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Expanded Results1

Since bI2 = ⌫1
⌫2+�

bI1, and letting �[�] = ↵1[�] +
⌫1[�]
⌫2+�↵2, it follows from (3) that2

(6)R0[�,�
⇤] =

 
↵1[�⇤]

⌫1[�⇤] + � + ��[�]bI1[�]
+

⌫1[�⇤]

⌫1[�⇤] + � + ��[�]bI1[�]
↵2

⌫2 + �

!⇣
bS[�] + �bI1[�]

⌘
,

and it can also be checked that R0[�,�] = 1, which is biologically reasonable.3

As defined in the main text, k = ↵2
⌫2+� > 0 and ⌧ = 1

⌫2+� + ⌫2
⌫2+�

1
µ+� . We let B1 = k + �k(k�1)

⌧� and4

B2 = k + [(�k(k�1)(⌫11+�))/�]
⌧⌫1,1+1�k� .5

Consider the inequality

(7)

✓
(↵1,0 � k�)� b1b2

c1c2
(⌫1,0 + �)

◆
> �

✓
b1b2
c1c2

+ k

◆✓
↵1,0 + (k � 1)⌫1,0 � �

1 + ⌧⌫1,0

◆
,

which is a key determinant of evolutionary dynamics in our model (see Remark 1, Theorems 2, 3, and 4).6

The evolutionary dynamics depend upon the value of the superinfection parameter (�), and the evolutionary7

dynamics landscape, as a function of the transmission decay exponent (b2) and the fully latent transmission8

rate times the average lifespan (↵1,1/�), transitions as � varies. For the remainder of this section, we assume9

that b2 > c2. First, suppose that � < 1�⌧�
k , which implies that B2 < B1. Then, if

↵1,1
� < B2, there is a unique10

ESS at zero latency. If B2 < ↵1,1
� and (7) does not hold, there is at least one repellor that is a fitness minimum,11

and leads to alternative stable states at zero and infinite latency (Theorems 2-3, Electronic Supplementary12
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Material). This repellor is unique if ↵1,1
� > B1 (Theorem 3, Electronic Supplementary Material). Otherwise, if13

(7) holds, then there is a local ESS at infinite latency, which is unique (Theorems 2-3, Electronic Supplementary14

Material).15

Suppose the superinfection parameter is such that 1+⌫1,1⌧
k > � > 1�⌧�

k , which gives that B1 < B2. If16

↵1,1
� < B1, there is again a unique ESS at zero latency (Theorems 2-3, Electronic Supplementary Material).17

If B1 < ↵1,1
� < B2, then there is at least one evolutionarily singular strategy that is convergence stable if (7)18

does not hold (Theorem 3, Electronic Supplementary Material). Since this strategy is a fitness minimum and19

is hence not evolutionarily stable, this attractor is a branching point and leads to mutual invasibility (Theorem20

2, Electronic Supplementary Material). Otherwise, if (7) holds, there is a local ESS at zero latency (Theorem21

3, Electronic Supplementary Material). If ↵1,1
� > B2 and (7) does not hold, then there is at least one repellor22

that is not evolutionarily stable, and there are alternative stable states at zero and infinite latency (Theorems23

2-3, Electronic Supplementary Material). If (7) holds, then there is a unique ESS at infinite latency (Theorems24

2-3, Electronic Supplementary Material).25

Lastly, suppose that the superinfection is greater than 1+⌧⌫1,1
k , which means that B2 < 0 < B1 (see26

Remarks 3, 4). Then, there are two possible outcomes. If ↵1,1
� < B1, then there is a unique ESS at zero latency27

(Theorem 3, Electronic Supplementary Material). Otherwise, if ↵1,1
� > B1 and (7) holds, then there is a unique28

branching point (Theorems 2-3, Electronic Supplementary Material). If ↵1,1
� > B1 and (7) does not hold, then29

there is a local ESS at zero latency along with possible other interior singular strategies (Theorem 3, Electronic30

Supplementary Material).31

The addition of infection stages32

Suppose that there is a third stage, with force of infection ↵3 and recovery rate ⌫3, and that hosts in this stage33

can also superinfect hosts in the first stage. Here, for a unique stable unique endemic equilibrium if R0 > 1, we34

assume either zero or complete immunity (µ = 1, and µ = 0, respectively) [1, 2]. Then, a similar process to35

derive the basic reproduction number for a pathogen with mutant phenotype gives that36

R[3]
0 [�,�⇤] =

 
↵1[�⇤]

⌫1[�⇤] + � + �(↵1[�]bI1[�] + ↵2
bI2[�] + ↵3

bI3[�])

+
⌫1[�⇤]

⌫1[�⇤] + � + �(↵1[�]bI1[�] + ↵2
bI2[�] + ↵3

bI3[�])
↵2

⌫2 + �

+
⌫1[�⇤]

⌫1[�⇤] + � + �(↵1[�]bI1[�] + ↵2
bI2[�] + ↵3

bI3[�])
⌫2

⌫2 + �

↵3

⌫3 + �

!⇣
bS[�] + �bI1[�]

⌘
.

