receptor pair to the overall communication network of FGF signaling 

pathway. (h) Inferred intercellular communication networks of two ligand-receptor pairs, Fgf10-Fgfr2 and 

Fgf20-Fgfr2. (i) Inferred intercellular communication networks of TGFb signaling pathway. (j) Inferred 

intercellular communication networks of two ligand-receptor pairs, Tgfb1 – (Tgfbr1+Tgfbr2) and Tgfb2 – 

(Tgfbr1+Tgfbr2). (k) Violin plot showing the expression patterns of signaling genes involved in the inferred 

TGFb signaling network. 
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Supplementary Figure 5: Example of intercellular communication networks for spatially colocalized 
DC and placode cell populations. (a) Left: Relative contribution of each ligand-receptor pair to the overall 

communication network of FGF signaling pathway, which is the ratio of the total communication probability 

of the inferred network of each ligand-receptor pair to that of FGF signaling pathway. Right: Inferred 

intercellular communication network for each ligand-receptor pair associated with FGF signaling pathway. 

Circle sizes are proportional to the number of cells in each cell group and edge width represents the 

communication probability. (b) The distribution of several WNT pathway signaling genes in each cell group. 

(c) Left: Relative contribution of each ligand-receptor pair to the overall communication network of WNT 
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signaling pathway. Right: Inferred intercellular communication network for some ligand-receptor pairs 

associated with WNT signaling pathway. (d) Inferred intercellular communication network of WNT signaling 

pathway and associated ligand-receptor pairs. (e) Inferred intercellular communication network of ncWNT 

signaling pathway and associated ligand-receptor pairs. (f) Inferred intercellular communication networks 

for PROS, TGFb, PDGF, SEMA3 and IGF signaling pathways.  



19 
 

 



20 
 

 
Supplementary Figure 6: Comparison of example intercellular communication networks between 
E13.5 and E14.5 embryonic skin. (a, b, e, f) Inferred intercellular communication networks for KIT, 

ANGPTL, PDGF and IGF signaling pathways at E13.5 and E14.5. The hierarchical plot consists of two 

parts: Left and right portions highlight the autocrine and paracrine signaling to dermal and epidermal 
populations, respectively. Solid and open circles represent source and target, respectively. Circle sizes are 

proportional to the number of cells in each cell group and edge width represents the communication 

probability. (c, d, g, h) Violin plot showing the expression patterns of signaling genes involved in each 

inferred signaling network at E13.5 and E14.5. Normalized expression levels are used.  

 

 

 
 

 

 

 

 

 

 

 
 



21 
 

 
 
 
Supplementary Figure 7: Comparison of example intercellular communication networks between 
E13.5 embryonic skin and adult skin wound. (a-c) Inferred intercellular communication networks for IGF, 

PDGF and ANGPTL signaling pathways in embryonic skin at E13.5 and adult skin wound at day 12. Solid 

and open circles represent source and target, respectively. Circle sizes are proportional to the number of 

cells in each cell group and edge width represents the communication probability. 
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Supplementary Figure 8: Classification of cells from human skin dataset into groups. (a) 
Classification of skin cells from human patients with atopic dermatitis into major cell populations. Cells are 

colored according to skin biopsy sites and annotated cell types, respectively. SGC: Sweat gland cell; ENDO: 

endothelial cells; DC: Dendritic cell; LYME: Lymphatic endothelial cell; FIB, fibroblast; KC: keratinocyte; 
MELA, melanocyte; Myo-FIB: myofibroblast; NKT, natural killer T cell; cycling: cells expressing cell cycle 

markers. (b) Feature plot showing the expression pattern of marker genes associated with FIB, DC and TC. 

Dark red colors indicate high expression. (c-e) Classification of fibroblast, DC and TC into subpopulations 

independently. The distribution of selected marker genes associated with each subpopulation are shown.  
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Supplementary Figure 9: Comparison of example intercellular communication networks between 
nonlesional (NL) and lesional (LS) skin from the human skin dataset. (a-b) Inferred intercellular 

communication networks for MIF and CXCL signaling pathways from NL and LS skin. The hierarchical plot 

consists of two parts: Left and right portions highlight the autocrine and paracrine signaling to fibroblast and 

immune cells, respectively. Solid and open circles represent source and target, respectively. Circle sizes 

are proportional to the number of cells in each cell group and edge width represents the communication 



25 
 

probability. Edge colors are consistent with the signaling source. (c) The expression distribution of related 

signaling genes are shown. Red and green colors represent the normalized expression levels from NL and 

LS samples, respectively. 

