
 

REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
In this paper, the author developed an open source R package to infer, visualize and analyze the 
intercellular communications from scRNA-seq data called CellChat based on a manually curated 
comprehensive signaling molecule interaction database. CellChat can not only infers cell-state 
specific signaling communications within a given scRNA-seq data using mass action models, but 
also provides several visualization outputs to facilitate intuitive user-guided data interpretation. 
However, I have several concerns on the publication of the paper: 
 
1. As CellChat is heavily based on the underlying database of ligand-receptor pairs, the data 
quality of the database is very important. The description of database construction is too simple, 
the author should describe more details of database construction including how to collect ligand-
receptor pairs from KEGG step by step, how to define coligands or coreceptors and their 
interacting partners, and the manual collection from other resources or literatures. If possible, the 
related code should be provided for reproduction of CellChatDB. 
 
2. As the limitations of current existing databases, the author should list the statistical data of 
CellChatDB and other known LR databases, such as SingleCellSignalR, CellPhoneDB, NicheNet, 
iTALK, etc. to summarize the difference and strength of CellChatDB. Similarly, the author should 
also compare systematically the inferred intercellular communication network with other methods 
(SingleCellSignalR, CellPhoneDB, NicheNet, iTALK, etc.) on a specific dataset, e.g., the mouse skin 
scRNA-seq dataset, including the inferred significant ligand-receptor pairs and inferred cell-cell 
communications. 
 
3. As CellChatDB includes curated ligand-receptor pairs of human and mouse, all cases in the 
manuscript are mouse scRNA-seq datasets. The author should also test CellChat on a human 
scRNA-seq dataset by using human ligand-receptor pairs. 
 
4. For ligand-receptor pair, it is easy to understand that when the ligand is highly expressed in one 
cell group and the receptor is highly expressed in another cell group, the interaction between 
these two cell groups may occur and can be inferred. However, ligand-corecptors pairs and 
coligand-receptor pairs are more complex, how to define the interaction by three or more genes 
involving ligand-corecptors pairs and coligand-receptor pairs? What’s more, difference and detail of 
how to treat ligand-receptor pairs, ligand-coreceptors pairs, and coligands-receptor pairs when 
calculating intercellular communication probability should be stated clearly in Methods. 
 
5. In Figure 2A, the hierarchical plot shows the inferred intercellular communication network for 
TGFb signaling. However, this plot only shows the FB-related communications with other cell 
groups, while other intercellular communications cannot be obtained, for example, the 
communications between DC-LYME, MYL-ENDO, etc. It is necessary and informative if CellChat can 
show the overview of inferred intercellular communication network comprehensively for each 
pathway. 
 
6. In Figure 2A, the author should explain the meaning of the edge size in the Figure legend. 
 
 

 
 
Reviewer #2 (Remarks to the Author): 
 
This paper by Nie and colleagues contains two main contributions. First, they created a database, 
called CellChatDB for multimeric ligand-receptor complexes. Second, they developed a new 
computational method for inferring active ligand-receptor pathways from single-cell RNAseq data. 
Both the database and the method could be valuable resources for the community. 



 
Major concerns: 
- The main source of information underlying CellChatDB already exists in the widely used database 
KEGG. It is unclear what ‘manual curation’ means in this context or what additional value 
CellChatDB provides other than a visualization interface. 
- The computational method proposed here lack sufficient validation and benchmarking. 
Predictions are made from single-cell RNAseq data from mouse skin cells, where the ground-truth 
is unknown. To circumvent this difficulty, the authors used a subsampling approach, treating the 
results obtained from the full dataset as the ground-truth against which the predictions from 
subsamples are compared. This is a flawed assumption. In reality, this approach only evaluates 
sensitivity to input data, whereas errors intrinsic to model assumptions would be inherited across 
all datasets therefore cannot be detected in this way. 
- In evaluation of different methods, the authors assume that agreement between multiple 
methods is proxy for accuracy. This assumption is also flawed, because similar methods tend to 
generate similar results regardless of accuracy. The bottom line is that, without external curated 
information as a guide, it is impossible to evaluate the performance of different methods. 
Presumably the CellChatDB database can be used here to aid model evaluation, but it is unclear 
why they didn’t proceed in this direction. 
- The authors made a number of interesting predictions regarding the cell-type specific signaling 
pathways in mouse skin in response to wound healing and during embryonic development, but 
these predictions could be more substantiated if followed by experimental validation. 
Minor concerns: 
- Cell clustering is a pre-requisite for cell-cell interaction prediction, but clustering results can be 
different depending on which clustering methods are used and which parameters are chosen. How 
does such uncertainty affect the outcome of ligand-receptor interactions? 
- Related to the previous comment, nine fibroblast cell types were identified in mouse skin wound 
tissue. Are they truly distinct cell types? FIB-D seems to have unique signaling properties than the 
others. Have such specialized fibroblast cell types been observed before? 
- The analysis of incoming and outgoing signaling patterns seems interesting, but it is unclear 
what is the distinction between incoming and outgoing patterns. Is there a mechanistic 
interpretation for these patterns? 
- False positives rate is used to evaluate the performance of italk and singlecellsignalR. How is this 
calculated exactly? The first sentence on page 27 is vague and seems to be associated with 
consistency rather than accuracy. What is the ground truth? What is the false positive rate of the 
method presented in this study? Why is CellPhoneDB not compared in this analysis? 
- On a practical side, the cellchat website posts predicted results in mouse skin, but a user might 
be interested to apply this method to analyze their own data. Is this possible? 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
In the manuscript Inference and analysis of cell-cell communication using CellChat, Jin et al. 
presented a database of interactions among ligand and receptors, and a methodology to infer 
inter-cellular communication networks. There are a few subsequent analyses based on the inferred 
network, including centrality related concepts like dominant senders/receivers/mediators, etc., as 
well as using non-negative matrix decomposition to break down the network into distinct patterns. 
The manuscript has provided the community an alternative way and great visualization tools for 
inferring and comparing cell-cell communication between different biological conditions using 
scRNA-seq data. However, as a methodology paper, some data provided in the manuscript should 
be further validated to support their conclusions and need to be carefully addressed. 
 
Major points: 
1. Lies at the core is an ambitious model law-of-mass-action model that takes into account almost 
everything: the ligand/receptor expression and what they form multi-units complexes, co-
stimulatory, and co-inhibitory ligands/receptors, roles of agonist and antagonist. While all these 
components and their interactions are relevant, modeling of all these mechanistic processes 
requires a high level of details which is very hard to achieve with scRNA-seq data. Remember LMA 
happens in protein level, not in RNA level. So ironically, the model seems to capture everything 



but there are many assumptions, almost all parameters are arbitrarily chosen, and not easy to 
justify. For instance, why the dissociation constant is always 0.5? Why the Hill coefficient is always 
1? Such a detailed model will make the study a lot more depends on the correctness of the curated 
database. 
 
2. There’s no doubt the authors did their best to construct CellChatDB, but there’s no perfect 
source of information. I think, at the very minimal, the authors should do the following test to 
show that the outputs of their model capture a certain level of real signals rather than purely 
noise: In several ways randomize their curated database, like ligand-receptor interactions, the 
corresponding agonist/antagonist, co-receptors, etc., one-by-one and in some combinations, and 
then repeat the identification of statistically significant communications. If the number of 
significant pairs identified using the fake database is similar, then bad news, suggesting the 
outputs are simply false positive. In fact, the procedure could provide a way to quantify the false 
discovery rate. 
 
3. In revealing continuous cell lineage-associated signaling events, the authors predict the cell-cell 
communication in the different stages during pseudotime and real embryonic stages 
(E13.5/E14.5). However, the authors should provide expression pattern of ligands and receptors in 
all the predicted interactions during skin cell development side by side to validate their prediction 
results. Based on methods, we should be able to see a similar pattern of expression of 
ligand/receptors with communication probability of predicated interactions during developmental 
stages. 
4. In predicting key signaling events between spatially colocalized cell populations, the authors 
used spatially-colocalized 4 cell types to showcase their prediction on the cell-cell communication. 
However, proper controls are not provided to validate the predictions. The authors should add in 
cell types that are not spatially adjacent to these 4 cell types to the same analysis and 
demonstrate that cell-cell communication identified in Figure 4 are stronger in spatially adjacent 
cell types but not in spatially distant cell types. 
 
5. In comparison with other cell-cell communication inference tools, current metrics used to 
compare the tools by reasoning that a more accurate method will have a larger proportion of 
overlapped predictions with other methods is not reasonable and the result is not convincing. The 
ligand receptor databases used in CellChat and CellPhoneDB are different which will directly 
contribute to the number and variety of predicted interactions. Besides, the cell interactions 
identified by SingleCellSignalR and iTalk but not CellChat, due to failed detection of interactions 
with multi-subunits, are not necessarily ‘false-positive’, which could be caused by low expression 
of multi-subunits of the receptors. The authors should use better metrics to compare those 
inference tools, for example, whether these tools can correctly capture stronger interaction in 
spatially adjacent cells but not spatially distant cells. In Supplementary Figure 8(a), the authors 
overlapped ligand-receptor interactions between CellChat/CellPhoneDB and other two methods 
including SingleCellSignalR and iTALK. CellChat should be compared with CellPhoneDB in terms of 
overlapping interaction. In Supplementary Figure 8(b), CellChat is not outperforming CellPhoneDB 
much even with the modeling of almost everything. The authors need to explain this in “Method 
comparisons” section. 
 
