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1. Paper silanization 

 

The paper treatment with trichlorosilane derivative was conducted via vapor-

phase deposition. Typically, 0.5 mL of thichlorosilane derivate in a vial was put on the 

bottom of the desiccator and the paper triangles were located on the desiccator plate. 

Under reduced pressure (20 torr) the partial pressure of the thichlorosilane derivative 

enriched the vapor phase with that organosilane component (Figure S1a). The moisture 

present in the paper and in the desiccator catalyzed the polymerization between the 

thichlorosilane derivative, in the form of organosilanol (RSi(OH)3), and the hydroxyl 

groups present in the paper surface releasing water, molecule takes part in the 

polymerization, plus hydrochloric acid (Figure S1b). The reaction was stopped when the 

atmospheric pressure was restored and the hydrophobic paper triangles were removed 

from the desiccator. For all experiments, the paper triangles were cut before silanization. 

Figure S1. (a) Schematic illustration of the setup used for vapor-phase silanization. 1. 

Desiccator; 2. Valve; 3. Vacuum pump system; 4. Desiccator plate; 5. Paper triangles; 

6. Organosilane. (b) Paper modification through silanization of surface hydroxyl groups 

using trichlorosilane vapor to create a hydrophobic layer onto the paper. 

 

 

  



4 

 

2. Surface energy estimation via bracketing 

 

The surface energy of a substrate is the quantitative representation of its 

hydrophobicity. The surface energies of the paper triangles treated with TCMS and 

TCTFPS were estimated via bracketing method. Complete wetting happens only when 

the surface tension of the wetting liquid is less than the critical energy of the surface. The 

central idea in the bracketing is if a liquid drop wets a surface, the surface energy of the 

wetted substrate is lower than the dry substrate. Consequently, for the paper surface 

energy estimation, if  the paper is wetted through by a drop of a specific liquid, its critical 

surface energy is higher than the surface tension of that liquid; otherwise, if the paper is 

not wetted through by the drop of a specific liquid, then its critical surface energy is lower 

than the surface tension of that liquid1. 

 Different pure solvents and mixtures of water and acetonitrile were used to 

estimate the surface energy of hydrophobic paper by bracketing (Table S1). A 10 µL 

droplet of solvent was cast onto the different papers, initiating from the solvent with 

higher to the solvent with lower surface tension. This procedure was repeated for the 

papers treated with different treatment times and different treatment reagents. Table S2 

indicates the results of the wettability study. Papers treated for 15 to 240 min with TCMS 

have surface energy between 43.12-47.3 mN m-1, while papers treated for 15 to 240 min 

with TCTFPS have surface energy between 43.54-49.39 mN m-1. As we expected, longer 

silanization times decrease the surface energy of the paper, increasing its hydrophobicity. 

Additionally, paper modified with TCMS have lower surface energy, or are more 

hydrophobic, than paper functionalized with TCTFPS.  

 

Table S1. Surface tension of different solvents and mixtures of different molar fraction 

of water and acetonitrile. 

 

Solvent 
Surface tension 

(mN m-1)2 
xACN xH2O 

1 62.36 0.0149 0.9851 

2 55.92 0.0298 0.9702 

3 49.39 0.0576 0.9484 

Ethylene Glycol 47.3 - - 

DMSO 43.54 - - 

Quinoline 43.12 - - 

4 40.54 0.095 0.905 

5 37.97 0.1227 0.8773 

Cyclohexanol 34.4 - - 

6 32.92 0.2541 0.7459 

7 31.68 0.3959 0.6041 

8 31.45 0.4851 0.5149 

9 30.95 0.5913 0.4087 

10 28.66 1 0 
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Table S2. Surface energy estimation of papers treated for different times using TCMS 

and TCTFPS by bracketing method. 

 

Treatment time 

(min) 

Surface energy (mN m-1) 

TCMS 

treated paper 

TCTFPS 

treated paper 

15 43.54 – 47.3 47.3 – 49.39 

30 43.54 – 47.3 47.3 – 49.39 

60 43.12 – 43.54 43.54 – 47.3 

120 43.12 – 43.54 43.54 – 47.3 

240 43.12 – 43.54 43.54 – 47.3 
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3. Central composite design for optimization of the tube lens voltage and 

capillary temperature 

 

A central composite design was used to optimize the tube lens voltage and 

capillary temperature for adduct formation, in-source fragmentation and ionized 

molecular ion intensity. Table S3 shows the central composite design matrix for 

furosemide and hydrochlorothiazide. Table S4 shows the central composite design matrix 

for trenbolone and for clenbuterol. The combinations of the selected factors resulted in 

ten experiments, carried out in triplicate. 

