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Abstract: 
 

Background - Electrocardiogram (ECG) interpretation requires expertise and is mostly based on 

physician recognition of specific patterns, which may be challenging in rare cardiac diseases. 

Deep neural networks (DNN) can discover complex features in ECGs and may facilitate the 

detection of novel features which possibly play a pathophysiological role in relatively unknown 

diseases. Using a cohort of phospholamban (PLN) p.Arg14del mutation carriers, we aimed to 

investigate whether a novel DNN-based approach can identify established ECG features, but 

moreover we aimed to expand our knowledge on novel ECG features in these patients.  

Methods - A DNN was developed on 12-lead median beat ECGs of 69 patients and 1380 

matched controls and independently evaluated on 17 patients and 340 controls. Differentiating 

features were visualized using Guided Grad-CAM++. Novel ECG features were tested for their 

diagnostic value by adding them to a logistic regression model including established ECG 

features.  

Results - The DNN showed excellent discriminatory performance with a c-statistic of 0.95 (95% 

confidence interval 0.91-0.99) and sensitivity and specificity of 0.82 and 0.93, respectively. 

Visualizations revealed established ECG features (low QRS voltages and T-wave inversions), 

specified these features (e.g. R and T-wave attenuation in V2/V3) and identified novel PLN-

specific ECG features (e.g. increased PR-duration). The logistic regression baseline model 

improved significantly when augmented with the identified features (p<0.001). 

Conclusions - A DNN-based feature detection approach was able to discover and visualize 

disease-specific ECG features in PLN mutation carriers and revealed yet unidentified features. 

This novel approach may help advance diagnostic capabilities in daily practice. 
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Nonstandard Abbreviations and Acronyms 

AIC: Akaike information criterion 

ARVC : Arrhythmogenic right ventricular cardiomyopathy 

DCM: Dilated cardiomyopathy 

DNN: Deep Neural Network  

ECG: Electrocardiogram 

Guided Grad-CAM: Guided Gradient Class Activation Mapping 

HCM: Hypertrophic cardiomyopathy  

LVAD: Left ventricular assist device 

PLN: Phospholamban 

ROC: receiver operating characteristic  

 

 

 

Introduction  

Interpretation of the electrocardiogram (ECG) requires expertise and is mainly based on 

physician recognition of patterns that are known to belong to a particular disorder. However, for 

rare and relatively unknown cardiac diseases, this may be challenging since ECG features are 

often unknown and require expert knowledge to recognize. By automating the discovery and 

expanding the knowledge on disease-specific ECG features, interpretation of ECGs by 

physicians could be improved. Such a support tool could be of particular importance when expert 

knowledge is not readily available or in research settings to automate the detection of disease-

specific ECG features.  

Recently, ECGs have been analyzed using deep neural networks (DNNs), which are 

computer algorithms that are based on the structure and functioning of the human brain.1 Their 

layers can be trained to discover complex patterns in ECGs, without requiring hand-crafted 
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feature extraction. Several studies have applied DNNs for automated predictions from ECGs, and 

one recent study showed that it is feasible to diagnose hypertrophic cardiomyopathy (HCM) on 

the ECG.2–4 However, the methods used in these studies all require very large datasets, which are 

often not available for rare diseases. Furthermore, these previous studies all focus on prediction, 

but specific ECG patterns used by DNNs are rarely visualized.3,5–8 Visualization of such features 

takes advantage of the feature discovery embedded in DNNs and will help clinicians to interpret 

ECGs more accurately, and possibly facilitate discovery of novel features. 