6. The authors adopted non-negative matrix factorization for the identification of major signals of 
specific cell groups and global communication patterns. The number of patterns 5 seems to be 
random or experiential. Without knowing pattern’s biological meaning, it is unrealistic to guess the 
real number of patterns even with the domain knowledge. In page 10, the authors claimed that 
they can predict the sequential signaling events of cells, e.g., FIB-A cell secreted EGF and 
GALECTIN signals first. Then FIB-D and FIB-E coordinate… It is easier to identify groups of cell 
types and signals, but how this time-series event is inferred from the patterns is unclear. 
 
 
A few minor points: 
1. While P_{ij}^k is likely to lies between 0 to 1 (because of the last term), it is not exactly a 
probability, in the sense, \sum_j P_{ij}^k might not be 1. Should there require certain 
normalization? Or simply say the quantity scales with the probability? 
 



2. Because of dropout, 0 is quite common in scRNA-seq data. I am slightly worried about 
estimating the level of ligands by the geometric mean of the sub-units. Similarly, for the robust 
measure of average gene expression based on Q1, Q2, Q4. So, if there are more than 25% of 
dropout, EM=0. Can the authors provide some statistics on how many pairs are dropped? 
 
3. About the non-negative matrix factorization step, the authors reduce the 3D array P to 2D by 
summing over the receivers so that NMF could be used. It erases patterns associated with the 
receiver-end. What happens if we sum over the sources? Have the authors considered tensor 
decomposition? 
 
4. The standard of good figure legends is that the readers can easily get an idea of the figures 
without going back and forth among main text, figures and methods. The authors should improve 
their figure legends and clearly demonstrate what they did in each figure, instead of just generally 
saying what kind of plot/diagram it is. 
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REVIEWER COMMENTS 
Reviewer #1 

In this paper, the author developed an open source R package to infer, visualize and 

analyze the intercellular communications from scRNA-seq data called CellChat based on 

a manually curated comprehensive signaling molecule interaction database. CellChat can 

not only infers cell-state specific signaling communications within a given scRNA-seq data 

using mass action models, but also provides several visualization outputs to facilitate 

intuitive user-guided data interpretation. However, I have several concerns on the 

publication of the paper: 

Response:  We thank the reviewer for the insightful comments. Our detailed responses 

are provided below. Substantial improvement has been made in the revision, and multiple 

changes highlighted with red were introduced throughout the manuscript. 

 

 

R1-1. As CellChat is heavily based on the underlying database of ligand-receptor pairs, 

the data quality of the database is very important. The description of database 

construction is too simple, the author should describe more details of database 

construction including how to collect ligand-receptor pairs from KEGG step by step, how 

to define coligands or coreceptors and their interacting partners, and the manual 

collection from other resources or literatures. If possible, the related code should be 

provided for reproduction of CellChatDB. 

 

Response:  This is an important point. In the revised manuscript, we have significantly 

expanded the description of the database construction and also provided instructions on 

how to update CellChatDB using user-defined ligand-receptor interactions (see revised 

Supplementary Text). Since CellChatDB is a manually curated database of ligand-

receptor interactions constructed by carefully reviewing the KEGG pathway maps and 

recent peer-reviewed studies, we do not have codes for automatically creating database. 

However, we provide codes for updating CellChatDB using user-defined lists of curated 

signaling interactions. 
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We apologize for the confusing terminologies used in the Methods section. The co-factors 

we considered include: soluble agonist, soluble antagonist, co-stimulatory and co-

inhibitory membrane-bound receptors. The co-ligands are either soluble agonist or 

antagonist and, thus, we removed the terminology of co-stimulatory ligands and co-

inhibitory ligands. Since soluble agonist, antagonist and co-receptor usually either 

enhance or attenuate the main ligand-receptor interaction to modulate signaling, we did 

not consider ligand-co-receptors pairs and co-ligands-receptor pairs. We clarified the 

terminologies in the revised Methods section (Page 27).  

 

The revised manuscript provides more details on how CellChatDB was built in 

Supplementary Text. CellChatDB is a database of literature-supported ligand-receptor 

interactions in mouse and human. The majority of ligand-receptor interactions were 

manually curated on the basis of KEGG signaling pathway database, and additional 

signaling molecular interactions were gathered from recent peer-reviewed studies. In 

particular, the detailed steps for collecting ligand–receptor interactions in mouse are as 

follows.  

 

Step 1: We collected the list of all major signaling pathway families, which are related to 

“Signal Transduction” and “Signaling Molecules and Interaction” 

(https://www.genome.jp/kegg/pathway.html)  in KEGG pathway database. 

 

Step 2: We manually curated ligand-receptor interactions by reviewing all relevant KEGG 

pathway maps. For each map, e.g., TGFβ signaling pathway (Supplementary Figure 

S11a), each signaling molecule was classified as one of six categories: ligand, receptor, 

agonist, antagonist, co-stimulatory and co-inhibitory membrane-bound receptors. 

Signaling role of each molecule is clearly indicated in KEGG pathway maps. Note that 

agonist, antagonist, co-stimulatory and co-inhibitory receptors are considered as cofactor 

molecules, which only modulate ligand-receptor mediated signaling strength, and do not 

produce new ligand-receptor pairs. After a ligand-receptor pair was chosen, we 

determined its co-factor molecules. For example, for Tgfb1 ligand (green box) and its 

receptor complex Tgfbr1/Tgfbr2 (pink box) (new Supplementary Figure S11a), Thbs1 
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(light orange box) is found to be an agonist because Thbs1 inhibits Ltbp1 and Lrbp1 

inhibits the ligand Tgfb1, implying a positive regulation of Tgfb1 by Thbs1. For this case, 

antagonists include Ltbp1, Lefty1, Fmod, Dcn (orange box) because they are negative 

regulators of Tgfb1. Co-inhibitory receptor is Bambi (purple) because of its negative role 

as a membrane-bound receptor. Similarly, we collected other ligand-receptor pairs as well 

as cofactors by reviewing all available KEGG pathway maps. Supplementary Figure S11a 

shows several other examples of ligand-receptor pairs and how we defined ligands, 

(multi-subunit) receptors and cofactors. Note that we did not consider ligand-co-receptors 

pairs, agonist-receptor pairs and antagonist-receptor pairs because these co-factors 

usually either enhance or attenuate the main ligand-receptor interaction to modulate 

signaling.  

 

Step 3: We carefully reviewed several signaling molecule/compound families in the 

KEGG database, including Cytokine Receptors (ko04050), Cytokines and Growth Factors 

(ko04052), and Bioactive Peptides (br08005), to ensure that these ligands/receptors are 

included in the curated ligand-receptor pairs in Step 2.   

 

Step 4: We collected additional ligand-receptor interactions by reviewing the known 

signaling pathway families in recent peer-reviewed studies. For example, for TGFβ 

signaling pathway, we collected nine additional ligand-receptor pairs from two prominent 

papers (PMIDs: 29376829, 27449815). A recent experimental study showed that TGF-β 

uses a novel mode of receptor activation (i.e., TGFBR1 and ACVR1) to phosphorylate 

SMAD1/5 (PMID: 29376829; Elife 2018). Another study also showed that TGF-β ligands 

can bind to type I receptor ACVR1B/ACVR1C (PMID: 27449815; Cold Spring Harbor 

Perspectives in Biology 2016). The evidence for each literature-supported ligand-receptor 

interaction is provided in CellChatDB. Together, the mouse CellChatDB contains 2,021 

validated molecular interactions, including 60% of paracrine/autocrine signaling 

interactions, 21% of extracellular matrix (ECM)-receptor interactions and 19% of cell-cell 

contact interactions. 
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To collect signaling interactions in human, mouse gene symbols in CellChatDB were 

mapped to human orthologues using the human orthologue information via MGI 

(http://www.informatics.jax.org/homology.shtml). We also manually added signaling 

interactions specific to human, including CXCL8, CCL13, CCL14, CCL15, CCL16, CCL23, 

XCL2, IFNW1, IL1F7, IL26, IL29. In sum, human CellChatDB contains 1,939 validated 

molecular interactions, including 61.8% of paracrine/autocrine signaling interactions, 21.7% 

of extracellular matrix (ECM)-receptor interactions and 16.5% of cell-cell contact 

interactions. 

 

R1-2. As the limitations of current existing databases, the author should list the statistical 

data of CellChatDB and other known LR databases, such as SingleCellSignalR, 

CellPhoneDB, NicheNet, iTALK, etc. to summarize the difference and strength of 

CellChatDB. Similarly, the author should also compare systematically the inferred 

intercellular communication network with other methods (SingleCellSignalR, 

CellPhoneDB, NicheNet, iTALK, etc.) on a specific dataset, e.g., the mouse skin scRNA-

seq dataset, including the inferred significant ligand-receptor pairs and inferred cell-cell 

communications. 