Letting ek = k + ⌫2
⌫2+�

↵3
⌫3+� , it follows that e�[�] = ↵1[�] + ⌫1[�]ek and so

R[3]
0 [�,�⇤] =

 
↵1[�⇤]

⌫1[�⇤] + � + �e�[�]bI1[�]
+

⌫1[�⇤]ek
⌫1[�⇤] + � + �e�[�]bI1[�]

!⇣
bS[�] + �bI1[�]

⌘
.

Since ek replaces k and this parameter is independent of latency, it follows that the qualitative evolutionary37

dynamics of latency are the same in this model as in the model with only two stages, with ek replacing k38

in threshold values. Furthermore, the average time a host cannot get superinfected (⌧) is replaced by e⌧ =39

1
⌫2+� + ⌫2

⌫2+�
1

⌫3+� + ⌫2
⌫2+�

⌫3
⌫3+�

1
�+µ .40

A similar observation holds if there exists an infection stage I0 previous to I1 and I2 with force of infection41

↵0 and ⌫0 that cannot get superinfected. Then, the basic reproduction of an new mutant can be written as42
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R[0]
0 [�,�⇤] =

 
↵0

⌫0 + �
+

⌫0
⌫0 + �

 
↵1[�⇤]

⌫1[�⇤] + � + ��[�]bI1[�]
+

⌫1[�⇤]k

⌫1[�⇤] + � + ��[�]bI1[�]

!!⇣
bS[�] + �bI1[�]

⌘
,

which is a linear transformation on the dependence of �⇤, i.e. R[0]
0 [�,�⇤] = f [�] + cR0[�,�⇤], and thus the43

qualitative dynamics do not change.44

Evolutionary dynamics in the presence of coexistence45

If a branching point exists, then by definition there is a region of mutual invasibility. If there is a region46

where two types can coexist, then this section presents a framework to analyse the evolutionary dynamics after47

branching. At such a coexistence region, if we denote type 1 with strategy �1 and type 2 with strategy �2, then48

the system follows the following set of coupled ordinary di↵erential equations:49

dS

dt
= � � (↵1,2I1,2 + ↵2I2,2 + ↵1,1I1,1 + ↵2I2,1)S � �S + µR1 + µR2,

dI1,1
dt

= (↵1,1I1,1 + ↵2I2,1)(S + �I1,2)� (⌫1 + �)I1,1 � �(↵1,2I1,2 + ↵2I2,2)I1,1,

dI2,1
dt

= ⌫1,1I1,1 � (⌫2 + �)I2,1,

dR1

dt
= ⌫2I2,1 � (� + µ)R1,

dI1,2
dt

= (↵1,2I1,2 + ↵2I2,2)(S + �I1,1)� (⌫1,2 + �)I1,2 � �(↵1,1I1,1 + ↵2I2,1)I1,2,

dI2,2
dt

= ⌫1,2I1,2 � (⌫2 + �)I2,2,

dR2

dt
= ⌫2I2,2 � (� + µ)R2.

If there exists an endemic equilibrium bE = (bS, bI1,1, bI2,1, bR1, bI1,2, bI2,2, bR2) that is stable, then the question of50

further mutation and evolution can be examined in the adaptive dynamics framework. If a mutant �m arises,51

then letting ↵1,i = ↵1[�i] and ⌫1,i = ⌫1[�i] for i = 1, 2, the fractions infected with this mutant are52

dI1,m
dt

= (↵1,mI1,m + ↵2I2,m)(S + �(I1,1 + I1,2))� (⌫1 + �)I1,m � �(↵1,1I1,1 + ↵2I2,1 + ↵1,2I1,2 + ↵2I2,2)I1,m,

dI2,m
dt

= ⌫1,mI1,m � (⌫2 + �)I2,m.