Cardiomyopathy-related genetic mutations are rare but are often associated with typical 

ECG features. An example is the deletion of three base pairs (c.40_42delAGA) in the 

phospholamban (PLN) gene, leading to the deletion of Arginine 14 in the PLN protein 

(p.Arg14del).9–11 Prevalence of the PLN p.Arg14del mutation is estimated to be 0.07% in the 

northern regions of the Netherlands and is present in 12% of Dutch patients developing a 

phenotype of arrhythmogenic right ventricular cardiomyopathy (ARVC) and in 15% of patients 

developing dilated cardiomyopathy (DCM).11–13 With regard to ECG characteristics in these 

mutation carriers, typical features that have previously been described are attenuated QRS-

amplitudes and inverted T-waves in the right and left precordial leads.12,14,15 

Beside using DNNs merely for prediction or diagnosis, we hypothesize that DNNs can 

also be used for feature visualization itself. This will potentially enable discovery of novel ECG 

features that belong to a particular disease. In this study, we used a cohort of PLN mutation 

carriers to investigate whether a novel DNN-based approach can (i) identify the already well-

established ECG features in these mutation carriers and (ii) possibly expand our knowledge on 

ECG features in these mutation carriers. 
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Methods 

Data availability 

The data used in this study are not publicly available due to privacy restrictions. The code for 

training the DNN and for generating the visualizations and tables in this paper is available upon 

request from the corresponding author. 

Data source and study participants 

The dataset consisted of 12-lead ECGs from patients between 18 and 85 years old acquired in the 

University Medical Center Utrecht (UMCU) from January 2000 to August 2019. All extracted 

data were de-identified in accordance with the EU General Data Protection Regulation and 

written informed consent was therefore not required by the ethical committee. All ECGs were 

interpreted by a physician as part of the clinical workflow and these free text annotations were 

structured using a text mining algorithm described before.3 We excluded all ECGs of insufficient 

quality and all ECGs with supraventricular and ventricular arrhythmias (excluding premature 

atrial and ventricular complexes), paced rhythms, undefined rhythms and signs of acute 

ischemia. 

All index patients in the dataset who carry the genetic PLN p.Arg14del mutation and their 

relatives that tested positive, were identified. ECGs acquired after the implantation of a left 

ventricular assist device (LVAD) or heart transplantation were excluded. Only the first acquired 

ECG of each mutation carrier was used for development of the model.  

The control group was derived from the remaining dataset and consisted of 365,173 

ECGs of 147,098 unique patients. Per mutation carrier, 20 controls were matched using 

propensity score matching on age and sex. This number was chosen to have sufficient samples to 

train the DNN without having a too severe class imbalance. Only one ECG per control subject, 
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sampled without replacement, was used to make sure every subject was only used once. The 

matched groups were randomly split in an 80:20 manner to training and test sets. 

Data acquisition 

For all ECGs the median beats were exported from the MUSE ECG system (MUSE version 8, 

GE Healthcare, Chicago, IL, United States). The median beat data is constructed by aligning all 

QRS-complexes of the same shape (e.g. excluding premature ventricular complexes) and 

generating a representative QRS-complex by taking the median voltage.16 Acquisition and 

feature extraction of the included ECGs is described in more detail in the Supplemental Material. 

Baseline logistic regression model 

To demonstrate the capability of DNN in identifying novel relevant features, we first developed 

a baseline logistic regression model, only based on the established ECG features of PLN 

mutation carriers. The matching variables, age and sex, and the established PLN-specific ECG 

features (low QRS voltage and right (V2-V3) and left (V4-V6) precordial T-wave inversion) 

were included as predictors in the model.17 The model was trained on the training dataset and 

evaluated on the test set.  

Deep neural network development 

We constructed a deep convolutional neural network with exponentially dilated causal 

convolutions. The proposed architecture, inspired by the method described by Van Oord et al. 

and Franceschi et al., compromises of several 1-dimensional dilated causal convolution 

blocks.18,19 Eight-fold cross validation on the training dataset was used for optimization of the 

hyperparameters of the network. The simplest network with the highest geometric mean of area 

under the receiver operating curve and F2 score averaged over all folds was chosen and trained 

on the complete training dataset. The performance of this network was estimated on the test 
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subset. Network training was performed using the PyTorch package (version 1.3).20 A detailed 

description of the architecture of the DNN can be found in the Expanded Methods and an 

overview of the network architecture is shown in Supplemental Figure 1. 

