Table S1 Pharmacokinetic parameters of metformin

	C_{max}	T _{max}	AUC _{inf} ^a	f_e^b	T _{1/2}	CL/F ^c	CL _{r,p} d	F e	V _d /F f
	(μM)	(h)	$(\mu M {\times} h)$		(h)	(ml/min)	(ml/min)		(L)
Control	12.0±2.8	2.67±0.99	75.0±13.6	0.683±0.110	4.83±0.56	692±130	471±52.7	0.542±0.086	266±55
+PYR10mg	11.5±2.6	2.00±0.74	78.7±12.0	0.619±0.125	6.98±1.45	654±102	416±61.7	0.505±0.097	269±46
+PYR25mg	15.3±6.9	2.83±1.03	97.2±26.7	0.566±0.232	6.92±1.56	552±143	317±74.7	0.461±0.094	233±68
+PYR75mg	18.5±7.7	3.00±1.04	132±35	0.530±0.146	6.23±0.92	406±113	213±31.7	0.430±0.113	180±61

^{a.} AUC _{inf} was calculated as $AUC_{0-24h} + C_{24h}/(ln2/T_{1/2})$

Each parameter was shown as arithmetic mean \pm SEM. Statistical significance in the difference in the pharmacokinetic parameters between control and pyrimethamine-treated conditions was shown in Supplemental TableS2.

Parameters: C_{max} , maximum plasma concentration; T_{max} , time to achieve the maximum concentration; AUC_{inf} , AUC from time 0 to infinity; f_e , fraction recovered in the urine; $T_{1/2}$, half-life at the terminal phase; CL/F, oral clearance; CL_r , renal clearance; F_r , bioavailability; F_r 0, apparent volume of distribution; F_r 1, mean residence time

b. fe was calculated as X_{urine}(0-24h)/Dose

^{c.} CL/F was calculated as Dose/AUC_{inf}

 $^{^{\}text{d.}}$ CL_{\text{r,p}} was calculated as $X_{\text{urine}}(0\text{-}24h)/AUC_{0\text{-}24h}$

e. F was calculated as CL_r/(CL/F)

 $^{^{\}rm f.}$ V_d/F was calculated as $CL/F \times MRT$