Using the next-generation matrix [3, 4], then

R0[�m,�1,�2] =

 
↵1[�m]

⌫1[�m] + � + �(↵1[�1]bI1,1 + ↵2
bI2,1 + ↵1[�2]bI1,2 + ↵2

bI2,2)

+
⌫1[�m]

⌫1[�m] + � + �(↵1[�1]bI1,1 + ↵2
bI2,1 + ↵1[�2]bI1,2 + ↵2

bI2,2)
↵2

⌫2 + �

!⇣
bS + �(bI1,1 + bI1,2)

⌘
,

where bI1,1, bI1,2, bI2,1, bI2,2 depend upon �1 and �2.53
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If there is a stable coexistence equilibrium, we can follow the approach of Geritz et al. [5] to determine54

the long-term evolutionary dynamics after branching. These can be determined by examining the signs of55

D1(�1,�2) =
@R0
@�m

����
�m=�1

and D2(�1,�2) =
@R0
@�m

����
�m=�2

(this is because a rare mutant can only arise in either56

the type 1 or type 2 direction, but not both).57

Here,

D1(�1,�2) =

 
� ⌫01[�1] (↵1[�1] + ⌫1[�1]k])

(⌫1[�1] + � + �(↵1[�1]bI1,1 + ↵2
bI2,1 + ↵1[�2]bI1,2 + ↵2

bI2,2))2

+
↵0
1[�1] + ⌫01[�1]k

⌫1[�1] + � + �(↵1[�1]bI1,1 + ↵2
bI2,1 + ↵1[�2]bI1,2 + ↵2

bI2,2)

!⇣
bS + �(bI1,1 + bI1,2)

⌘
.

Note that by symmetry, D2(�1,�2) = D1(�2,�1). Next, we note that b2 > c2 when there is a branching point,58

and we use an argument similar to that of Theorem 2 to prove the following result.59

Theorem 1. Suppose that there exists a branching point (so b2 > c2), and that there is a unique stable60

coexistence equilibrium. If there is a �i-isocline such that Di(�1,�2) = 0, then it follows that it is a local61

minimum. Thus, if there exists an evolutionarily singular coalition (b�1, b�2) such that D1(b�1, b�2) = 0 and62

D2(b�1, b�2) = 0, then it is evolutionarily unstable.63

Proof. The proof follows from an analogous argument to the proof of Theorem 2 and noting that

@

@�m

✓
@R0[�m,�1,�2]

@�m

◆ ����
�m=�i

> 0.

64

Analysis for theorems and remarks in main text65

First, as specified in the main text, we assume that k = ↵2
⌫2+� > 1, i.e. the number of new infections that a66

fully symptomatic individual (in I2) would have in a naive population is greater than one, which is biologically67

feasible. As in Expanded Results, Electronic Supplementary Material, �[�] = ↵1[�] + ⌫1[�]k.68

Taking the partial derivative of R0[�,�⇤] in (6) with respect to the mutant phenotype �⇤ gives

@R0

@�⇤ =� ⌫01[�
⇤]

(⌫1[�⇤] + ��[�]bI1[�] + �)2
(↵1[�

⇤]+⌫1[�
⇤]k)

⇣
bS[�]+�bI1[�]

⌘
+

↵0
1[�

⇤] + ⌫01[�
⇤]k

⌫1[�⇤] + ��[�]bI1[�] + �

⇣
bS[�]+�bI1[�]

⌘
.

Setting D[�] = @R0
@�⇤

����
�⇤=�

= 0, multiplying by (⌫1[�] + ��[�]bI1[�] + �)2 and rearranging gives

0 = ��[�]bI1[�](↵0
1[�] + ⌫01[�]k) + ↵0

1[�]� + ⌫01[�]k� � ⌫01[�]↵1[�] + ⌫1[�]↵
0
1[�].

Substituting the value of bI1[�] and �[�], multiplying by 1 + ⌧⌫1[�] where ⌧ = 1
⌫2+� + 1

µ+�
⌫2

⌫2+� gives that

0 = �(↵0
1[�] + ⌫01[�]k)(↵1[�] + ⌫1[�]k � ⌫1[�]� �) + ↵0

1[�]� + ⌧⌫1[�]↵
0
1[�]� + ⌫01[�]k�

+ ⌧⌫1[�]⌫
0
1[�]k� � ⌫01[�]↵1[�]� ⌧⌫1[�]⌫

0
1[�]↵1[�] + ⌫1[�]↵

0
1[�] + ⌧⌫1[�]⌫1[�]↵

0
1[�]
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Substituting ↵1[�] = b1e��b2 + ↵1,1 and ⌫1[�] = c1e��c2 + ⌫1,1 into this equation and rearranging, we obtain

(8)A0e
��(2c2+b2) +A1e

��(2b2) +A2e
��(2c2) +A3e

��(b2+c2) +A4e
��b2 +A5e

��c2 = 0.