 

Response: Thank you for the suggestion. In the revision we compared CellChatDB with 

six other known ligand-receptor (L-R) databases: 
• CellPhoneDB (Efremova et al., Nat Protoc 2020),  

• iTALK (Wang et al., bioRxiv 2019),  

• SingleCellSignalR (Cabello-Aguilar et al Nucleic Acids Res 2020),  

• Ramilowski2015 (Ramilowski et al. Nat Commun 2015),  

• NicheNet (Browaeys et al., Nat Methods 2019),  

• ICELLNET (Noël et al., bioRxiv 2020).  

Among these databases, only CellChatDB contains ligand-receptor interactions in mouse. 

Therefore, we performed comparison of the human version of CellChatDB with the above 

databases by counting the number of L-R pairs, L-R pairs with multi-subunits, and L-R 

pairs with co-factors (e.g., soluble agonist, antagonist, co-stimulatory and co-inhibitory 

receptors) (new Supplementary Figure 11b). First, the number of L-R pairs in CellChatDB 
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(i.e., 1,939 pairs) is higher than both in CellPhoneDB and ICELLNET, but lower than in 

other four databases, among which NicheNet has the largest number of L-R pairs (i.e., 

12,651 pairs). Second, the number of L-R pairs with multi-subunits in CellChatDB (i.e., 

928 pairs) is twice larger than in CellPhoneDB and three times larger than in ICELLNET, 

whereas other four databases do not consider L-R pairs with multi-subunits. Third, only 

CellChatDB contains L-R pairs with co-factors. Taking into an account subunit structure 

of ligands and receptors is essential because cell-cell communication often relies on 

multi-subunit protein complexes. Cofactors may also modulate cell-cell communication 

both positively and negatively. Therefore, CellChatDB provides an important resource for 

identifying biologically meaningful cell-cell communication. In the revision we have added 

these points in the Results (Page 21) and Supplementary Text (Page 4).  

 

In addition, we have systematically compared the inferred cell-cell communication 

networks by using three other methods (CellPhoneDB, iTALK, SingleCellSignalR) using 

an example of four spatially colocalized cell populations in embryonic mouse skin (revised 

Figure 4). We excluded NicheNet, because it does not give a clear-cut answer about 

whether ligand-receptor pairs are significant, as mentioned in its tutorial on Github 

(https://github.com/saeyslab/nichenetr/blob/master/vignettes/faq.md). We compared the 

inferred significant ligand-receptor (L-R) pairs for any two cell subpopulations between 

CellChat and other methods. Specifically, we calculated the number of L-R pairs inferred 

by each method, and the number of shared L-R pairs between any two methods 

(Supplementary Table S2). The average numbers of L-R pairs inferred by CellChat, 

CellPhoneDB, iTALK and SingleCellSignalR between two cell subpopulations were 12, 

37, 14 and 12, respectively. Note that we retained the top 10% of L-R pairs (most 

significant pairs) inferred by iTALK and SingleCellSignalR. We found that CellChat shared 

more L-R pairs with CellPhoneDB than with iTALK, likely due to the fact that both CellChat 

and CellPhoneDB consider the multi-subunit complexes and determine the significant L-

R pairs using a statistical approach. SingleCellSignalR shared very few L-R pairs with 

other three methods, suggesting a potentially different logic for quantifying and ranking 

L-R interactions. One major finding is that the majority of shared L-R pairs between 

CellChat and CellPhoneDB were independently ranked as top pairs by CellPhoneDB 
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(Supplementary Data 1). This result suggests that although CellChat infers fewer L-R 

pairs than CellPhoneDB, it captures the strongest (and likely the most significant) L-R 

interactions. The inferred L-R pairs for each method between any two subpopulations are 

listed in the new Supplementary Data 1. In the revised manuscript we have added these 

new results in the Results (Page 19) 

 

R1-3. As CellChatDB includes curated ligand-receptor pairs of human and mouse, all 

cases in the manuscript are mouse scRNA-seq datasets. The author should also test 

CellChat on a human scRNA-seq dataset by using human ligand-receptor pairs. 

 

Response: Thank you for the suggestion. In the revision, we added CellChat analysis on 

human dataset. Specifically, we studied signaling changes between lesional (diseased) 

and nonlesional (normal) skin from patients with atopic dermatitis (AD) using recently 

published human skin scRNA-seq dataset (PMID: 32035984; Helen et al., J Allergy Clin 

Immunol 2020). The original study revealed that lesional skin was enriched for chemokine 

signals (including CCL19) from inflammatory fibroblasts to inflammatory immune cells, 

including dendritic cells (DC) and T cells (TC). This was validated using 

immunofluorescence staining. Therefore, we used CellChat to study the intracellular 

communication among fibroblasts (four subpopulations: APOE+ FIB, FBN1+ FIB, 

COL11A+ FIB and Inflam.FIB), DCs (four subpopulations: cDC1, cDC2, LC and 

Inflam.DC), and TCs (four subpopulations: TC, Inflam.TC, CD40LG+ TC and NKT) (new 

Supplementary Fig. 12). By comparing the overall communication probability between 

nonlesional and lesional skin, we found that 11 out of 16 signaling pathways were highly 

active in lesional skin, including 9 pathways involved in inflammatory and immune 

response, such as CXCL, LIGHT, GLAECTIN, COMPLEMENT, MIF, CSF, IL4, CCL and 

TNF (new Figure 7c). Four pathways were specifically active in lesional skin, including 

known inflammatory signals CSF, IL4, CCL and TNF. Specific to CCL signaling, CellChat 

identified ligand-receptor pair CCL19-CCR7 as the most significant signaling, contributing 

to the communication from Inflam.FIB to Inflam.DC (new Figure 7d-f). This is in 

agreement with the exported experimental finding (Helen et al., J Allergy Clin Immunol 

2020). Ligand MIF and its multi-subunit receptor CD74/CD44 were found to act as major 
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signaling from Inflam.FIB to Inflam.TC in lesional skin compared to nonlesional skin (new 

Figure 7d and Supplementary Fig. 13). Together, CellChat’s joint analysis using an 

example of human lesional and nonlesional skin enables the discovery of major signaling 

changes that might drive disease pathogenesis. We have added these results in a new 

subsection of the revised Results section (Page 17).  

 

R1-4. For ligand-receptor pair, it is easy to understand that when the ligand is highly 

expressed in one cell group and the receptor is highly expressed in another cell group, 

the interaction between these two cell groups may occur and can be inferred. However, 

ligand-coreceptors pairs and coligand-receptor pairs are more complex, how to define the 

interaction by three or more genes involving ligand-coreceptors pairs and coligand-

receptor pairs? What’s more, difference and detail of how to treat ligand-receptor pairs, 

ligand-coreceptors pairs, and coligands-receptor pairs when calculating intercellular 

communication probability should be stated clearly in Methods. 

 

Response: We apologize for the confusion. As mentioned above, co-ligands are either 

soluble agonists or antagonists and, thus, we updated our terminology in the revised 

manuscript. Since co-ligand and co-receptor either enhance or attenuate the main ligand-

receptor interaction to modulate signaling, we did not consider ligand-co-receptors pairs 

and co-ligands-receptor pairs. In contrast, we modeled how these soluble agonists, 

antagonists and co-receptors increase or decrease the intercellular communication 

probability. For each ligand-receptor pair with multiple soluble agonists, we computed the 

average expression of these agonists (denoted by AG) and then used a will-studied Hill 

function, which is widely used to describe positive regulations in signal transduction, to 

model the positive modulation of the ligand-receptor interaction. For each ligand-receptor 

pair with multiple soluble antagonists, we modeled them using the same approach. For 

each ligand-receptor pair with multiple co-stimulatory receptors, we computed the 

average expression of these co-stimulatory receptors (denoted by RA) and then used a 

linear function to model the positive modulation of the receptor expression. We clarified 

these details in the revised Methods (Page 27). 
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R1-5. In Figure 2A, the hierarchical plot shows the inferred intercellular communication 

network for TGFb signaling. However, this plot only shows the FB-related 

communications with other cell groups, while other intercellular communications cannot 

be obtained, for example, the communications between DC-LYME, MYL-ENDO, etc. It is 

necessary and informative if CellChat can show the overview of inferred intercellular 

communication network comprehensively for each pathway. 

 

Response: Sorry for the confusion.  The hierarchical plot intends to provide an overview 

of inferred intercellular communication network for each pathway, consisting of two major 

parts: the left portion shows signaling to FIBs coming from either FIBs or immune/blood 

vessel cells (e.g., MYL, DC, ENDO); and the right portion shows signaling to 

immune/blood vessel cells coming from either FIBs or immune/ blood vessel cells. 

Therefore, the right portion shows communications between immune/blood vessel cells, 

such as DC-LYME and MYL-ENDO. In the revised manuscript, we have clarified this in 

the Results and Figure legends to emphasize the difference between left and right parts. 

In addition to the hierarchical plot, CellChat provides a circle plot for visualizing the global 

intercellular communication network. For most cases, the customized hierarchical plot 

tends to provide a more comprehendible way to visualize oftentimes complex details of 

signaling by a given pathway.  

 

R1-6. In Figure 2A, the author should explain the meaning of the edge size in the Figure 

legend. 

 

Response: Sorry for the confusion. The edge size is proportional to the interaction 

strength, i.e., the inferred communication probability. In the revised manuscript, we 

provided this information in the Figure legends.  
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Reviewer #2 

This paper by Nie and colleagues contains two main contributions. First, they created a 

database, called CellChatDB for multimeric ligand-receptor complexes. Second, they 

developed a new computational method for inferring active ligand-receptor pathways from 

single-cell RNAseq data. Both the database and the method could be valuable resources 

for the community. 