 
 

 

 

 

 
 
 
Supplementary Figure 10: The percentage of false positive interactions caused by incomplete 
representations of known signaling molecule interactions. We compute the percentage of false 

positive interactions inferred by SingleCellSignalR and iTALK. The false positive interactions are defined 

by the interactions with multi-subunits that are partially identified by these tools. The interactions with multi-

subunits are from CellChatDB.  
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Supplementary Figure 11: Comparison of ligand-receptor interactions predicted by CellChat and 
CellPhoneDB. (a) The percentages of overlapped ligand-receptor interactions between 

CellChat/CellPhoneDB and other two methods including SingleCellSignalR and iTALK are shown. The 
percentage of overlapped ligand-receptor interactions between CellChat and CellPhoneDB is also shown. 

The sample size used to create a box plot is dependent on the number of cell groups in the dataset. Wound 

dataset: n = 625 biologically independent samples; E13.5 dataset: n = 121 biologically independent samples; 

E14.5 dataset: n = 169 biologically independent samples; DC_Placode: n = 16 biologically independent 
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samples. The overlap percentage is defined as the number of overlapped ligand-receptor interactions 

divided by the minimum number of identified ligand-receptor interactions between two methods. (b) 
Comparison of the robustness of inferred interactions under subsampling (90%, 80%, 70%) of the cells 

from each dataset. The sample size used to create a box plot is dependent on the number of inferred ligand-
receptor pairs in the dataset. Wound dataset: n = 60 for CellChat and n = 273 for CellPhoneDB biologically 

independent samples; E13.5 dataset: n = 89 for CellChat and n = 359 for CellPhoneDB biologically 

independent samples; E14.5 dataset: n = 109 for CellChat and n = 455 for CellPhoneDB biologically 

independent samples. In each case, we compute three measures including true positive rate (TPR), false 

positive rate (FPR) and accuracy (ACC) by comparing the inferred interactions from subsampled dataset 

with those from the original dataset. In each box-plot, the black center line indicate median value, and the 

thin black lines extend to the most extreme values within 1.5 times the IQR (interquartile range) of the 

median. 
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Supplementary Figure 12: Performance of different computational methods in distinguishing the 
spatially adjacent from distant cells. (a) Comparison of the number of inferred interactions between 
spatially adjacent and distant cells for each method. The interactions among spatially adjacent cells are the 

interactions among the four spatially colocalized cell populations, including placode, preDC, DC1 and DC2 

subpopulations. The interactions among spatially distant cells are the interactions between each cell type 

indicated on the x-axis and the four spatially colocalized cell populations. Note that here we only retained 

the top 10% of L-R pairs (the most significant) inferred by iTALK and SingleCellSignalR to ensure the 

comparable number of L-R pairs with that by CellChat. We considered seven cell types from E14.5 

embryonic skin dataset that are likely not spatially adjacent to the four spatially colocalized cell populations, 
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including FIB (fibroblasts), MELA (melanocytes), Spinous (spinous epithelial cells), MYL (myeloid cells), 

Immune (other immune cells), ENDO (endothelial cells) and Muscle. The sample size used to create a box 

plot is dependent on the number of cell groups in each cell type. FIB: n = 12 biologically independent 

samples for red colored box plot and n = 24 for green colored box plot; MELA: n = 12 biologically 
independent samples for red colored box plot and n = 16 for green colored box plot; Spinous, MYL, Immune, 

ENDO and Muscle: n = 12 biologically independent samples for red colored box plot and n = 8 for green 

colored box plot. (b) Comparison of the interaction strength between spatially adjacent and distant cells. 