Feature visualization 

To identify the parts of the ECG that are important for the DNNs prediction, we applied Guided 

Gradient Class Activation Mapping ++ (Guided Grad-CAM++), a technique for explanations in 

convolutional neural networks, to 1-dimensional data.5,6 Guided Grad-CAM++ combines the 

fine-grained and lead-specific visualizations of guided backpropagation with the class-

discriminative and global Grad-CAM technique. The median beat visualization methodology is 

described in more detail in the Supplemental Material. 

Validation of newly identified features in an updated model 

Based on inspection of the visualization output, we identified distinctive features with an 

arbitrary prevalence above 25%. The detected important features were translated to quantitative 

features (e.g. R-wave amplitude) and added to the baseline logistic regression model, starting 

with the most prevalent. If multiple similar features were found in leads belonging to the same 

region, the most prevalent feature in that region was used. Leads I, aVL and V4-V6 were 

grouped as lateral leads and II, III and aVF as inferior leads. To evaluate the added value of the 

newly identified ECG features, we determined if the nested baseline logistic regression model fit 

improved using the likelihood ratio test (LRT) and Akaike’s information criterion (AIC). 

Subgroup analyses 

In subgroup analyses, we analyzed whether predictive performance and detected features 

differed between subsets of patients. Due to the small sample size, these exploratory subgroup 

analyses were performed on the combined training and test datasets. We investigated the 
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performance in presymptomatic PLN p.Arg14del mutation carriers. Presymptomatic was defined 

as: no cardiac symptoms as per judgement of the treating physician, no history of (non-)sustained 

ventricular arrhythmia, premature ventricular complex burden of <500 beats per 24 hours and 

left ventricular ejection fraction ≥45%.  

Statistical analysis 

The baseline characteristics were expressed as mean ± standard deviation or median with 

interquartile range (IQR), where appropriate. Categorical variable differences were tested using 

the chi-square test or Fisher’s exact test and continuous variables using the Student’s t-test or 

Mann Whitney U test. Multiple testing correction was performed for the baseline characteristics 

using Bonferroni’s method. The overall discriminatory performance of the DNN, baseline and 

updated models were assessed in the test set with the concordance-statistic (c-statistic) or area 

under the receiver operating characteristic (ROC) curve, sensitivities, specificities, positive and 

negative predictive values. The models were compared at a prespecified specificity of 94%.  The 

95% confidence intervals (CI) around the performance measures and odd’s ratios were obtained 

using 2000 bootstrap samples. All statistical analyses were performed using R version 3.5 (R 

Foundation for Statistical Computing, Vienna, Austria).  

 

Results  

Study population 

A total of 93 PLN p.Arg14del mutation carriers were identified, of which 86 were eligible for 

this study. Four patients were excluded as all their ECGs were acquired after LVAD or heart 

transplantation and three patients as all their ECGs were non-sinus rhythm. The control group 
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consisted of 135,353 patients after exclusions, of which 1,720 patients were matched. The 

flowchart is shown in Figure 1 and the baseline characteristics in Table 1.  

Baseline logistic regression performance 

The discriminative performance (by c-statistic) of the baseline logistic regression model was 

0.84 (95% CI 0.73-0.92) in the test set. The most important predictor of the PLN mutation was 

the presence of low QRS voltage, followed by left precordial inverted T-waves. No significant 

effect of age, gender or right precordial negative T-waves was found.  

Deep neural network performance 

The cross-validated mean c-statistic, sensitivity, specificity and F2 score obtained in the training 

dataset were 0.86±0.07, 0.73±0.13, 0.91±0.04 and 0.56±0.05, respectively. The c-statistic of the 

DNN, trained on the complete training dataset, was 0.95 (95% CI 0.91-0.99) in the independent 

test set. The mean ECG beats for the complete dataset with a superimposed Guided Grad-CAM 

visualization can be found in Figure 2. Figure 3 shows a representative example of a mutation 

carrier and a control subject that shows similar pre-established features (low QRS voltage and 

inverted T-waves) but is correctly identified by the DNN. 