 

Response:  We thank the reviewer for appreciating the importance of CellChat method 

and for the insightful comments. Below please find our detailed responses. Substantial 

improvement has been made in the revision, and multiple changes highlighted with red 

were introduced throughout the manuscript. 

 

R2-1. The main source of information underlying CellChatDB already exists in the widely 

used database KEGG. It is unclear what ‘manual curation’ means in this context or what 

additional value CellChatDB provides other than a visualization interface. 

 

Response: This is an important point. Although KEGG database contains the ligand-

receptor interaction information, such information is not “ready-to-use” when developing 

a systematical approach for inferring cell-cell communication. By incorporating carefully 

reviewed KEGG pathway maps and recent peer-reviewed studies, CellChatDB provides 

the following added value.  

• It collects ligand-receptor pairs from KEGG signaling pathway maps. 

• It categories signaling molecules in each KEGG pathway map into different groups 

based on their roles in ligand-receptor interaction: agonist, antagonist, co-

stimulatory receptor and co-inhibitory receptor. 

• It arranges all collected information into a structured data format, allowing for easy 

computational analysis and provides new community resource to develop a 

systematical approach for cell-cell communication analysis. 

•  It adds ligand-receptor interactions that are not in KEGG database through 

carefully reviewing known signaling pathways in recent peer-reviewed studies.  

 



 10 

In the revised manuscript, we added the above points in the Supplementary Text.   

 

In this revision we have also compared CellChatDB with other six known ligand-receptor 

(L-R) databases:  
• CellPhoneDB (Efremova et al., Nat Protoc 2020),  

• iTALK (Wang et al., bioRxiv 2019),  

• SingleCellSignalR (Cabello-Aguilar et al. Nucleic Acids Res 2020),  

• Ramilowski2015 (Ramilowski et al. Nat Commun 2015),  

• NicheNet (Browaeys et al., Nat Methods 2019), 

• ICELLNET (Noël et al., bioRxiv 2020).  

Among these databases, only CellChatDB contains ligand-receptor interactions in mouse. 

Therefore, we compared the human version of CellChatDB with the above databases by 

counting the numbers of L-R pairs, L-R pairs with multi-subunits, and L-R pairs with co-

factors (e.g., soluble agonist, antagonist, co-stimulatory and co-inhibitory receptors) (new 

Supplementary Fig. 11b). In general, CellChatDB provides an important resource for the 

community with added value to better develop biologically meaningful understanding of 

cell-cell communication. In the revision we have added these results in the Results 

section (Page 21) and Supplementary Text (Page 4). 

 

Moreover, in this revision we have significantly expanded on the description of database 

construction and provided step-by-step details on how the ligand-receptor interactions 

were collected (see revised Supplementary Text).   

 

R2-2. The computational method proposed here lack sufficient validation and 

benchmarking. Predictions are made from single-cell RNAseq data from mouse skin cells, 

where the ground-truth is unknown. To circumvent this difficulty, the authors used a 

subsampling approach, treating the results obtained from the full dataset as the ground-

truth against which the predictions from subsamples are compared. This is a flawed 

assumption. In reality, this approach only evaluates sensitivity to input data, whereas 

errors intrinsic to model assumptions would be inherited across all datasets therefore 

cannot be detected in this way. 
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Response: We agree that subsampling approach only evaluates sensitivity to the input 

data. In our original manuscript, we actually did not use this subsampling approach to 

assess the accuracy of the predictions, but to assess the robustness of our method. In 

the revised manuscript, we have made this point clearer.  

 

Due to the lack of ground-truth of the intracellular communication network, it remains 

challenging to systematically evaluate the predictions from any given computational 

methods. Similar to other existing methods, we validated the predictions based on the 

literature. From our experience working on skin morphogenesis and regeneration, we 

found that CellChat’s predictions can recapitulate known biology to a substantial degree. 

In the revision we performed a systematic evaluation of different computational methods 

based on the assumption that spatially adjacent cell types should have stronger cell-cell 

communication than spatially distant cells. In the original manuscript we studied cell-cell 

communication for four spatially colocalized cell populations in embryonic mouse skin, 

including Placodes, pre-DC, DC1 and DC2 (Figure 4). We have now added in cell types 

that are likely not spatially adjacent to the above four cell types and updated our analysis. 

We then tested whether different computational tools can correctly capture stronger 

interactions in spatially adjacent cells. 

 

We added seven cell types from embryonic day E14.5 mouse skin dataset, including FIB 

(fibroblasts), MELA (melanocytes), Spinous (spinous epithelial cells), MYL (myeloid cells), 

Immune (other immune cells), ENDO (endothelial cells) and Muscle. We then computed 

the number of inferred communications as well as the sum of communication probabilities 

between each cell type and the four spatially colocalized cell populations for each method. 

We found that CellChat consistently captures stronger interactions in spatially adjacent 

cells than spatially distant cells both in terms of the number of interactions and the 

interaction probabilities (new Supplementary Fig. 9a-b). CellPhoneDB also performed 

well at discriminating spatially adjacent cells from spatially distant cells. iTALK failed to 

capture stronger interactions in spatially adjacent cells as compared to spatially distant 

cells (for FIB, MELA, MYL and ENDO). SingleCellSignalR failed to capture stronger 
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interactions between spatially adjacent cells vs. spatially distant cells (for FIB and ENDO). 

In addition, by considering all seven cell types together, we found that both CellChat and 

CellPhoneDB can significantly distinguish the spatially adjacent cells from spatially distant 

cells, whereas iTALK and SingleCellSignalR failed to do so (new Supplementary Fig. 9c). 

Since CellPhoneDB infers more interactions than CellChat, we tested whether the top 

interactions predicted by CellPhoneDB can also distinguish the spatially adjacent from 

spatially distant cells. For the top 10%, top 20% and top 30% interactions predicted by 

CellPhoneDB, the difference between spatially adjacent and spatially distant cells was 

not as significant as with CellChat (new Supplementary Fig. 10a-b), suggesting that 

CellChat performed better at capturing stronger interactions. Together, although CellChat 

produces fewer interactions, it performs well at predicting stronger interactions. These 

results were added in revised Results section (Page 20).  

 

R2-3. In evaluation of different methods, the authors assume that agreement between 

multiple methods is proxy for accuracy. This assumption is also flawed, because similar 

methods tend to generate similar results regardless of accuracy. The bottom line is that, 

without external curated information as a guide, it is impossible to evaluate the 

performance of different methods. Presumably the CellChatDB database can be used 

here to aid model evaluation, but it is unclear why they didn’t proceed in this direction. 

 

Response: Thank you for the insightful comment. We agree that agreement between 

multiple methods is not sufficient to determine accuracy. We have made this point clearer 

in the revised manuscript. We also agree that it is impossible to evaluate the performance 

of different methods without external curated information as a guide. However, we don’t 

think CellChatDB database is very helpful for model evaluation because of the following 

reasons. CellChatDB and other existing databases contain only ligand-receptor pair 

information and lack cell type information that can be used to assess the inferred 

intracellular communications between two cell types. On the other hand, testing whether 

these methods can correctly capture stronger interactions in spatially adjacent cells but 

not in spatially distant cells could be a good way for evaluating different methods. In the 
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revision we have added a discussion on the evaluation and benchmarking of methods for 

inferring cell-cell communication (Page 24).  

 

R2-4. The authors made a number of interesting predictions regarding the cell-type 

specific signaling pathways in mouse skin in response to wound healing and during 

embryonic development, but these predictions could be more substantiated if followed by 

experimental validation. 

 

Response: In this revision we used multiplexed RNA in situ detection method (RNAscope) 

to validated two novel CellChat predictions (that were not previously described in the 

literature) on the signaling interactions during early hair follicle morphogenesis in 

developing embryonic skin. First prediction: CellChat revealed that at E14.5, DC cells 

respond to autocrine PROS pathway (Fig. 4g). Pros1 is the ligand for the pathway, that 

signals via receptor tyrosine kinase Axl. Signaling via Axl has been implicated in 

conferring cells with migratory properties in different biological context, including cancer 

invasion44, 45 and directional migration has been recently shown to be crucial for normal 

dermal condensate formation upon hair follicle morphogenesis40.  We examined 

CellChat's prediction of active PROS signaling in DC cells by RNAscope for Edn3 as DC 

marker, Axl and Thy1 (Cd90) as a marker of cell migration46, 47. As expected from scRNA-

seq, Axl was expressed broadly, including in Edn3+ DC, overlaying placode and 

surrounding epithelium. However, Thy1 expression was concentrated in DC with 

significantly lower levels elsewhere (Fig. 4h). This RNAscope result is consistent with the 

possibility of autocrine PROS signaling in DC, likely driven via Pros1-Axl signaling. 