The interaction strength is calculated by the interaction probability or score. The sample size in each box 

plot is the same as panel (a). (c) Comparison of the overall number of inferred interaction as well as the 

overall interaction strength by considering all spatially distant cells together, i.e., considering all the seven 

cell types together indicated in panel (a). Red and green colored boxes correspond to n = 12 and 88 

biologically independent samples respectively. p-values are from two-sided Wilcoxon rank-sum tests. Both 
CellChat and CellPhoneDB performed well at discriminating spatially adjacent from distant cells.  In each 

box-plot, the black center line indicate median value, and the thin black lines extend to the most extreme 

values within 1.5 times the IQR (interquartile range) of the median. 
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Supplementary Figure 13: Performance of the top interactions predicted by CellPhoneDB in 
distinguishing the spatially adjacent from distant cells. (a) Comparison of the number of inferred 

interactions between spatially adjacent and distant cells for the top 10%, top 20% and top 30% interactions 

predicted by CellPhoneDB. The top interactions are the strongest interactions that are measured by the 

interaction scores in CellPhoneDB. The results from CellChat was presented here as a comparison. The 

definitions of spatially adjacent and distant cells can be found in the legend in Supplementary Figure 12. 

Red and green colored boxes correspond to n = 12 and 88 biologically independent samples respectively. 
(b) Comparison of the number of the interaction strength between spatially adjacent and distant cells for 

the top 10%, top 20% and top 30% interactions predicted by CellPhoneDB. In each box-plot, the black 

center line indicate median value, and the thin black lines extend to the most extreme values within 1.5 

times the IQR (interquartile range) of the median. Red and green colored boxes correspond to n = 12 and 

88 biologically independent samples respectively. p-values are from two-sided Wilcoxon rank-sum tests. 

The difference between spatially adjacent and spatially distant cells predicted by CellPhoneDB here was 

not as significant as with that predicted by CellChat, suggesting that CellChat performed better at capturing 
stronger interactions. 
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Supplementary Figure 14: Robustness of the inferred interactions by CellChat with respect to 
different parameters in the Hill function. (a) The overlapped interactions between Kh = 0.5 (default) and 

Kh = 0.1, 0.3, 0.7, 0.9 for each dataset.  (b) The overlapped interactions between n = 1 (default Hill 
coefficient) and n = 0.5, 2, 3, 4 for each dataset.  We varied the dissociation constant Kh from 0.1 to 0.9 

with an increment of 0.2, and then computed the Jaccard similarity between the interactions inferred with 

each varied Kh and the interactions inferred with Kh being 0.5. We found the inference is relatively robust 

to the choice of Kh for all the four tested datasets. Similarly, by varying Hill coefficient n from 0.5 to 4, we 

also found the inferred ligand-receptor interactions are relatively robust. 
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Supplementary Figure 15: The number of patterns inferred by the Cophenetic and Silhouette metrics.  
(a-c) For the outgoing and incoming communication analyses in each studied dataset, the computed 

Cophenetic and Silhouette scores are shown for a predefined range of the number of patterns. The dashed 

lines indicate a suitable number of patterns. A suitable number of patterns is the one at which Cophenetic 

and Silhouette values begin to drop suddenly. (d) The alluvial plot showing outgoing signaling patterns of 
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secreting cells in the wound dataset based on the number of patterns being 4, which shows the 

correspondence between the inferred latent patterns and cell groups as well as signaling pathways. The 

thickness of the flow indicates the contribution of the cell group or signaling pathway to each latent pattern. 

The height of each pattern is proportional to the number of its associated cell groups or signaling pathways. 
Outgoing patterns reveal how the sender cells coordinate with each other as well as how they coordinate 

with certain signaling pathways to drive signals. (e) The alluvial plot showing incoming signaling patterns 

of target cells in the DC_Placode dataset based on the number of patterns equal to 2. Incoming patterns 

show how the target cells coordinate with each other as well as how they coordinate with certain signaling 

pathways to respond to signals. 

 

 

 
 

 

 
 
Supplementary Figure 16: Robustness of the inferred interactions by CellChat with respect to 
different clustering results. The overlapped interactions between the original clustering results and 

another three different clustering results using the four spatially colocalized cell subpopulations (i.e., 
placode, preDC, DC1 and DC2) as an example. We used two different choices of parameters to produce 

two different clustering results while keeping the number of cell clusters unchanged. The Jaccard similarities 

between these two new clustering results and our original clustering result are 0.91 and 0.83, respectively. 

In addition, we also used another choice of parameters to produce different number of cell clusters (three 

subpopulations: placode, preDC, DC). 