Here, the coe�cients are

A0 = ⌧c21b1(c2 � b2),

A1 = �b21b2�,

A2 = c21c2(⌧(↵1,1 � k�)� �k(k � 1)),

A3 = b1c1(⌧c2⌫1,1 � 2⌧b2⌫1,1 � �⌧b2 � b2 + c2 � (k � 1)b2� � kc2�),

A4 = b1b2(�⌧⌫21,1 � �⌧⌫1,1 � ⌫1,1 � ↵1,1� � (k � 1)⌫1,1� � � + ��),

A5 = c1c2(⌧↵1,1⌫1,1 � ⌧k�⌫1,1 + ↵1,1 � k� � ↵1,1k� � k(k � 1)⌫1,1� + �k�).

Multiplying (8) by e�(2c2+2b2) gives

(9)A0e
�b2 +A1e

�(2c2) +A2e
�(2b2) +A3e

�(b2+c2) +A4e
�(2c2+b2) +A5e

�(2b2+c2) = 0,

which is equivalent to D[�] = 0. It is obvious that A1 < 0. Furthermore, the signs of A2 and A5 are determined69

by conditions on ↵1,1.70

Theorem 2. If b2 > c2, then any interior evolutionarily singular strategy is a fitness minimum and is thus71

not ESS. If c2 > b2, then any interior evolutionarily singular strategy is an ESS. Furthermore, by definition, if72

there exists a boundary attractor then it is an ESS.73

Proof. Evolutionarily singular strategies are so that D[�] = @R0
@�⇤

����
�⇤=�

= 0. To find if they are evolutionarily

stable, we require the sign of @
@�⇤

⇣
@R0[�,�

⇤]
@�⇤

⌘ ����
�⇤=�

and so we compute

@

@�⇤

✓
@R0[�,�⇤]

@�⇤

◆
=

 
2⌫01[�

⇤]⌫01[�
⇤] (↵1[�⇤] + ⌫1[�⇤]k])

(⌫1[�⇤] + ��[�]bI1[�] + �)3
� 2⌫01[�

⇤](↵0
1[�

⇤] + ⌫01[�
⇤]k)

(⌫1[�⇤] + ��[�]bI1[�] + �)2

� ⌫00[�⇤](↵1[�⇤] + ⌫1[�⇤]k)

(⌫1[�⇤] + ��[�]bI1[�] + �)2
+

↵00
1 [�

⇤] + ⌫001 [�
⇤]k

⌫1[�⇤] + ��[�]bI1[�] + �

!⇣
bS[�] + �bI1[�]

⌘
.

Evaluating this at �⇤ = � and noting that � ⌫0
1[�](↵1[�]+⌫1[�]k])

(⌫1[�]+��[�]bI1[�]+�)2
+ ↵0

1[�]+⌫0
1[�]k

⌫1[�]+��[�]bI1[�]+�
= 0 since � is an evolutionarily

singular strategy, it follows

(10)
@

@�⇤

✓
@R0[�,�⇤]

@�⇤

◆ ����
�⇤ =�

=

 
� ⌫001 [�](↵1[�] + ⌫1[�]k)

(⌫1[�] + ��[�]bI1[�] + �)2
+

↵00
1 [�] + ⌫001 [�]k

⌫1[�] + ��[�]bI1[�] + �

!⇣
bS[�] + �bI1[�]

⌘
.