Second prediction: During early hair follicle formation at E14.5, melanoblasts 

(melanocyte precursor cells) migrate into the hair placode from the dermis and then 

become differentiated toward melanocytes. However, the mechanisms of melanocyte 

migration into placode remain incompletely understood48. Therefore, we further studied 

the cell-cell communication among placodes, DC cells and melanocyte cells (including 

three melanocyte subpopulations: MELA-A, -B and -C; see Methods). CellChat revealed 

that melanocytes strongly respond to DC cells via previously unrecognized EDN signaling 

(Fig. 4i). Edn3 is the ligand for EDN pathway, that regulates melanocyte migration49. 
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Therefore, CellChat prediction suggests DC cells induce early directed migration of 

melanocytes. To experimentally examine this prediction, we used RNAscope technique 

to spatially map expression of Dct, that marks late-stage melanocyte precursors, Edn3 

ligand and its receptor Ednrb in E14.5 embryonic mouse skin. As expected, Dct+ 

melanocytes (i.e., MELA-C subpopulation) localize inside the placode. They also express 

Ednrb. In turn, Edn3 is specifically enriched in DC cells (preDC, DC1 and DC2 

subpopulations), while Ednrb is also enriched in a portion of DC cells (likely DC2 

subpopulation). Scattered Ednrb+/Edn3neg/Dctneg cells outside dermal condensate are 

likely undifferentiated migrating melanoblasts (i.e., MELA-A/B subpopulations) (Fig. 4j). 

This spatial Edn3, Ednrb, Dct co-expression pattern is highly consistent with the scRNA-

seq data (Fig. 4i). Thus, our RNAscope result confirms the novel CellChat prediction of 

Edn3-Ednrb signaling from DC cells to melanocytes, implying the roles of DC cells in 

inducing early-stage directed migration of melanocytes into placodes ahead of epithelial 

Edn2 signaling. It also confirms novel, predicted autocrine Edn3-Ednrb signaling within 

dermal condensate.  

We have added these new results into the Results section in the revised 

manuscript (Page 12).  

 

 

Minor concerns: 
 

R2-5. Cell clustering is a pre-requisite for cell-cell interaction prediction, but clustering 

results can be different depending on which clustering methods are used and which 

parameters are chosen. How does such uncertainty affect the outcome of ligand-receptor 

interactions? 

 

Response: That is a good point. While different number of cell clusters may naturally 

affect the inferred ligand-receptor interactions, with a fixed cluster number the clustering 

results using different methods or parameters will unlikely have major impact on ligand-

receptor interactions. This is because our cell-cell communication is inferred at the cluster 

level, only depending on estimation of the average gene expression in each cell cluster. 
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We demonstrated these two points using an example of E14.5 mouse embryonic skin 

dataset with four spatially colocalized cell subpopulations (i.e., placode, preDC, DC1 and 

DC2 in Figure 4). First, we assessed how cell clustering affects the inferred interactions 

if the number of cell clusters remains the same. We used two different choices of 

parameters (e.g., different number of highly variable genes and principle components) to 

produce two different clustering results while keeping the number of cell clusters 

unchanged. The Jaccard similarities between these two new clustering results and our 

original clustering result were 0.91 and 0.83, respectively. We then re-run CellChat 

analysis and found that all of the inferred interactions from our original clustering result 

were also predicted using these two newly added clustering results (Supplementary Fig. 

16). Second, we used another choice of parameters to produce different number of cell 

clusters (three subpopulations: placode, preDC, DC). Applying CellChat to these three 

subpopulations, we found that 88% of interactions inferred from our original clustering 

result were also predicted using new clustering result (Supplementary Fig. 16). In general, 

the cell clustering needs to be carried out carefully in order to capture biologically 

meaningful cell populations before cell-cell communication analysis. We have added this 

in the revised Discussion (Page 24) and Supplementary Text (Page 6).  

 

R2-6. Related to the previous comment, nine fibroblast cell types were identified in mouse 

skin wound tissue. Are they truly distinct cell types? FIB-D seems to have unique signaling 

properties than the others. Have such specialized fibroblast cell types been observed 

before? 

 

Response: These nine fibroblast subclusters represent distinct fibroblast states, which 

were characterized by distinct marker genes (Supplementary Fig. 1d). In our original 

study (Guerrero-Juarez et al., Nat Commun 2019), we observed highly heterogeneity of 

wound fibroblasts using immunostaining. In particular, Crabp1-positive cells were 

validated to be enriched in upper wound dermis. FIB-D cells were enriched for high 

Crabp1 expression and cell cycle genes, such as Cenpa (Supplementary Fig. 1d). Thus, 

it likely represents an actively cycling subset of Crabp1-positive cells. We have added this 

point in the revised Results section (Page 7).  
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R2-7. The analysis of incoming and outgoing signaling patterns seems interesting, but it 

is unclear what is the distinction between incoming and outgoing patterns. Is there a 

mechanistic interpretation for these patterns? 

 

Response: Outgoing patterns reveal how the sender cells (i.e. cells as signal 

sources) coordinate with each other as well as how they coordinate with certain signaling 

pathways to drive communication. Incoming patterns show how the target cells (i.e. cells 

as signal receivers) coordinate with each other as well as how they coordinate with certain 

signaling pathways to respond to incoming signals. Such pattern analysis uncovers the 

coordinated responses among different cell types within the same tissue 

microenvironment. Different cell types may simultaneously activate same cell-type-

independent signaling patterns or may also activate different cell-type-specific signaling 

patterns. This analysis can potentially help to derive general cell-cell communication 

principles. We added these details in the revised Results (Page 5) and Methods (Page 

30).   

 

R2-8. False positives rate is used to evaluate the performance of italk and 

singlecellsignalR. How is this calculated exactly? The first sentence on page 27 is vague 

and seems to be associated with consistency rather than accuracy. What is the ground 

truth? What is the false positive rate of the method presented in this study? Why is 

CellPhoneDB not compared in this analysis? 

 

Response: We apologize for the confusion. Both CellChat and CellPhoneDB consider 

multi-subunit structure of ligands and receptors to represent heteromeric complexes 

accurately. This is critical, because cell-cell communication relies on multi-subunit protein 

complexes. The purpose of computing false positive rate here is to evaluate the effect of 

neglecting multi-subunit structure of ligands and receptors. Thus, we did not compute 

such false positive rate for both CellChat and CellPhoneDB, and we only evaluate the 

performance of tools that use only one ligand and one receptor gene pairs, such as 

SingleCellSignalR and iTALK. The false positive interactions are defined by the 
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interactions with multi-subunits that are partially identified by iTALK and 

SingleCellSignalR. The ground truth is based on our curated CellChatDB database. For 

example, for Tgfb1 ligand and its heteromeric receptor Tgfbr1/Tgfbr2 curated in 

CellChatDB, if the method only identifies one of the two pairs (Tgfb1-Tgfbr1 and Tgfb1- 

Tgfbr2), then we consider this prediction as one false positive interaction. Due to the lack 

of ground-truth for the inferred cell-cell communication network, we did not report the false 

positive rate of CellChat. However, CellChat only produces significant interactions on the 

basis of a statistical test that randomly permutes the group labels of cells. An empirical p-

value is computed for each ligand-receptor pair for any two given cell groups. Therefore, 

CellChat likely has a good control of the false positive rate. In the revised manuscript we 

clarified these essential details (see Methods section; Page 35). We also clarified the 

point that our subsampling analysis was used to evaluate the consistency rather than 

accuracy.  

 

R2-9. On a practical side, the cellchat website posts predicted results in mouse skin, but 

a user might be interested to apply this method to analyze their own data. Is this possible? 

 

Response: Yes, it is possible. We envision the CellChat website will grow rapidly to 

become a community-driven web portal for a broad range of tissues as more datasets 

added to the website. For any given scRNA-seq dataset that has been processed by our 

R toolkit CellChat, we will host the predicted results on our server, allowing easy 

exploration and comparison of the cell-cell communication. We’ve added this point in the 

revised Discussion (Page 23). 
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Reviewer #3 
In the manuscript Inference and analysis of cell-cell communication using CellChat, Jin 

et al. presented a database of interactions among ligand and receptors, and a 

methodology to infer inter-cellular communication networks. There are a few subsequent 

analyses based on the inferred network, including centrality related concepts like 

dominant senders/receivers/mediators, etc., as well as using non-negative matrix 

decomposition to break down the network into distinct patterns. The manuscript has 

provided the community an alternative way and great visualization tools for inferring and 

comparing cell-cell communication between different biological conditions using scRNA-

seq data. However, as a methodology paper, some data provided in the manuscript 

should be further validated to support their conclusions and need to be carefully 

addressed. 

 

Response:  We thank the reviewer for the appreciation of the novelty of CellChat and the 

insightful comments to strengthen the method. Our detailed responses are provided 

below. Substantial improvement has been made in the revision, and multiple changes 

highlighted with red were introduced throughout the manuscript. 

 

R3-1. Lies at the core is an ambitious model law-of-mass-action model that takes into 

account almost everything: the ligand/receptor expression and what they form multi-units 

complexes, co-stimulatory, and co-inhibitory ligands/receptors, roles of agonist and 

antagonist. While all these components and their interactions are relevant, modeling of 

all these mechanistic processes requires a high level of details which is very hard to 

achieve with scRNA-seq data. Remember LMA happens in protein level, not in RNA level. 

So ironically, the model seems to capture everything but there are many assumptions, 

almost all parameters are arbitrarily chosen, and not easy to justify. For instance, why the 

dissociation constant is always 0.5? Why the Hill coefficient is always 1? Such a detailed 

model will make the study a lot more depends on the correctness of the curated database. 