 

Table S3 Central composite design matrices for the furosemide and hydrochlorothiazide. 

The codified levels of the factors are in front of the real values used for the design. 

 

Experiment 

Factors 

Furosemide Hydrochlorothiazide 

Capillary 

temperature (°C) 

Tube lens 

voltage (V) 

Capillary 

temperature (°C) 

Tube lens 

voltage (V) 

1 125 (-1) -175 (-1) 150 (-1) -175(-1) 

2 125 (-1) -100 (+1) 150 (-1) -100 (+1) 

3 250 (+1) -175(-1) 275 (+1) -175(-1) 

4 250 (+1) -100 (+1) 275 (+1) -100 (+1) 

5 100 (-√2) -140 (0) 125 (-√2) -140 (0) 

6 275 (+√2) -140 (0) 300 (+√2) -140 (0) 

7 190 (0) -190 (+√2) 215 (0) -190 (+√2) 

8 190 (0) -85 (-√2) 215 (0) -85 (-√2) 

9 190 (0) -140 (0) 215 (0) -140 (0) 

10 190 (0) -140 (0) 215 (0) -140 (0) 
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Table S4 Central composite design matrix for the trenbolone and clenbuterol. The 

codified levels of the factors are in front of real values used for the design. 

 

Experiment 

Factor 

Capillary 

temperature (°C) 

Tube lens 

voltage (V) 

1 200 (-1) 50 (-1) 

2 200 (-1) 150 (+1) 

3 300 (+1) 50 (-1) 

4 300 (+1) 150 (+1) 

5 180 (-√2) 100 (0) 

6 320 (+√2) 100 (0) 

7 250 (0) 30 (-√2) 

8 250 (0) 170 (+√2) 

9 250 (0) 100 (0) 

10 250 (0) 100 (0) 
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Figure S2. Projection of the central composite design response surfaces obtained for 

absolute intensity (AI) as a function of tube lens voltage (TLV) and capillary 

temperature (CT) for (a) deprotonated furosemide ion ([M-H]- at m/z 329), (b) 

furosemide in-source fragment product ([M-CO2-H]- at m/z 285), (c) deprotonated 

hydrochlorothiazide ion ([M-H]- at m/z 296), (d) hydrochlorothiazide chlorine adduct 

([M+Cl]- at m/z 332), (e) MS2 product ion for protonated trenbolone ion (m/z 271 → 

253), and (f) MS2 product ion for protonated clenbuterol ion (m/z 277 → 259). 
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4. Physical chemical properties of the solvents 

 

Table S5 describes the surface tension, dielectric constant and chemical properties 

for acetone, acetonitrile, ethyl acetate, methanol, and water. 

 

 

 

Table S5 Physical chemical properties of the solvents. 

 

Solvent 
Surface tension at 

25°C (mN m-1)3 

Dielectric constant 

at 25°C3 

Relative 

polarity 4 

Acetone 22.71 21.01 0.355 

Acetonitrile 28.66 36.64 0.460 

Ethyl acetate 25.13 6.081 0.228 

Methanol 23.47 33.0 0.762 

Water 72.06 80.1 1.000 
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5. Spray voltage  

 

Dependence of the signal intensities when different spray voltages were applied 

to the paper triangle, using ethyl acetate as spray solvent for both positive- and 

negative-ion modes. 

Figure S3. Effect of the spray voltage on signal intensity. Trenbolone (black circle - 500 ng mL-1) 

was monitored in MS2 experiment using the most abundant product ion at m/z 253, in positive-ion 

mode, and furosemide (white circle – 12.5 µg mL-1) was monitored in MS2 experiment using the 

most abundant product ion at m/z 285, in negative-ion mode. Error bars represent the standard 

deviation of analyses for three replicates with independent hydrophobic paper triangles. 
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6. Analytical curves for trenbolone, clenbuterol, furosemide and 

hydrochlorothiazide 

 

Figure S4. Analytical curves for (a) trenbolone (5 - 1000 ng mL-1), (b) clenbuterol 

(1 - 1000 ng mL-1), (c) furosemide (50 - 25 x 103 ng mL-1), and (d) hydrochlorothiazide 

(50 - 25 x 103 ng mL-1). Quantification of each analyte was performed by analyzing the 

following product ion from each compound: trenbolone (m/z 271 → 227), clenbuterol 

(m/z 277 → 203), furosemide (m/z 329 → 285), and hydrochlorothiazide (m/z 296 → 

269). Error bars represent the standard deviation of analyses for three replicates with 

independent hydrophobic paper triangles. 
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7. Figures of merit for trenbolone, clenbuterol, furosemide and 

hydrochlorothiazide. 