It also follows that ⌫001 [�] = �c2⌫01[�], and that ↵00
1 [�] = �b2↵0

1[�]. Substituting these in the above give

(11)
@

@�⇤

✓
@R0[�,�⇤]

@�⇤

◆ ����
�⇤ =�

=

 
c2⌫01[�](↵1[�] + ⌫1[�]k)

(⌫1[�] + ��[�]bI1[�] + �)2
� b2↵0

1[�] + c2⌫01[�]k

⌫1[�] + ��[�]bI1[�] + �

!⇣
bS[�] + �bI1[�]

⌘
.
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Since ↵0
1[�] < 0 by definition, it follows that at an evolutionarily singular strategy,

(12)
@

@�⇤

✓
@R0[�,�⇤]

@�⇤

◆ ����
�⇤ =�

> c2

 
⌫01[�](↵1[�] + ⌫1[�]k)

(⌫1[�] + ��[�]bI1[�] + �)2
� ↵0

1[�] + ⌫01[�]k

⌫1[�] + ��[�]bI1[�] + �

!⇣
bS[�] + �bI1[�]

⌘
= 0

if and only if b2 > c2, which completes the first part of the proof.74

The second part of the proof follows immediately from the definition of an ESS. Indeed, for a strategy b� to75

be ESS, it is required that no mutant can invade a resident with such a strategy. If there is a local attractor at76

the b� = 0 boundary, then D[0] < 0, and so no mutants �⇤ > 0 can invade. Since the mutant phenotype space is77

�⇤ 2 [0,1), then it follows by definition that b� = 0 is a local ESS. Second, suppose there is a local attractor at78

the b� = 1 boundary. Then, there is some large enough �min such that D[�] > 0 for all � > �min. Thus, b� = 179

is a local ESS.80

If the formulations of ↵1[�] and ⌫1[�] are more general and instead take the form of Eqs. (4–5), i.e. ↵1[�] =

b1(F [�])�b2 + ↵1,1 and ⌫1[�] = c1(F [�])�c2 + ⌫1,1, then

↵00
1 [�] = ↵0

1[�]

✓
�(b2 + 1)

F 0[�]

F [�]
+

F 00[�]

F 0[�]

◆
,

⌫001 [�] = ⌫01[�]

✓
�(c2 + 1)

F 0[�]

F [�]
+

F 00[�]

F 0[�]

◆
.

Using these relations in Eq. (10) and noting that F [�] > 0, F 0[�] > 0 (by definition of F [�]) gives the same81

result.82

83

Remark 1. Let ↵1,0 = ↵1[0] = b1 + ↵1,1 and ⌫1,0 = ⌫1[0] = c1 + ⌫1,1. It can be shown that
P5

i=1 Ai > 0 i↵

��

✓
b1b2
c1c2

+ k

◆
(↵1,0 + (k � 1)⌫1,0 � �) + (1 + ⌧⌫1,0)

✓
(↵1,0 � k�)� b1b2

c1c2
(⌫1,0 + �)

◆
> 0.

Remark 2. The single strain basic reproduction number is greater than 1. At infinity, this is
↵1,1+k⌫1,1

⌫1,1+� > 1.84

Thus, the inequality � < ↵1,1 + (k � 1)⌫1,1 must be satisfied, which gives that A4 < 0. Furthermore, since85

we assume that the single strain basic reproduction number is greater than 1 for all ↵1,1, it follows that � <86

(k � 1)⌫1,1.87

Theorem 3. Assume that b2 > c2.88

(S1) Suppose that A2 < 0 and A5 < 0. Then, there is a unique ESS at b� = 0.89

(S2) Suppose that A2 < 0 and A5 > 0. Then, if
P5

i=1 Ai < 0, there is a unique evolutionarily singular strategy90

that is not convergence stable. Since this strategy is not-ESS by Theorem 1, then it leads to two bistable91

local ESSs at b� = 0 and b� = 1. If
P5

i=1 Ai > 0 then D[�] is an increasing function of � and the unique92

ESS is at b� = 1.93

(S3) Suppose that A2 > 0 and A5 > 0. Then, if
P5

i=1 Ai < 0, there is at least one evolutionarily singular94

strategy that is not convergence stable, and leads to alternative stable states since the singular strategy is95

not an ESS (by Theorem 1). Otherwise, if
P5

i=1 Ai > 0, then there is a local ESS at b� = 1 and there are96

possibly other interior singular strategies. If b2 > 2c2, then the interior evolutionarily singular strategy is97

unique if
P5

i=1 Ai < 0 and the ESS at infinite latency is unique if
P5

i=1 Ai > 0.98
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(S4) Suppose that A2 > 0 and A5 < 0. Then, if
P5

i=1 Ai > 0, there is a unique interior convergence stable99

singular strategy b� > 0. Since this strategy is not an ESS by Theorem 1, then it is a branching point and100

leads to mutual invasibility of strategies with di↵erent latencies. Otherwise, if
P5

i=1 Ai < 0, there is a101

local ESS at b� = 0, and there are possibly other interior singular strategies.102