Feature detection 

Based on the Guided Grad-CAM maps (Figure 2), we identified the following six most prevalent 

combined ECG segments: (i) R-waves in V2/V3 (58-99%), (ii) PR-interval (98%), (iii) T-waves 

in V2/V3 (36-89%), (iv) R-waves in I/aVL/V4-V6 (34-59%), (v) R-waves in II/III/aVF (22-

46%) and (vi) T-waves in I/aVL/V6 (22-36%). Figure 4 shows correlation between the Grad-

CAM maps and the human interpretation, on an individual level. 

After inspection of the median beat and its standard deviation at these locations, the 

following most prevalent features per region were extracted from the ECG and added to the 
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baseline logistic regression model: (i) maximum R-wave amplitude in V3, (ii) PR interval, (iii) 

T-wave peak voltage in V3, (iv) maximum R-wave amplitude in V6, (v) maximum R-wave 

amplitude in III and (vi) T-wave peak voltage in I.  

The updated logistic regression model’s c-statistic was 0.91 (95% CI 0.83 - 0.97). The 

significantly associated baseline variables low QRS voltage and inverted left precordial T-waves 

remained significant in the updated model. The newly identified features were maximum R-wave 

amplitude in V3 and V6, the T-wave amplitude in I and V3 and the PR interval. The updated 

model had a better fit than the baseline model with an AIC of 388, compared to 461 for the 

baseline model (LRT p<0.001). The performance measures of all three models are shown in 

Table 2. The odds ratios of the variables in the baseline and updated models are appreciated in 

Table 3. The summary measures for the quantitative translations of the newly identified features, 

that are added to the baseline logistic regression model, are shown in Table 4. 

Subgroup analyses 

Performance was higher for symptomatic than presymptomatic patients, with c-statistics of 0.97 

(95% CI 0.95-0.98) and 0.95 (95% CI 0.91-0.98), respectively. Sensitivity was 86% for 

symptomatic patients (n = 75) and 64% for presymptomatic patients (n = 11), at a similar 

specificity of 94%. Guided Grad-CAM maps showed a difference in features between 

symptomatic and asymptomatic patients, where the prolonged PR-interval, attenuated R- and T-

wave in V3 and attenuated T-wave in V6 were more important in presymptomatic patients while 

the overall attenuated R-waves were more prominent in symptomatic patients. The Guided Grad-

CAM maps for presymptomatic and symptomatic patients are shown in Supplemental Figures 2 

and 3. 
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Discussion  

In this study we demonstrate a novel DNN-based end-to-end approach that allows for detection 

and visualization of disease-specific ECG features. To the best of our knowledge, this is the first 

time DNNs have successfully been applied as an ECG feature detector, in contrast to previously 

developed prediction algorithms. Using a unique combination of median ECG beats and 

visualizations, the algorithm was able to automatically reveal established ECG features in PLN 

p.Arg14del mutation carriers (low QRS voltages and T-wave inversions), specify these features 

(R and T-wave attenuation in V2 and V3) and find novel features (increased PR-duration). 

Applying this promising concept in more cardiac diseases (especially rare or unknown ones) can 

potentially support physicians while reviewing ECGs, thereby improving ECG interpretation in 

daily clinical practice. 

Previous literature 

Several studies showed that DNNs can be used to make predictions from ECGs with a high 

performance.2–4,7,8 An example is the recent study by Ko et al., who developed a DNN to detect 

HCM, resulting in an AUC of 0.96.4 From a clinical point of view, this network is very 

attractive, because this would allow the clinician to easily and automatically distinguish HCM in 

a screening setting. However, clinical implementation of such a network is still challenging for 

several reasons. Firstly, such networks are often seen as “black boxes”, 

and, secondly, the validity of these high-dimensional networks in external datasets is still 

unproven. 