 

Response: This is an important point. We agree that a high level of details (e.g., protein 

levels in individual cells) will improve the modeling of all these components. The 
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framework presented in this study will likely motivate further study once other types of 

omics data are available. Due to the technical difficulties of capturing single-cell proteomic 

information at present time, a comprehensive understanding of ligand-receptor 

interactions remains challenging. mRNA levels have been often used to estimate the level 

of proteins in many previous studies, and could be used to provide rough estimate of 

protein-protein interactions. In the revised manuscript, we added one paragraph in the 

Discussion to point out the main assumption of our modeling (Page 23). 

 

We agree that as a data-driven approach, it is indeed difficult to determine a set of 

biologically meaningful parameters in the Hill function, in particular that different pairs of 

ligands and receptors often have different dissociation constants and different degree of 

cooperativity. Although it lacks direct or explicit biologically connections with the data, the 

Hill function used in our current model can be considered as a nonlinear approximation 

of the ligand-receptor interactions. We made this point clearer in the revised Discussion 

(Page 23). 

 

To study how the choices of those parameters may affect the inferred ligand-receptor 

interactions, in the revision we varied the parameter values within certain ranges to 

explore the robustness of our method (new Supplementary Fig. 14). In particular, we 

varied the dissociation constant Kh from 0.1 to 0.9 with an increment of 0.2, and then 

computed the Jaccard similarity between the interactions inferred with each varied Kh 

and the interactions inferred with Kh being 0.5. We found the inference is relatively robust 

to the choice of Kh for all the four tested datasets. Similarly, by varying Hill coefficient n 

from 0.5 to 4, we also found the inferred ligand-receptor interactions are relatively robust. 

We added these robustness analyses in the revised Discussion (Page 23).  

 

R3-2. There’s no doubt the authors did their best to construct CellChatDB, but there’s no 

perfect source of information. I think, at the very minimal, the authors should do the 

following test to show that the outputs of their model capture a certain level of real signals 

rather than purely noise: In several ways randomize their curated database, like ligand-

receptor interactions, the corresponding agonist/antagonist, co-receptors, etc., one-by-
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one and in some combinations, and then repeat the identification of statistically significant 

communications. If the number of significant pairs identified using the fake database is 

similar, then bad news, suggesting the outputs are simply false positive. In fact, the 

procedure could provide a way to quantify the false discovery rate. 

 

Response: Thank you for the nice suggestion. In the revision we took the four spatially 

colocalized cell subpopulations in the E14.5 embryonic skin dataset (i.e., placode, preDC, 

DC1 and DC2 in Figure 4) as an example for this analysis. In particular, we computed the 

ratio of the number of inferred interactions from a randomized database over the number 

of inferred interactions from the original curated database. When randomizing ligands, 

receptors, the combination of ligands and receptors (denoted by ligands and receptors) 

and the combination of either ligands or receptors and one of the co-factors (such as 

agonist, antagonist and co-receptors) for 50 times, we found that the ratio values were 

63% on average (see the inclined Figure 1a). When randomizing the agonist, antagonist, 

co_A_receptors and co_I_receptors independently, the number of inferred interactions 

was almost the same as the real curated database. This is not surprising because the 

agonist, antagonist, co_A_receptors and co_I_receptors are considered as co-factor 

molecules, which only modulate ligand-receptor mediated signaling strength either 

positively or negatively. Therefore, randomizing these co-factors does not have prominent 

influence on whether ligand-receptor pairs are significant or not. Moreover, the percent of 

ligand-receptor pairs with co-factors in CellChatDB is only about 20%. However, we 

observed a significant reduction in the inferred interaction strength when randomizing 

antagonist, co_A_receptors and co_I_receptors (see the inclined Figure 1b), suggesting 

the role of co-factors in modulating the interaction strength.  

 

Moreover, we randomized the ligands, receptors, the combination of ligands and 

receptors in the database of other methods including CellPhoneDB, iTALK and 

SingleCellSignalR. The ratios of inferred interactions between randomized databases and 

real databases for these three methods were about 69%, 83% and 77% respectively, 

which is higher than the computed ratio value from CellChat (see the inclined Figure 1c). 

For these methods, the relatively higher number of inferred interactions in the randomized 
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database was possibly caused by the following four reasons: 1) Multiple ligand-receptor 

pairs usually contribute to the communication between two cell types; 2) Many ligands 

and receptors are not uniquely expressed in one cell type; 3) Many ligands (or receptors) 

may share the same receptors (or ligands), such as WNT signaling and 

cytokine/chemokine signaling; 4) A fake pair of ligand and receptor likely contributes to 

the communication for an emerging combination of two cell types. For example, for a fake 

pair of ligand LB that is highly enriched in cell type B1 and receptor RA that is highly 

enriched in cell type A1, a fake pair of ligand LB and receptor RA likely contributes to the 

communication between cell types B1 and A1. The fourth reason might be the main 

reason why randomizing database still produces a high number of significant ligand-

receptor interactions. We did not add these analyses and comments in the revised 

manuscript, but we are happy to include it if the reviewer prefers such new addition.  
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Inclined Figure 1. The number of the inferred interactions using randomized databases.   (a) The ratio of 

the number of inferred interactions from a randomized database over the number of inferred interactions 

from the original curated CellChatDB database. The inferred interactions are from CellChat. We randomized 

ligands, receptors, the combination of ligands and receptors (denoted by ligands & receptors), the 

combination of either ligands or receptors and one of the co-factors (such as agonist, antagonist and co-
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receptors), agonist, antagonist, co_A_receptors and co_I_receptors for 50 times. Bar plots show the mean 

value and the standard error (indicated by the error bar). (b) Left panel: The percent of ligand-receptor 

interactions with co-factors in the CellChatDB database.  Right panel: Comparison of the interaction 

strength (i.e., the communication probabilities) inferred by the curated CellChatDB with that inferred by the 
randomized databases. p-values are from two-sided Wilcoxon rank-sum tests. (c) Comparison of the 

number of inferred interactions among different methods using randomized databases. The ratios of the 

number of inferred interactions from a randomized database over the number of inferred interactions from 

the original database were presented. The ligands, receptors and the combination of ligands and receptors 

were randomized in the database provided by each method. Bar plots show the mean value and the 

standard error (indicated by the error bar). p-values are from two-sided Wilcoxon rank-sum tests. 

 

R3-3. In revealing continuous cell lineage-associated signaling events, the authors predict 

the cell-cell communication in the different stages during pseudotime and real embryonic 

stages (E13.5/E14.5). However, the authors should provide expression pattern of ligands 

and receptors in all the predicted interactions during skin cell development side by side 

to validate their prediction results. Based on methods, we should be able to see a similar 

pattern of expression of ligand/receptors with communication probability of predicated 

interactions during developmental stages.  

 

Response: Thank you for the nice suggestion. In the revision we have created a stacked 

violin plot to show the expression patterns of ligands and receptors. We presented the 

expression patterns of related signaling in both main and supplementary figures, and 

found similar patterns of expression of ligands/receptors with the communication 

probability (updated Figures 3-5 and Supplementary Figs. 3 and 5). In addition, the 

average expressions of all predicted ligands and receptors in each cell subpopulation are 

shown in the newly added Supplementary Data 2.  

 

R3-4. In predicting key signaling events between spatially colocalized cell populations, 

the authors used spatially-colocalized 4 cell types to showcase their prediction on the 

cell-cell communication. However, proper controls are not provided to validate the 

predictions. The authors should add in cell types that are not spatially adjacent to these 

4 cell types to the same analysis and demonstrate that cell-cell communication identified 

in Figure 4 are stronger in spatially adjacent cell types but not in spatially distant cell types. 
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Response: Thank you for the good suggestion. In the revision we now added seven cell 

types from the E14.5 embryonic skin dataset: FIB (fibroblasts), MELA (melanocytes), 

Spinous (spinous epithelial cells), MYL (myeloid cells), Immune (other immune cells), 

ENDO (endothelial cells) and Muscle. We have computed the number of inferred 

communications as well as the sum of communication probabilities between each cell 

type and for the four spatially colocalized cell populations. We found that CellChat 

consistently captured stronger interaction in spatially adjacent cells than in spatially 

distant cells both in terms of the number of interactions and the interaction probabilities 

(new Supplementary Fig. 9a-b). In addition, by taking into an account all seven cell types 

together, we found that CellChat can significantly distinguish the spatially adjacent from 

spatially distant cells (new Supplementary Fig. 9c). We have added these new results 

into the Results section in the revised manuscript (Page 20). 