 



34 
 

 
 
Supplementary Figure 17: The number of inferred ligand-receptor pairs using different methods for 
calculating the average gene expression per cell group. For each studied dataset, the number of 

inferred ligand-receptor pairs (upper panel) and the percent of dropped pairs (lower panel) are computed 

using one of the five methods for calculating the average gene expression per cell group. The percent of 
dropped pairs is computed using the result from the ‘mean’ method as a baseline. The five methods include 

mean (i.e., simply calculating the average gene expression), 5% truncated mean (i.e., calculating the 

average gene expression by discarding 5% from each end of the data), 10% truncated mean, trimean (i.e., 

the method used in CellChat) and median. 
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Supplementary Table 
 
Supplementary Table 1. Comparison of the inferred intercellular communication networks among 
the four methods including CellChat, CellPhoneDB, iTALK and SingleCellSignalR. For any two cell 

subpopulations (each line in the table), we calculated the number of L-R pairs inferred by each method, 

and the number of shared L-R pairs between any two methods, using an example of four spatially 

colocalized cell populations in E14.5 embryonic mouse skin. Note that here we only retained the top 10% 

of L-R pairs (the most significant) inferred by iTALK and SingleCellSignalR to ensure the comparable 

number of L-R pairs with that by CellChat. SingleCellSignalR shared very few L-R pairs with other three 

methods, suggesting a very different logic used by SingleCellSignalR for quantifying and ranking L-R 
interactions. In the table, SignalR represents SingleCellSignalR.  

 
 

 Number of inferred LR interactions Number of shared LR interactions 
 CellChat CellPhoneDB iTALK SignalR CellChat & 

CellPhoneDB 
CellChat 
&iTALK 

CellChat 
&SignalR 

CellPhoneDB 
& iTALK 

CellPhoneDB 
& SignalR 

iTALK 
&SignalR 

pre-DC -> 
pre-DC 12 29 11 11 9 4 0 4 1 0 
pre-DC -> 
DC1 11 37 14 12 9 3 0 3 2 1 
pre-DC -> 
DC2 10 36 17 13 6 5 0 3 1 1 
pre-DC -> 
Placode 8 38 9 8 5 1 0 2 0 0 
DC1 ->  
pre-DC 13 30 12 12 6 4 0 3 0 0 
DC1 -> 
DC1 9 35 19 13 7 4 0 5 1 1 
DC1 -> 
DC2 12 32 18 16 5 4 0 4 1 1 
DC1 -> 
Placode 6 40 11 9 5 2 0 2 0 0 
DC2 ->  
pre-DC 13 36 15 10 8 5 0 7 0 0 
DC2 -> 
DC1 9 40 23 13 8 5 0 8 1 3 
DC2 -> 
DC2 11 37 24 18 6 7 0 9 1 3 
DC2 -> 
Placode 7 42 13 9 5 1 0 2 0 0 
Placode -> 
pre-DC 15 36 12 11 7 6 0 4 0 1 
Placode -> 
DC1 12 44 14 14 5 5 0 4 1 2 
Placode -> 
DC2 18 44 15 14 6 7 0 6 0 2 
Placode -> 
Placode 13 50 7 8 11 2 0 3 1 0 
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Supplementary Table 2. Characterization and comparison of CellChat with other tools for 
intercellular communication analysis. Note: SingleCellSignalR only provides a ligand-receptor 

database LRdb in human, but it internally maps mouse genes to their human orthologs according to 

Ensembl. 

 
 
 
 
 
 
 

  CellChat SingleCellSignalR iTALK CellPhoneDB 

  Multisubunit structure Y N N Y 
  Cofactors Y N N N 

Database Structured pathways Y N N N 
  Number of interactions 2021/1939 3251 2648 1396 
  Species mouse/human human human human 
  Preprocessed data matrix Y Y Y Y 

Input data Low-dimensional space Y N N N 
  Multiple datasets Y N Y N 

Model 
Methodology 

  

Mass Action 
Law + 

Statistical test 

Regularized 
product + 

Thresholding 
DEG 

analysis 

Mean 
expression + 
Statistical test 

  Cell proportion Y N N N 

  Infer signaling roles of cells Y N N N 

  
Predict key incoming and 
outgoing signals  Y  N  N  N  

Systems 
analysis Predict signaling patterns Y N N N 

  Classify signaling networks Y N N N 

  
Identify conserved vs. 
context-specific signaling  Y  N  Y  N  

 Hierarchical plot Y N N N 
Visualization  Circle plot Y N Y N 

 Bubble plot Y N N Y 
 Alluvial plot Y N N N 

Language   R R     R       Python 