Similarly, we developed a DNN that recognizes ECGs of a specific patient population 

(i.e. PLN mutation carriers) with high diagnostic performance.4 A different architecture was 

chosen, as it has an increased diagnostic performance in PLN mutation carriers and allows for 
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more detailed visualizations. Unique to our study is the use of hard outcome data and the focus 

on feature detection, which may directly support clinicians with ECG interpretation in daily 

practice. Moreover, we show that these features can be used in a relatively simple logistic 

regression model, which might be easier generalizable. 

Disease-specific ECG features in PLN mutation carriers 

This novel approach was validated in PLN mutation carriers, because typical ECG characteristics 

in these subjects have been described extensively before.10,12,14,15 PLN mutation carriers are at 

risk of developing an often biventricular phenotype of ARVC and/or DCM, and are typically 

characterized by subepicardial fibro-fatty replacement.21 This leads to an ECG with low QRS 

voltages, which can be seen both in the limb leads and in precordial leads.10,14 In addition, 

negative T-waves were previously described in both the right precordial leads and in the left 

precordial leads.12,15  

Using this novel approach, we could correctly identify all of these previously described 

ECG features (Figure 2) and show that the network also uses the pre-established features for 

diagnosis (Figure 4). In addition, we could specify the leads in which these features are typically 

present. With the visualization tool, we found attenuated R-waves to be particularly present in 

the lateral leads I, aVL and V6, and in the right precordial leads V2 and V3. While the low 

voltages in these mutation carriers are often measured as QRS peak-to-peak amplitude, we 

observed that these low voltages were only based on R-wave attenuation, while the S-wave 

seemed unaltered. Furthermore, we found attenuated/inverted T-waves to be typically present in 

leads V2, V3 and V6 (as described previously), but also in leads I and aVL. Besides the ECG 

characteristics that were already identified before in PLN mutation carriers, we also found an 

ECG feature, the PR-interval, that was not described before in these subjects. This was 
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confirmed in the updated logistic regression model. Interestingly, a recent meta-analysis of 

genome-wide association studies also showed an association between a locus in the PLN gene 

and PR-interval, which already suggested that PLN plays a role in atrio-ventricular conduction.22  

In an exploratory analysis, the DNN performed well in both presymptomatic and 

symptomatic mutation carriers. Our approach also suggested that particular features were more 

important in presymptomatic mutation carriers (PR-interval and R- and T-wave attenuation in V2 

and V3), as compared to symptomatic carriers. This might indicate that our approach can be used 

in subgroups who are in different stages of a disease, to gain knowledge on the sequence in 

which ECG abnormalities naturally occur. In particular for PLN mutation carriers, it is important 

to gain knowledge on the first electrical changes, because this may improve early screening and 

risk stratification of presymptomatic mutation-carrying family members. 

Employed methodology 

The use of DNN for the analysis of data generally requires large amounts of balanced data but 

the group of PLN mutation carriers studied in this investigation contained only 86 patients. The 

focus on features detection instead of prediction in this paper, however, allowed the use of such 

small datasets, as we were able to reduce the highly dimensional DNN to a few important 

features. Moreover, to allow training on this extremely imbalanced dataset, while also correcting 

for age and sex differences between mutation carriers and controls, we applied propensity score 

matching.  

In the present study we used ECG median beats as input for the DNN model, which 

allowed the network to focus on morphology rather than rhythm. The use of median beats 

prohibits detection of rhythm specific ECG features (e.g. premature contractions or heart rate 
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variability) and can also not be used for detection of beat-to-beat ECG variations. To our best 

knowledge, this is the first study in which median beats are used for deep learning.  

Limitations 

Firstly, although the proposed approach is feasible in small datasets, care should be taken while 

interpreting results derived from small cohort studies as findings may not hold up when 

evaluated on other cohorts. Especially the number of patients in the test set is a major limitation. 

