
 
 

SUPPLEMENTAL MATERIAL 
  



Expanded Methods 

Data acquisition 

All ECGs were obtained using a General Electric MAC 5500 (GE Healthcare, Chicago, IL, 

United States) as part of routine clinical care. Using the MUSE ECG system (MUSE version 

8, GE Healthcare, Chicago, IL, United States), we extracted raw 10 second 12-lead ECG data 

waveforms. From the raw data files, the median beats, consisting of 600 samples, sampled at 

500 Hz, were used for further analysis.  

Physician annotations were extracted from the ECGs using the text mining algorithm 

described above. In case of any form of annotated T-wave abnormalities, the ECGs were 

manually reviewed by two reviewers to determine presence and location of inverted T-waves. 

Disagreement was resolved by panel discussion. Inverted T-waves were defined as being 

more than 0.1 mV negative in lead I, II, aVL or V2-V6 in the absence of right bundle branch 

block. The peak-to-peak voltage of the QRS-complex was extracted from the median beat 

and used to determine the presence of low QRS voltage, which was defined as a peak-to-peak 

QRS voltages less than 0.5 mV in the extremity leads or less than 1 mV in the precordial 

leads. Conduction intervals were extracted from the MUSE ECG system. 

 

Feature visualization 

The final convolutional layer was used for visualization and all values for the guided 

backpropagation maps below zero were discarded. An overall visualization of important ECG 

segments was constructed with the following steps: (1) all median ECG beats and their 

corresponding per-patient normalized Guided Grad-CAM maps were aligned temporally by 

normalizing the PQ and QT intervals, (2) the mean and standard deviations of the ECG signal 

were derived within each group, (3) the proportion of the per-patient Guided Grad-CAM 



maps above a threshold was calculated for each timepoint and plotted as a superimposed 

heatmap and (4) the overall heatmap was filtered using a 2nd order Savinsky-Golay filter. The 

threshold for an important feature was set at 5%. Only correctly classified PLN patients were 

used for feature visualization. 

 

Deep neural network architecture 

We constructed a deep convolutional neural network with exponentially dilated causal 

convolutions (Supplemental Figure 1). Based on the method described by Van Oord et al. 

and Franceschi et al., we built an architecture composed of several 1-dimensional causal 

convolution blocks.1,2 These were followed by a 1D global max pooling layer squeezing the 

temporal dimension and finally a linear layer transforming the squeezed temporal information 

to one output logit. Each causal convolution block consists of a combination of causal 

convolutions, weight normalizations, leaky ReLUs and residual connections.3-5  The dilation 

parameter used in the convolutional layer is exponentially doubled in each subsequent causal 

convolution block from 1 to 64. For the first 6 blocks, the number of output channels of the 

convolutional layers is kept constant at 128 and the final 7th block outputs 256 channels. The 

convolutional layer in the residual connection used a kernel size of 1 and was only applied in 

the case where the number of output channels differed from the number of input channels. 

All other convolutional layers used a kernel size of 3 and a value of 0.01 was used for the 

negative slope parameter of the leaky ReLU activation functions. 

For training, we optimized the network parameters using a weighted binary focal loss 

function to handle class imbalance, and Adam with a learning rate of 0.0001 as the 

optimization algorithm.6,7 This loss function reshapes the standard binary cross entropy such 

that it down-weights the loss assigned to well-classified examples. In addition, we assign a 



weight to positive examples equal to the class imbalance ratio to force equal attribution to the 

loss of both class examples.  The used batch size was 128. Network training was performed 

using the PyTorch package (version 1.3).8 

Eight-fold cross validation on the training dataset was used for optimization of the 

hyperparameters of the network. The following hyperparameters were optimized using a 

combination of grid search and manual tuning: learning rate, network depth, channel size and 

kernel size. Early stopping was performed when the validation loss did not decrease for 20 

epochs. The simplest network with the highest geometric mean of area under the receiver 

operating curve and F2 score averaged over all folds was chosen and trained on the complete 

training dataset. The performance of this network was estimated on the test subset. 
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Supplemental Figure 1. Overview of the deep neural network architecture used in this 

paper. Batches of 128 12-lead median ECG beats are used as the input during training. The 

1D convolution on the right in only used when up- or downsampling is needed.  
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Supplemental Figure 2. Output of the Guided Grad-CAM visualization algorithm for 

presymptomatic PLN mutation carriers (n = 11) and their controls. Left: Mean of 

temporally normalized median 12-lead ECGs of both the presymptomatic PLN mutation 

carriers (blue) and control patients (red) with their respective standard deviations. Right: the 

same median ECG beat with the Guided Grad-CAM output of the DNN superimposed to 

indicate the importance of a specific temporal segment for the classification of the DNN. The 

colormap represents the proportion of patients where that region was important (i.e. had a 

Guided Grad-CAM value above the threshold). Only the feature maps of correctly classified 

PLN patients are used. Guided Grad-CAM: Guided Gradient Class Activation Mapping, 

PLN: phospholamban. 

 



 

Supplemental Figure 3. Output of the Guided Grad-CAM visualization algorithm for 

symptomatic PLN mutation carriers (n = 75) and their controls. Left: Mean of temporally 

normalized median 12-lead ECGs of both the symptomatic PLN mutation carriers (blue) and 

control patients (red) with their respective standard deviations. Right: the same median ECG 

beat with the Guided Grad-CAM output of the DNN superimposed to indicate the importance 

of a specific temporal segment for the classification of the DNN. The colormap represents the 

proportion of patients where that region was important (i.e. had a Guided Grad-CAM value 

above the threshold). Only the feature maps of correctly classified PLN patients are used. 

Guided Grad-CAM: Guided Gradient Class Activation Mapping, PLN: phospholamban. 

 