Proof. First, we prove (S1). Since b2 > c2, it follows that A0 < 0, and A3 < 0 also since the sum of the first103

two terms of A3 are negative if c2 < 2b2 and the fourth and fifth term are also negative if c2 < b2. Since A2 < 0104

and A5 < 0, this gives that Ai < 0 for all i. Thus, D[�] < 0 for all �, and the unique ESS is at b� = 0.105

Next, we prove (S2), and assume that A2 < 0 and A5 > 0. Then, rearranging this equation and multiplying

by e��(2b2+c2) gives

�A0e
��(b2+c2) �A1e

��(2b2�c2) �A2e
��c2 �A3e

��b2 �A4e
��(b2�c2) = A5.

Clearly, the left-hand side is a decreasing function, and so if
P5

i=1 Ai < 0, there is a unique intersection and thus106

a unique root which is an evolutionarily singular strategy. Since
P5

i=1 Ai < 0, then D[�] < 0 for � less than the107

evolutionarily singular strategy. Furthermore, since A5 > 0, this implies that D[�] is positive as � approaches108

1, i.e. D[�] > 0 for � greater than the evolutionarily singular strategy. Thus, according to Brannstrom et109

al. [6], this interior singular strategy is not convergence stable. This leads to bistability at b� = 0 and b� = 1.110

Otherwise, if
P5

i=1 Ai > 0, there are no interior roots. If there are no interior evolutionarily singular strategies,111

then the unique ESS is at b� = 1 since D[�] > 0.112

Now, we prove statement (S3), so we suppose that A2 > 0 and A5 > 0, and note that A3 < 0 since b2 > c2

We also first assume that b2 > 2c2. Then, rearranging (9) and multiplying by e��(2b2) gives

�A0e
��b2 �A1e

��(2(b2�c2)) �A3e
��(b2�c2) �A4e

��(b2�2c2) = A5e
�c2 +A2.

It is clear that the left-hand side is a decreasing function of �, whereas the right-hand side is an increasing113

function of �, from A5 +A2 to 1. Thus, if
P5

i=1 Ai < 0, there is a unique root and so a unique evolutionarily114

singular strategy that is not convergent stable (as in the previous case). This singular strategy thus gives rise to115

bistability at b� = 0 and at b� = 1 since A5 > 0. Otherwise, if
P5

i=1 Ai > 0, there are no roots and no interior116

evolutionarily singular strategies, and b� = 1 is the unique ESS.117

Suppose now that b2 < 2c2. Since A5 > 0, then D[�] > 0 for large �, so there is an attracting state at118

b� = 1. If
P5

i=1 Ai < 0, then D[0] < 0. Thus, there is least one interior evolutionarily singular strategy that is119

not convergence stable (as previously). If
P5

i=1 Ai > 0, then D[0] > 0, and so in addition to the local attracting120

state at b� = 1 (since D[�] is positive as � approaches infinity), there might be other interior evolutionarily121

singular strategies if D[�] is not monotonic.122

Lastly, we prove (S4), so A2 > 0 and A5 < 0. If
P5

i=1 Ai > 0, then there is at least one interior singular123

strategy that is convergence stable since D[0] > 0 and D[�] < 0 for large enough �. To prove uniqueness, a more124

sophisticated argument to the ones used previously is required, as the function f [�] defined by the LHS of (9) can-125

not be separated into separate increasing and decreasing functions. However, noting that A0, A1, A3, A4, A5 < 0126

and that A5 is the coe�cient of the term with the largest exponent implies that there are exactly two sign127

changes in the coe�cient of the LHS of (9). According to Jameson [7] (who attributes this to Laguerre), this128

implies that f [�] has at most two positive zeros, since f [�] can be viewed as a ‘generalized polynomial’, i.e.129

consider the transformation x = e�. Since A5 < 0 and we are assuming that
P5

i=1 Ai > 0, then f [0] and f [1]130

have di↵erent signs, which implies that there is an odd positive number of roots to f [�] = 0. Therefore, it follows131

that there is a unique root to f [�] and so the singular strategy is unique in this case. For the more general132
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formulations with F [�], we note that a similar argument follows also, by considering x = F [�] and noting that133

x > 0. Since this singular strategy is not ESS, then this singular strategy gives mutual invasibility of nearby134

types through branching.135

Otherwise, if
P5

i=1 Ai < 0, then there is a local attracting state at b� = 0, and there are possibly other136

interior singular strategies.137

Remark 3. In Theorem 3, i.e. when b2 > c2, the conditions on A2 and A5 are conditions on
↵1,1