To show clinical applicability of the ECG features and algorithm as described in this study, 

external validation studies should be performed. Secondly, for the PLN mutation carriers the 

clinical phenotype may be variable among mutation carriers. Therefore, it should be noted that 

this approach helps to visualize the most common ECG features on a group level, but important 

ECG features that are present in small subgroups may be missed. Subgroup analyses in more 

homogeneous subgroups (e.g. presymptomatic relatives) can be used to reveal important features 

in these specific subgroups. Thirdly, the ECGs of the control group were extracted from a large 

database in which additional patient specific characteristics are not available. Therefore, no 

comparisons or matching between both groups were possible to correct for other influencing 

factors. However, the case-control matching ratio of 1:20 used in this study presumably 

equalized the groups, and the detected features align with literature on other PLN mutation 

carriers. Fourthly, the conduction intervals and P-, QRS- and T-wave boundaries are based on 

the automated GE algorithm, which might cause inaccuracies. Boundary measurements on 

median beats have proven to be very accurate, however.23 Fifthly, the proposed approach is not 

possible for ECGs with arrhythmias or acute ischemia, as these (temporary) conditions have a 

large influence on the morphology of the median beat. In this study, the algorithm is not intended 

to be used in these situations and only 3 patients were excluded for this reason. Finally, the 
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visualization technique used in this paper, Guided Grad-CAM++, is one of the most frequently 

used techniques for fine-grained heatmaps but has limitations of its own.6 For example, guided 

backpropagation might be independent on the choice of the model or data generating process.24 

Therefore, we validated the detected features in a logistic regression model and showed that 

Grad-CAM++ values agree with the pre-established PLN ECG features. Feature visualization in 

DNNs is a new and developing field and future research should focus on improving visualization 

techniques for DNNs and applying them in ECGs. 

Future perspectives 

Future studies should be conducted applying this novel approach to other less well characterized 

diseases, such as new genetic mutations, to discover novel ECG characteristics. The 

visualizations provide the end-user with feedback on the importance and location of detected 

ECG features. Moreover, future studies should consider elucidating the pathophysiological 

mechanisms of newly identified ECG features by using other experimental methods such as 

(non-)invasive electrophysiological mapping. The influence of the discovered ECG features on 

disease penetrance in asymptomatic carriers or progression of disease in symptomatic carriers 

should be examined with longitudinal ECG or outcome data. Finally, combining our approach 

and a DNN trained on other cohorts with a focus on screening, such as family members of 

mutation carriers or large healthy population cohorts, might be of interest in clinical practice. 

Detection and visualization of possible carrier status in the ECG even before the genetic 

diagnosis is done could determine which family members or healthy individuals require genetic 

testing or follow-up. 

This study demonstrated a novel DNN-based end-to-end approach that allows for 

detection and visualization of disease-specific ECG features. In a cohort of PLN p.Arg14del 
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mutation carriers, the algorithm showed excellent diagnostic performance and revealed already 

established ECG features. Moreover, we were able to specify these features and to detect novel 

features. This novel way to use DNNs may help advance diagnostic capabilities in daily practice, 

especially in rare and new cardiac diseases. 
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Table 1. Baseline demographics and electrocardiogram characteristics of all patients and patients in the training and test splits, 
stratified by phospholamban mutation carriers and their matched controls.  
 