 

In addition, using multiplexed RNA in situ detection (RNAscope), we have now 

experimentally validated two novel CellChat predictions (that were not previously 

described in the literature) on the signaling interactions during early hair follicle 

morphogenesis in developing embryonic skin.  First prediction: CellChat revealed that at 

E14.5, DC cells respond to autocrine PROS pathway (Fig. 4g). Pros1 is the ligand for the 

pathway, that signals via receptor tyrosine kinase Axl. Signaling via Axl has been 

implicated in conferring cells with migratory properties in different biological context, 

including cancer invasion44, 45 and directional migration has been recently shown to be 

crucial for normal dermal condensate formation upon hair follicle morphogenesis40.  We 

examined CellChat's prediction of active PROS signaling in DC cells by RNAscope for 

Edn3 as DC marker, Axl and Thy1 (Cd90) as the marker of cell migration46, 47. As 

expected from scRNA-seq, Axl was expressed broadly, including in Edn3+ DC, overlaying 

placode and surrounding epithelium. However, Thy1 expression was concentrated in DC 

with significantly lower levels elsewhere (Fig. 4h). This RNAscope result is consistent with 

the possibility of autocrine PROS signaling in DC, likely driven via Pros1-Axl signaling. 

Second prediction: During early hair follicle formation at E14.5, melanoblasts 

(melanocyte precursor cells) migrate into the hair placode from the dermis and then 
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becomes differentiated toward melanocytes. However, the mechanisms of melanocyte 

migration into placode remain incompletely understood48. Therefore, we further studied 

the cell-cell communication among placodes, DC cells and melanocyte cells (including 

three melanocyte subpopulations: MELA-A, -B and -C; see Methods). CellChat revealed 

that melanocytes strongly respond to DC cells via previously unrecognized EDN signaling 

(Fig. 4i). Edn3 is the ligand for EDN pathway, that regulates melanocytes migration49. 

Therefore, CellChat prediction suggests DC cells induce early directed migration of 

melanocytes. To experimentally examine this prediction, we used RNAscope technique 

to spatially map expression of Dct, that marks late-stage melanocyte precursors, Edn3 

ligand and its receptor Ednrb in E14.5 embryonic mouse skin. As expected, Dct+ 

melanocytes (i.e., MELA-C subpopulation) localize inside the placode. They also express 

Ednrb. In turn, Edn3 is specifically enriched in DC cells (preDC, DC1 and DC2 

subpopulations), while Ednrb is also enriched in a portion of DC cells (likely DC2 

subpopulation). Scattered Ednrb+/Edn3neg/Dctneg cells outside dermal condensate are 

likely undifferentiated migrating melanoblasts (i.e., MELA-A/B subpopulations) (Fig. 4j). 

This spatial Edn3, Ednrb, Dct co-expression pattern is highly consistent with the scRNA-

seq data (Fig. 4i). Thus, our RNAscope result confirms the novel CellChat prediction of 

Edn3-Ednrb signaling from DC cells to melanocytes, implying the roles of DC cells in 

inducing early-stage directed migration of melanocytes into placodes ahead of epithelial 

Edn2 signaling. It also confirms novel, predicted autocrine Edn3-Ednrb signaling within 

dermal condensate. We have added these new results into the Results section in the 

revised manuscript (Page 12).  

 

 

R3-5. In comparison with other cell-cell communication inference tools, current metrics 

used to compare the tools by reasoning that a more accurate method will have a larger 

proportion of overlapped predictions with other methods is not reasonable and the result 

is not convincing. The ligand receptor databases used in CellChat and CellPhoneDB are 

different which will directly contribute to the number and variety of predicted interactions. 

Besides, the cell interactions identified by SingleCellSignalR and iTalk but not CellChat, 

due to failed detection of interactions with multi-subunits, are not necessarily ‘false-



 26 

positive’, which could be caused by low expression of multi-subunits of the receptors. The 

authors should use better metrics to compare those inference tools, for example, whether 

these tools can correctly capture stronger interaction in spatially adjacent cells but not 

spatially distant cells. In Supplementary Figure 8(a), the authors overlapped ligand-

receptor interactions between CellChat/CellPhoneDB and other two methods including 

SingleCellSignalR and iTALK. CellChat should be compared with CellPhoneDB in terms 

of overlapping interaction. In Supplementary Figure 8(b), CellChat is not outperforming 

CellPhoneDB much even with the modeling of almost everything. The authors need to 

explain this in “Method comparisons” section. 

 

Response: Thank you for the insightful comments and suggestions. We agree with the 

reviewer’s point on the evaluation metrics used in our original manuscript. We have 

clarified these points in the revised Results (Page 18) and Discussion (Page 25).  

 

In the above response to R3-4, we mentioned that we have now added seven cell types 

that are likely spatially distant from Placode and DC cells within E14.5 embryonic skin 

dataset. Here we tested whether these tools can correctly capture stronger interaction in 

spatially adjacent cells (i.e., Placode and DC cells).  Generally, CellChat is able to capture 

stronger interaction in spatially adjacent vs. spatially distant cells both in terms of the 

number of interactions and the interaction probabilities (new Supplementary Fig. 9a-b). 

We found that CellPhoneDB also performed well in discriminating the spatially adjacent 

from spatially distant cells. On the other hand, iTALK failed to capture stronger 

interactions in the spatially adjacent cells for FIB, MELA, MYL and ENDO.  

SingleCellSignalR failed to capture stronger interactions in spatially adjacent cells for FIB 

and ENDO. In addition, by taking into an account all these seven cell types together, we 

found that both CellChat and CellPhoneDB can significantly distinguish the spatially 

adjacent cells from spatially distant cells, whereas iTALK and SingleCellSignalR failed to 

do so (new Supplementary Fig. 9c). Since CellPhoneDB infers more interactions than 

CellChat, we tested whether the top interactions predicted by CellPhoneDB can also 

distinguish the spatially adjacent cells from spatially distant cells. For the top 10%, top 

20% and top 30% interactions predicted by CellPhoneDB, the differences between 
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spatially adjacent and spatially distant cells were not as significant as seen when using 

CellChat (new Supplementary Fig. 10a-b), suggesting that CellChat performed better at 

capturing stronger interactions. Together, although CellChat produces fewer interactions, 

it performs well at predicting stronger interactions. These results have been added into 

the revised Results (Page 20).  

 

In the revision we have also computed the overlapping interactions between CellChat and 

CellPhoneDB for any two cell groups and found that these two methods share about 50% 

interactions (updated Supplementary Figure 8a). The results of Supplementary Figure 8b 

assessed the consistency of the inferred interactions when subsampling the cells from 

the data. Both CellChat and CellPhoneDB are relatively robust to subsampling, which is 

likely because both methods infer cell-cell communication based on cell clusters. We 

have added this point in the revised manuscript (Page 19).   

 

R3-6. The authors adopted non-negative matrix factorization for the identification of major 

signals of specific cell groups and global communication patterns. The number of patterns 

5 seems to be random or experiential. Without knowing pattern’s biological meaning, it is 

unrealistic to guess the real number of patterns even with the domain knowledge. In page 

10, the authors claimed that they can predict the sequential signaling events of cells, e.g., 

FIB-A cell secreted EGF and GALECTIN signals first. Then FIB-D and FIB-E coordinate… 

It is easier to identify groups of cell types and signals, but how this time-series event is 

inferred from the patterns is unclear. 

 

Response: Thank you for pointing this out. In the revision we now have inferred the 

number of patterns based on two metrics that have been widely used in the literature and 

implemented in the NMF R package, including Cophenetic and Silhouette. Both metrics 

measure the stability for a particular number of patterns based on a hierarchical clustering 

of the consensus matrix. For a range of the number of patterns, a suitable number of 

patterns is the one at which Cophenetic and Silhouette values begin to suddenly drop. By 

applying these two metrics to the three dataset we studied, we found that the inferred 

number of patterns was ranging from 4 to 6 for the wound dataset and E14.5 pseudotime 
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dataset (new Supplementary Fig. 15a-b). For the outgoing communication patterns in the 

wound dataset and the incoming communication patterns in the E14.5 pseudotime 

dataset, these two metrics predicted that the number of patterns was 4 and 6, respectively. 

Comparing to the five outgoing communication patterns in the wound dataset (Fig. 2g), 

the four outgoing communication patterns merged two fibroblast-related patterns into one 

pattern. Specifically, FIB-H and other three fibroblast subpopulations (FIB-D, FIB-F and 

FIB-I) that were originally associated with two different patterns (Fig. 2g) were now 

associated with a single pattern (Supplementary Fig. 15d). For the E14.5 embryonic 

DC_Placode dataset with four spatially colocalized cell populations, the two metrics 

predicted that the number of incoming communication patterns was two (Supplementary 

Fig. 15c). Compared to the three incoming communication patterns (Fig. 4f), the two 

incoming patterns merged the pre-DC-enriched pattern with the DC-enriched pattern 

(Supplementary Fig. 15e). In another words, pre-DC and DC that were originally enriched 

in two different patterns (Fig. 4f) were now enriched in a single pattern (Supplementary 

Fig. 15e). Therefore, these different numbers of patterns provided a different resolution 

to uncovering the coordinated responses among different cell types. CellChat R package 

now provides a visual representation of Cophenetic and Silhouette metrics for a range of 

the numbers of patterns to enable users select the optimal setting for the number of 

patterns present in the dataset. We added these results in the revised Discussion (Page 

23) and Supplementary Text (Page 5).  

 

To predict the sequential signaling events, we combined the communication pattern 

analysis with the inferred pseudotemporal cell events. The dermal and epidermal 

trajectory analysis potentially revealed the pseudotemporal order of different cell types, 

and the communication pattern analysis identified strong signals that were sent or 

received by certain cell types. Therefore, the combination of these two analyses allows 

to potentially uncover sequential signaling events. We have made this point clearer in 

both the revised Results (Page 10).  