� . Let138

B1 = k + �k(k�1)
⌧� and B2 = k + �k(k�1)(⌫1,1+�)/�

⌧⌫1,1+1�k� , as the notation used in Figure 2 and Expanded Results,139

Electronic Supplementary Material. First, note that if � > 1+⌧⌫1,1
k , then A5 > 0 if and only if

↵1,1
� < B2, which140

implies that A2 < 0 since B2 < B1 and
↵1,1

� < B1. Consider the following inequalities on the superinfection141

parameter �:142

(S1) � > 1+⌧⌫1,1
k :143

(a)
↵1,1

� < B2 < B1 =) A2 < 0, A5 > 0,144

(b) B2 < ↵1,1
� < B1 =) A2 < 0, A5 < 0,145

(c) B2 < B1 < ↵1,1
� =) A2 > 0, A5 < 0,146

(S2) � < 1�⌧�
k (then B1 > B2 > 0):147

(a)
↵1,1

� < B2 < B1 =) A2 < 0, A5 < 0,148

(b) B2 < ↵1,1
� < B1 =) A2 < 0, A5 > 0,149

(c) B2 < B1 < ↵1,1
� =) A2 > 0, A5 > 0,150

(S3)
1+⌧⌫1,1

k > � > 1�⌧�
k (then B2 > B1 > 0):151

(a)
↵1,1

� < B1 < B2 =) A2 < 0, A5 < 0,152

(b) B1 < ↵1,1
� < B2 =) A2 > 0, A5 < 0,153

(c) B1 < B2 < ↵1,1
� =) A2 > 0, A5 > 0,154

Remark 4. We can rewrite B2 as B2 = k �(⌧⌫1,1+1)+�((k�1)⌫1,1��)
�(⌧⌫1,1+1�k�) . If � > 1+⌧⌫1,1

k , then the denominator is155

negative and so B2 > 0 if and only if the numerator is also negative, i.e. �(⌧⌫1,1 +1)+ �((k� 1)⌫1,1 � �) < 0.156

But � < (k � 1)⌫1,1 by Remark 2 and so this is impossible, thus B2 < 0 whenever � > 1+⌧⌫1,1
k .157

Theorem 4. Suppose that c2 > b2.158

(S1) If
P5

i=1 Ai > 0, then there is at least one interior convergence stable singular strategy that is ESS, and159

possibly other interior singular strategies. If
P5

i=1 Ai < 0, then there is a local attracting state at b� = 0,160

and possibly other interior singular strategies.161

(S2) The convergence stable interior singular strategy or the attracting state at b� = 0 is unique in the following162

cases:163

(a) A2 > 0, A5 < 0,164

(b) A2, A3, A5 < 0,165

(c) A2, A5 > 0, c2 > b2(max{2, 2⌧⌫1,1+�⌧+1+(k�1)�
⌧⌫1,1+1�k� }).166

Proof. First, we prove the first statement, which is more general. The condition that c2 > b2 implies that167

the largest exponent is 2c2 + b2 in (9), with corresponding coe�cient A4. Since A4 < 0, it follows that if168

P5
i=1 Ai > 0, then there is at least one root to (9). Noting that D[0] > 0 and D[�] is negative as � approaches169
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infinity, it follows that this root is convergence stable (as in Theorem 2). If
P5

i=1 Ai < 0, then this implies that170

D[0] is negative, thus giving that b� = 0 is a local attracting state. Since c2 > b2, then Theorem 1 gives that171

this interior singular strategy is an ESS.172

Now, we prove the three cases in the second statement. First, note that c2 > b2 implies that b2 < 2b2 <

b2 + c2 < 2b2 + c2, 2c2 < 2c2 + b2, where the ordering of 2b2 + c2 and 2c2 is dictated by the relative magnitudes

of 2b2 and c2. For (a), first assume that A3 < 0. Then, rearranging (9) and multiplying by e��(2b2) gives

A0e
��b2 +A2 = �A1e

�(2(c2�b2)) �A3e
�(c2�b2) �A4e

�(2c2�b2) �A5e
�c2 .

It is clear that the right-hand side is an increasing function of � to infinity, whereas the left-hand side is a

strictly decreasing function of �. Therefore, there is exactly one positive root if
P5

i=1 Ai > 0, otherwise there

are no positive roots to this equation. Likewise, if A3 > 0, rearranging (9) and multiplying by e��(b2+c2) gives

A0e
��c2 +A2e

��(c2�b2) +A3 = �A1e
�(c2�b2) �A4e

�c2 �A5e
�b2 .