 
Overall Train Test 

 
Controls PLN p-value Controls PLN p-value Controls PLN p-value 

n 1720 86  1380 69  340 17  

Age, years, mean (SD) 44 (15) 44 (15) 1.0 44 (14) 44 (14) 1.0 42 (16) 42 (17) 1.0 

Female sex, n (%) 1040 (61) 52 (61) 1.0 820 (59) 41 (59) 1.0 220 (65) 11 (65) 1.0 

PR interval, ms, mean (SD)  151 (24) 162 (28) 0.001 151 (24) 161 (27) 0.001 149 (20) 164 (34) 0.005 

QRS interval, ms, mean (SD) 93 (15) 93 (19) 0.74 94 (15) 93 (18) 0.59 93 (15) 94 (20) 0.72 

QTc interval, ms, mean (SD) 422 (29) 429 (40) 0.050 422 (29) 427 (39) 0.17 423 (26) 434 (45) 0.086 

Maximum voltage extremity leads, 
mV, mean (SD) 1.2 (0.38) 0.79 (0.43) <0.001 1.2 (0.38) 0.81 (0.45) <0.001 1.2 (0.40) 0.72 (0.39) <0.001 

Maximum voltage 
precordial leads, mV, mean (SD) 2.2 (0.80) 1.8 (0.74) <0.001 2.2 (0.77) 1.8 (0.75) <0.001 2.3 (0.89) 1.5 (0.69) 0.001 

Low QRS voltage, n (%) 41 (2.4) 31 (36) <0.001 27 (2.0) 22 (32) <0.001 14 (4.1) 9 (53) <0.001 

T-wave morphology, n (%)   <0.001   <0.001   <0.001 

Aspecific abnormalities 66 (3.8) 27 (31)  48 (3.5) 20 (29)  18 (5.3) 7 (41)  

Inverted in the extremity leads 33 (1.9) 14 (16)  25 (1.8) 12 (17)  8 (2.4) 2 (12)  

Inverted in the right precordial leads 34 (2.0) 10 (12)  28 (2.0) 9 (13)  6 (1.8) 1 (5.9)  

Inverted in the left precordial leads 49 (2.8) 22 (26)  41 (3.0) 20 (29)  8 (2.4) 2 (12)  

PLN: phospholamban 
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Table 2. Discriminatory performance of the baseline and updated logistic regressions models 
and the deep neural network in the independent test set. The baseline model includes the 
currently established electrocardiogram features of phospholamban mutation carriers. Features 
identified by the deep neural network, translated into quantitative measures, are added in the 
updated model for validation of these features. 
 

DNN: deep neural network, CI: confidence interval. 
 
  

 Logistic regression models 
DNN 

 Baseline Updated 

C-statistic [95% CI] 0.84 [0.73-0.92] 0.91 [0.83-0.97] 0.95 [0.91-0.99] 

Sensitivity 53% 76% 82% 

Specificity 94% 93% 93% 

Positive predictive value 33% 34% 37% 

Negative predicitive value 98% 99% 99% 
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Table 3. Odds ratios and 95% confidence intervals for the variables in the baseline and updated 
logistic regression models for prediction of PLN mutation carrier status in the training dataset. 
The baseline model includes the currently established electrocardiogram features of 
phospholamban mutation carriers. Features identified by the deep neural network, translated into 
quantitative measures, are added in the updated model for validation of these features.  
 

  

 
Baseline model Updated model 

Age per year increase 0.98 [0.97 – 1.0] 0.97 [0.94 – 0.99] 

Male sex 0.96 [0.55 – 1.7] 1.17 [0.61 – 2.2] 

Low QRS voltage  16.6 [8.1 – 34] 3.7 [1.5 – 9.0] 

Left precordial inverted T-waves 7.4 [2.9 – 18] 4.5 [1.6 – 12] 

Right precordial inverted T-waves 1.3 [0.37 – 4.2] 1.3 [0.33 – 4.9] 

R-wave voltage in V3 per 1 mV increase  0.37 [0.15 – 0.86] 

PR interval per 10 ms increase  1.2 [1.1 – 1.3] 

T-wave voltage in V3 per 1 mV increase  1.13 [0.31 – 3.7] 

R-wave voltage in V6 per 1 mV increase  0.073 [0.0025 – 0.20] 

T-wave voltage in I per 1 mV increase  0.0013 [0.000013 – 0.06] 

R-wave voltage in III per 1 mV increase  3.5 [1.4 – 9.0] 
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Table 4. Summary measures of the quantitative translations of the newly identified 
electrocardiogram features of phospholamban mutation carriers. Most prevalent newly identified 
features for predicting the phospholamban mutation, as identified by the visualizations of the 
deep neural network, were translated into quantitative measures and tested in the updated logistic 
regression model for validation.  
 