 

Table S6. Regression data, linear range, LOD and LOQ for trenbolone, clenbuterol, 

furosemide and hydrochlorothiazide in urine samples using hydrophobic PS-MS. 

 

Analyte 

Linear 

range 

(ng mL-1) 

Regression 

equation R
2

 
LOD (LOQ) 

(ng mL-1) 

LOD 

(LOQ) 

(pg) 

Trenbolone 5 – 1000 AI = 40.7C + 4.70 0.9993 0.21 (0.42) 1.27 (2.49) 

Clenbuterol 1 – 1000 AI = 28.7C + 36.9 0.9984 0.041 (0.076) 0.25 (0.46) 

Furosemide 
50 – 25 x 

103 
AI = 11496.3C + 229.3 0.9974 0.82 (1.65) 4.89 (9.89) 

Hydrochloro-

thiazide 

50 – 25 x 

103 
AI = 4618.2C + 289.1 0.9980 0.058 (0.12) 0.35 (0.71) 
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8. Comparison of methods for quantification of trenbolone, clenbuterol, 

furosemide and hydrochlorothiazide 

 

Table S7. Parameters comparison of the current work and previously reported 

methodologies for determination of trenbolone and clenbuterol 

 

Doping 

Substance 
Method Sample preparation 

LOD 

(ng mL-1) 

LOQ 

(ng mL-1) 
Reference 

Trenbolone 

CBS-MS1 
Automated extraction/rinsing 

using a 96-well plate 
- 10 5 

LC-MS LLE2 0.1 - 6 

LC-MS LLE 0.05 - 7 

LC-MS SPE3 and LLE 1 - 8 

GC-MS LLE and derivatization 1 - 9 

LC-MS LLE 10 - 10 

LC-MS Automated SPME4 - 5 11 

LC-MS SPE and LLE 0.1 - 12 

PS-MS - 0.21 0.42 This work 

Clenbuterol 

CBS-MS 
Automated SLE5 using a 96-

well plate 
- 2.5  5 

LC-MS SPE and LLE 0.1 - 8 

GC-MS LLE and derivatization 0.04 - 9 

LC-MS LLE 0.4 - 10 

LC-MS Automated SPME - 15 11 

LC-AD Dilution 40 - 13 

GC-MS LLE and derivatization 0.05 - 14 

GC-MS LLE and derivatization 0.1 - 15 

OPP-API-MS6 Bio-SPME 0.03 0.1 16 

LC-MS SPE 0.044 0.15 17 

GC-MS LLE and derivatization 0.03 - 18 

PS-MS - 0.041 0.076 This work 
1CBS-MS = Coated blade spray-mass spectrometry. 
2LLE = Liquid-liquid extraction. 
3SPE = Solid-phase extraction. 
4SPME = Solid-phase microextraction. 
5SLE = Solid-liquid extraction. 
6OPP-API-MS = Open port probe-ambient pressure ionization-mass spectrometry. 
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Table S8. Comparison of parameters of the current work and previously reported 

methodologies for determination of furosemide and hydrochlorothiazide 

 

 

Doping 

Substance 
Method Sample preparation 

LOD 

(ng mL-1) 

LOQ 

(ng mL-1) 
Reference 

Furosemide 

LC-MS LLE1 2 - 7 

LC-MS LLE 12.5 - 10 

LC-MS Automated SPME2 - 10 11 

LC-MS SPE3 0.85 2.8 17 

LC-MS SPE 25.0 - 19 

LC-MS Online SPE 5 - 20 

Fluorescence Centrifugation 6 - 21 

Spectrophotometric LLE 110 280 22 

GC-MS 
LLE and 

derivatization 
50 - 23 

PS-MS - 0.82 1.65 This work 

Hydrochloro- 

thizaide 

LC-MS LLE 2 - 7 

LC-MS LLE 25 - 10 

LC-MS SPE 0.24 0.80 17 

LC-MS SPE 50 - 19 

LC-MS Online SPE 1 - 20 

GC-MS 
LLE and 

derivatization 
50 - 23 

LC-UV MMIPs-d-SPE4 0.75 2.2 24 

Voltammetry 
Centrifugation and 

filtration 
6 - 25 

LC-UV Dilution 4 12 26 

PS-MS - 0.058 0.12 This work 
1LLE = Liquid-liquid extraction. 
2SPME = Solid-phase microextraction. 
3SPE = Solid-phase extraction. 
4MMIPs-d-SPE = Superparamagnetic molecularly imprinted polymers-dispersive solid phase extraction. 
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