Again, it is clear that the left-hand side is a decreasing function whereas the right-hand side is an increasing

function to infinity, and so there is exactly one positive root if and only if
P5

i=1 Ai > 0. Thus, the sign of A3 is

irrelevant under the conditions that A2 > 0 and A5 < 0: there is exactly one positive root if
P5

i=1 Ai > 0 and

none if
P5

i=1 Ai < 0. Furthermore, if there is a root, it is the unique convergence stable strategy, and if there

are none, then the unique attracting state is at b� = 0. For (b), rewriting (9) and multiplying by e��b2 gives

A0 = �A1e
�(2c2�b2) �A2e

�b2 �A3e
�c2 �A4e

�(2c2) �A5e
�(b2+c2).

As previously, the right-hand side is an increasing function, and so there is exactly one positive root if
P5

i=1 Ai >

0, which is the unique convergence stable singular strategy. Otherwise, if
P5

i=1 Ai < 0, then there are no positive

roots and the attracting state is at b� = 0. For (c), rewriting (9) and multiplying by e��(2b2+c2) gives

A0e
��(c2+b2) +A2e

��c2 +A3e
��b2 +A5 = �A1e

�(c2�2b2) �A4e
�(c2�b2).

Here, we note that the third condition gives c2 > 2b2, in addition to ensuring A3 > 0 (solving for c2 in terms of173

b2 gives the second value in the maximum equation). Thus, the left-hand side is a decreasing function, whereas174

the right-hand side is an increasing function, and there is exactly one positive root if
P5

i=1 Ai > 0, and this is175

the globally attracting state. Otherwise, if
P5

i=1 Ai < 0, then there is no root, and D[�] < 0 for all � the global176

attractor is therefore at b� = 0.177

Remark 5. In the proofs of the theorems, we have assumed the exponential formulation of the trade-o↵s for178

simplicity. Suppose instead that the more general form presented in the main text is considered. Note that we179

assume F 0[�] > 0, thus, F 0[�] is a factor in every term of D[�]. Therefore, setting D[�] = 0 gives an equivalent180

relation as in Eq. (9), with the substitution of e� by F [�] su�cing to prove equivalent results.181

The superinfection parameter as a function of latency182

We have assumed that the superinfection parameter � is constant, but it is possible that a strain with higher

latency would have a smaller value of �. As a simplest case, we model � as �[�] = d3[d1e�d2�+(1� d1)]. Thus,
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Figure S1: The e↵ect of the superinfection parameter decreasing as a function of latency �. Here, we

assume that �[�] = d3[d1e
�d2� + (1 � d1)] for d2 � 0. (A) is as in the middle panel of Fig. 4C, i.e. d2 = 0,

whereas (B) d2 = 1.05. In both (A) and (B), d1 = d3 = 1.

with � = �[�] and �⇤ = �[�⇤], Equations (2) become

(13)
dI⇤1
dt

= ↵⇤
1I

⇤
1S + ↵2I

⇤
2S + �⇤↵⇤

1I1I
⇤
1 + �⇤↵2I1I

⇤
2 � (⌫⇤1 + �)I⇤1 � �(↵1I1I

⇤
1 + ↵2I2I

⇤
1 ),

dI⇤2
dt

= ⌫⇤1I
⇤
1 � (⌫2 + �)I⇤2 ,

and so the invading reproduction number is now

(14)R0[�,�
⇤] =

 
↵1[�⇤]

⌫1[�⇤] + � + �[�](↵1[�]bI1[�] + ↵2
bI2[�])

+
⌫1[�⇤]

⌫1[�⇤] + � + �[�](↵1[�]bI1[�] + ↵2
bI2[�])

↵2

⌫2 + �

!⇣
bS[�] + �[�⇤]bI1[�]

⌘
,

With d1 = d3 = 1, we present in Fig. S1 the e↵ect of increasing d2. Fig. S1A has d2 = 0 and is identical to183

Fig. 4C (middle panel). On the other hand, d2 = 1.05 in Fig S1B and there is an interior evolutionarily singular184

strategy that is not an ESS. However, with a constant superinfection parameter, we have proved in Theorem 2185

that any interior evolutionarily singular strategy is ESS. Thus, the dependence of � on � introduces additional186

possible evolutionary behavior.187
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