Supporting information

Strategies for Synthesis of Prussian Blue Analogues

Solveig Kjeldgaard^{ab}, Iulian Dugulan^c, Aref Mamakhel^b, Marnix Wagemaker^c, Bo Brummerstedt Iversen^b and Anders Bentien^a

^a Department of Engineering, Aarhus University

^b Department of Chemistry, Aarhus University

^c Department of Radiation Science & Technology, Technical University Delft

Powder X-ray diffraction

Figure S1: Rietveld refinement

Table S1: Crystallographic details

А	Space group	Fm-3m		
	Number of data points	7995		
	Number of background points	27		
	Number of fitted parameters	38		
	RBragg	18.5		
	Rf	9.16		
В	Space group	Fm-3m		
	Number of data points	7995		
	Number of background points	24		
	Number of fitted parameters	34		
	RBragg	17.9		
	Rf	9.91		
С	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	16		
	Number of fitted parameters	27		
	RBragg	11.7		
	Rf	6.79		
D	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	15		
	Number of fitted parameters	27		
	RBragg	4.02		
	Rf	4.85		
E	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	14		
	Number of fitted parameters	21		
	RBragg	8.65		
	Rf	6.77		
F	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	15		
	Number of fitted parameters	22		
	RBragg	16.6		
	Rf	8.92		
G	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	17		
	Number of fitted parameters	28		
	RBragg	9.99		
	Rf	7.90		

Н	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	15		
	Number of fitted parameters	22		
	RBragg	40.5		
	Rf	21.7		
Ι	Space group	Fm-3m		
	Number of data points	11243		
	Number of background points	22		
	Number of fitted parameters	33		
	RBragg	14.7		
	Rf	9.15		
J	Space group	Fm-3m		
	Number of data points	7995		
	Number of background points	12		
	Number of fitted parameters	24		
	RBragg	3.04		
	Rf	2.76		
К	Space group	Fm-3m		
	Number of data points	7995		
	Number of background points	20		
	Number of fitted parameters	31		
	RBragg	5.53		
	Rf	4.80		
L	Space group	P21/c		
	Number of data points	7995		
	Number of background points	24		
	Number of fitted parameters	43		
	RBragg	6.28		
	Rf	6.07		

Transmission electron microscopy

Figure S2: STEM-EDS

Figure S3: STEM-EDS

Energy dispersive spectroscopy (STEM-EDS)

It has been suggested that PBAs grown in the presence of excess chloride may contain Cl in the framework.¹ EDS spectra of sample G, Cu[Fe] precipitated in the presence of excess KCl, shows no Cl signal, indicating that Cl is not included in the framework.

Table S2: EDS table

Element #	Element	Line	Energy (keV)	
6	С	Κα1,2	0.277	
8	0	Κα1,2	0.5249	
14	N	Κα1,2	0.3924	
19	К	Κα2	3.3111	
19	К	Κα1	3.3138	
19	К	Κβ1,3	3.5896	
25	Mn	Κα1	5.8988	
28	Ni	Κα2	7.4609	
28	Ni	Κα1	7.4782	
29	Cu	Lα1,2	0.9297	
29	Cu	Κα2	8.0278	
29	Cu	Κα1	8.0478	
29	Cu	Κβ1,3	8.9053	

Mössbauer spectroscopy

Figure S5: Mössbauer spectra obtained at 300K except h2 at 4.2K.

Mössbauer spectra of samples C-I were measured at 300 K. The fits have been constrained to a single linewidth (Γ) for all doublets, as Grandjean *et al.*² Grandjean *et al.* suggest that the use of different linewidths for the single iron(II) doublet and single iron(III) doublet might conceal variations in the local iron(III) electronic environment

Prussian blues are mixed valence compounds. The single quadrupole doublet with an isomer shift varying from -0.09 to -0.14 mm/s results from LS Fe(II) ions coordinated to six carbon. The three doublets with an isomer shift of approximately 0.40 mm/s result from HS Fe(III) ions coordinated to six nitrogen.

Mössbauer spectral parameters vary somewhat with temperature. The temperature dependence of the fitted parameters were investigated by Grandjean *et al.*,² indicating that the temperature dependence agrees well with the Debye model.

H1 and H2 is the same compound, measured at 300 K (H1) and 4.3 K (H2). The quadrupole doublets become magnetic sextets at low temperature.

Sample	т (К)	IS (mm/s)	QS (mm/s)	Hyperfine field (T)	Г (mm/s)	Phase	Spectral contribution
	300	-0.09	0 17		0.39		34
C	500	-0.17	0.50	-	0.39	LS Fe ^{III}	66
D	300	-0.09	0.18	-	0.33	LS Fe ^{II}	100
E	300	-0.14	0.00	-	0.35	LS Fe ^{II}	50
		0.41	0.38*	-	0.35	HS Fe ^{III}	50
F	300	-0.13	0.00	-	0.36	LS Fe ^{II}	44
		0.45	0.38*	-	0.36	HS Fe ^{III}	51
		0.87	2.00	-	0.36	HS Fe ^{II}	5
G	300	-0.09	0.17	-	0.34	LS Fe ^{II}	11
		-0.16	0.49	-	0.34	LS Fe ^{III}	89
H1	300	-0.12	0.00	-	0.41	LS Fe ^{II}	11
		-0.20	0.16	-	0.41	LS Fe ^{III}	30
		0.40	0.39*	-	0.41	HS Fe ^{III}	59
H2	4.2	-0.20	0.00	-	0.67	LS Fe ^{II}	15
		-0.29	0.17	25.2	0.94	LS Fe ^{III}	25
		0.37	-0.22	48.3	0.86	HS Fe ^{III}	25
		0.37	-0.11	54.9	0.55	HS Fe ^{III}	35
I	300	-0.09	0.19	-	0.39	LS Fe ^{II}	37
		-0.17	0.51	-	0.34	LS Fe ^{III}	63

Table S3: Mössbauer fitted parameters

Experimental uncertainties: Isomer shift (IS): \pm 0.02 mm/s; quadrupole splitting (QS): \pm 0.02 mm/s; line width (Γ): \pm 0.03 mm/s; spectral contribution: \pm 3 %.

*Average quadrupole splitting value (as in Grandjean et al.²)

Stoichiometry of Fe[Fe] samples

The stoichiometry of Fe[Fe] samples is determined using Mössbauer spectroscopy data. The LS/HS ratio provides the number of vacancies, and potassium content is determined by charge balance.

Example calculation, sample H: $K_xFe^{III}[Fe^{III/II}(CN)_6]_y$

From Mössbauer: 40% Fe is low spin: C-Fe, 60% Fe is high spin: N-Fe

Y : 40/60 *100 = 67 %

X: 3 + (0.67*15/40)*2 + (0.67*25/40)*3 - 0.67*6 = 0.74

The stoichiometry is therefore $K_{0.74}Fe^{III}[Fe^{III/II}(CN)_6]_{0.67}$

References

- D. E. Stilwell, K. H. Park and M. H. Miles, J. Appl. Electrochem., 1992, 22, 325–331.
- 2 F. Grandjean, L. Samain and G. J. Long, *Dalt. Trans.*, 2016, **45**, 18018–18044.