 

Minor points: 
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R3-7. While P_{ij}^k is likely to lies between 0 to 1 (because of the last term), it is not 

exactly a probability, in the sense, \sum_j P_{ij}^k might not be 1. Should there require 

certain normalization? Or simply say the quantity scales with the probability? 

 

Response: Thanks for raising this point. We did not perform normalization along the 

second dimension because the normalized data are not suitable for comparing the 

interaction strength between different cell types across multiple signaling pathways. In 

the revised manuscript, we emphasize that this quantity measures the communication 

strength and we use it to represent the communication probability in revised Methods 

(Page 28).  

 

R3-8. Because of dropout, 0 is quite common in scRNA-seq data. I am slightly worried 

about estimating the level of ligands by the geometric mean of the sub-units. Similarly, 

for the robust measure of average gene expression based on Q1, Q2, Q4. So, if there are 

more than 25% of dropout, EM=0. Can the authors provide some statistics on how many 

pairs are dropped? 

 

Response: We agree that dropout events often occur in scRNA-seq data due to the low 

amounts of mRNA in individual cells. Previous study showed that dropouts likely happen 

for genes with lower expression magnitude instead of high expression magnitude 

(Kharchenko et al., Nat Methods, 2014). Therefore, dropouts will not likely affect the 

strong signals predicted by CellChat.  

 

In the revision we have now systematically explored the inferred ligand-receptor pairs 

using different methods by calculating the average gene expression per cell group, 

including mean (i.e., simply calculating the average gene expression), 5% truncated 

mean (i.e., calculating the average gene expression by discarding 5% from each end of 

the data), 10% truncated mean, trimean (i.e., the method used in CellChat) and median. 

For the four studied datasets, there are about 15% more dropped ligand-receptor pairs 

when calculating the average gene expression using trimean compared to the 10% 
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truncated mean (Supplementary Fig. 17). Compared to other cell-cell communication 

tools, such as CellPhoneDB that uses 10% truncated mean, CellChat produces fewer 

ligand-receptor interactions. As seen in our added study on the spatially adjacent 

subpopulations (Supplementary Fig. 10a-b), CellChat performs well at predicting stronger 

interactions, which is helpful for narrowing down on interactions for further experimental 

validations. In the CellChat R package, users can now calculate the average gene 

expression per cell group using these different methods. We discuss these two points in 

the revised Discussion (Page 24).  

 

R3-9. About the non-negative matrix factorization step, the authors reduce the 3D array 

P to 2D by summing over the receivers so that NMF could be used. It erases patterns 

associated with the receiver-end. What happens if we sum over the sources? Have the 

authors considered tensor decomposition? 

 

Response: In our original manuscript, we performed two communication pattern analyses, 

including for outgoing and incoming communication patterns. Outgoing patterns were 

found for the sender cells (i.e. cells as signal sources) by summarizing the communication 

probability array P (three-dimensional) along the second dimension, and the incoming 

patterns were found for the target cells (i.e. cells as signal receivers) by summarizing the 

communication probability array P (three-dimensional) along the first dimension. We have 

made this point clearer both in the revised Results (Page 6) and Methods (Page 30).  

 

When uncovering the coordinated responses among different cell types, we did not use 

the tensor decomposition partly because it is not applicable to the following two situations: 

1) the number of outgoing and incoming patterns could be different and 2) The 

coordinated signaling pathways could be different for secreting and receiving cells. In 

other words, secreting cells could send a group of certain signaling pathways and 

receiving cells could respond to another group of certain signaling pathways. To 

demonstrate these two points, we took the four spatially colocalized cell subpopulations 

in the E14.5 embryonic skin dataset (i.e., placode, preDC, DC1 and DC2 in Figure 4) as 

an example. For the first point, as shown in the response to the comment R3-6, the 
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Cophenetic and Silhouette metrics predicted that the number of outgoing and incoming 

communication patterns was 3 and 2 respectively (Fig. 4e and Supplementary Fig. XX).  

To demonstrate the second point, we applied the Non-negative Tucker Tensor 

Decomposition (NTD) algorithm to the three-dimension communication probability array 

P using nnTensor R package. First, we performed NTD with rank 2, producing 2 outgoing 

and 2 incoming patterns (see the inclined Figure 2a). Obviously, the signaling pathways 

associated with each outgoing pattern are the same as the corresponding incoming 

pattern, which is usually not true. For example, the predicted patterns showed that 

preDC/DC1/DC2 cells send signal PROS and placode cells respond to signal PROS, 

which is not consistent with the signaling network predicted by CellChat (see the inclined 

Figure 2c). We observed the same issue when performing NTD with rank 3, which 

incorrectly predicted preDC/DC1/DC2 cells as major sources of TGFb signaling (see the 

inclined Figure 2b and 2c).  Therefore, compared to the tensor decomposition approach, 

the matrix decomposition approach we used provides a more biological meaningful way 

to identify the outgoing and incoming communication patterns. We have now mentioned 

this point in the Discussion section (Page 24) and Supplementary Text (Page 5).  
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Inclined Figure 2. The outgoing and incoming patterns predicted by the Non-negative Tucker Tensor 

Decomposition (NTD). (a) NTD algorithm was applied with rank 2, producing two outgoing and incoming 

patterns. This alluvial plot shows the correspondence between the inferred latent patterns and cell groups 

as well as signaling pathways. The thickness of the flow indicates the contribution of the cell group or 

signaling pathway to each latent pattern. The height of each pattern is proportional to the number of its 
associated cell groups or signaling pathways. Outgoing patterns reveal how the sender cells coordinate 

with each other as well as how they coordinate with certain signaling pathways to drive communication. 

Incoming patterns show how the target cells coordinate with each other as well as how they coordinate with 

certain signaling pathways to respond to incoming signaling. (b) NTD algorithm was applied with rank 3, 

producing three outgoing and incoming patterns.  (c) Example signaling networks predicted by CellChat. 
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Circle sizes are proportional to the number of cells in each cell group and edge width represents the 

communication probability. 

 

R3-10.  The standard of good figure legends is that the readers can easily get an idea of 

the figures without going back and forth among main text, figures and methods. The 

authors should improve their figure legends and clearly demonstrate what they did in each 

figure, instead of just generally saying what kind of plot/diagram it is. 

 

Response: This is a good suggestion. We have now comprehensively revised our figure 

legends in the revision.  

 



REVIEWERS' COMMENTS< 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have improved the manuscript and CellChat in multiple ways. I have only one 
additional minor suggestion below. 
 
Given the wealth of references rapidly emerging in this domain, it is hard to blame the authors for 
providing an exhaustive bibliography: however, CellTalkDB (PMID: 33147626) also contains mouse 
ligand-receptor pairs, which should be compared. Moreover, inferring cell-cell communication 
through single-cell transcriptomics data has been systematically reviewed (PMID: 33168968, 
32435978), which should be mentioned in Introduction as well. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have done a great job in revising their manuscript and addressed all the issues I 
raised satisfactorily. 
 
 
Reviewer #3 (Remarks to the Author): 
 
My questions were well addressed. This tool will be very useful for the community. 
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REVIEWERS’ COMMENTS 
Reviewer #1 

The authors have improved the manuscript and CellChat in multiple ways. I have only 
one additional minor suggestion below. 
Given the wealth of references rapidly emerging in this domain, it is hard to blame the 
authors for providing an exhaustive bibliography: however, CellTalkDB (PMID: 33147626) 
also contains mouse ligand-receptor pairs, which should be compared. Moreover, 
inferring cell-cell communication through single-cell transcriptomics data has been 
systematically reviewed (PMID: 33168968, 32435978), which should be mentioned in 
Introduction as well.  
 
Response:  We thank the reviewer for the insightful comments and for pointing out these 
important papers. In this revision, we added the comparison between CellChatDB and 
CellTalkDB (updated Supplementary Figure 1b) in both human and mouse. For the 
database in human, the number of L-R pairs in CellChatDB (i.e., 1,939 pairs) is lower 
than CellTalkDB (i.e., 3,398 pairs); for the database in mouse, the number of L-R pairs in 
CellChatDB (i.e., 2,021 pairs) is comparable with CellTalkDB (i.e., 2,033 pairs). However, 
CellTalkDB does not consider L-R pairs with multi-subunits as well as the cofactors. 
Taking into an account the subunit structure of ligands and receptors is essential because 
cell-cell communication often relies on multi-subunit protein complexes. Cofactors also 
modulate cell-cell communication both positively and negatively for certain signaling 
pathways. Therefore, CellChatDB provides an important resource for identifying 
biologically meaningful cell-cell communication.  We added these results in the revised 
manuscript and updated Supplementary Figure 1b. Moreover, we cited the two references 
(PMID: 32435978, 33168968) in the Introduction, which correspond to Ref. [6] and [7] in 
the revised manuscript.  

 
Reviewer #2 

The authors have done a great job in revising their manuscript and addressed all the 
issues I raised satisfactorily. 
 
Response:  We thank the reviewer for the insightful comments and suggestions that 
helped us improve the manuscript. 
 

Reviewer #3 
 

My questions were well addressed. This tool will be very useful for the community. 
Response:  We thank the reviewer for appreciating the importance of our method and for 
the insightful comments. 
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