PLN: phospholamban, SD: standard deviation, IQR: interquartile range, mV: millivolt, ms: 
millisecond. 
 

 

 

Figure Legends: 

 

Figure 1. Flowchart of the patient selection and model development process. ECG: 

electrocardiogram, HTx: heart transplantation, LVAD: left ventricular assist device, PLN: 

phospholamban. 

 

Figure 2. Output of the Guided Grad-CAM visualization algorithm for all PLN mutation carriers 

and their controls.  Left: Mean of temporally normalized median 12-lead ECGs of both the PLN 

mutation carriers (blue) and control patients (red) with their respective standard deviations. 

 Controls PLN p-value 

R-wave voltage in V3, mV, median [IQR] 0.72 
[0.47 – 1.1] 

0.31 
[0.19 – 0.61] <0.001 

PR interval, ms, mean (SD) 151 (24) 162 (28) <0.001 

T-wave voltage in V3, mV, mean (SD) 0.46 (0.29) 0.28 (0.29) <0.001 

R-wave voltage in V6, mV, median [IQR] 0.66 
[0.46 – 0.91] 

0.28 
[0.15 – 0.45] <0.001 

T-wave voltage in I, mV, mean (SD) 0.25 (0.15) 0.11 (0.15) <0.001 

R-wave voltage in III, mV, median [IQR] 0.38 
[0.18 – 0.72] 

0.22 
[0.09 – 0.56] <0.001 
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Right: the same median ECG beat with the Guided Grad-CAM output of the DNN superimposed 

to indicate the importance of a specific temporal segment for the classification of the DNN. The 

colormap represents the proportion of patients where that region was important (i.e. had a 

Guided Grad-CAM value above the threshold). Guided Grad-CAM: Guided Gradient Class 

Activation Mapping, PLN: phospholamban. 

 

Figure 3. Representative examples of an ECG of a PLN mutation carrier (top panel) and a 

control subject (bottom panel) with their respective DNN probability score for having the PLN 

mutation. Note that the control subject ECG also exhibits the established PLN features (low QRS 

voltages and the presence of inverted T-waves in the left precordial leads) but is classified 

correctly as a control subject. The features as detected by the DNN (decreased R- and T-wave 

voltage in V3) can be used to distinguish the PLN mutation carriers and control subject. DNN: 

deep neural network, PLN: phospholamban. 

 

Figure 4. Relationship of the mean Grad-CAM++ importance value of the T-wave area with the 

human interpretation of the T-wave and of the QRS-complex area with the human classification 

of low QRS voltage in PLN patients. In the temporally aligned Grad-CAM++ curves, the mean is 

taken for the area of the QRS-complex and the T-wave. A boxplot of the importance values 

(between 0 and 1) of that region for the network for predicting PLN are shown in relationship 

with the human interpretation of the corresponding segments. Grad-CAM++: gradient class 

activation mapping ++. 
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What Is Known? 

• Deep neural networks can be used to interpret raw electrocardiograms with high accuracy 

in for example hypertrophic cardiomyopathy patients 

• Deep neural networks are able to discover complex features in ECG signals, but are 

considered ‘black box’ algorithms that lack interpretability 

 

What the Study Adds? 

• A deep learning-based feature detection approach is able to discover and visualize 

disease-specific ECG features 

• In PLN p.Argdel14 mutation carriers, visualizations revealed established ECG features 

(low QRS voltages and T-wave inversions), specified these features (e.g. R and T-wave 

attenuation in V2/V3) and identified novel PLN-specific ECG features (e.g. increased 

PR-duration) 
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