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Table S1. | Ablation study on the internal test dataset.  

Metrics 
GLIA-Net w/o global 

positioning network 

GLIA-Net w/o pyramid 

weighted loss 
GLIA-Net 

Voxel-wise 

Precision↑ 49.8 
(38.6-60.9) 

60.2 

(50.2-70.2) 

48.8 

(44.5-53.0) 

Recall↑ 36.4 

(23.8-49.0) 

60.5 

(56.2-64.7) 

72.9 
(66.9-78.9) 

DSC↑ 40.3 

(29.5-51.1) 

60.0 
(53.0-67.0) 

57.9 

(56.4-59.5) 

95%HD↓ 9.80 

(7.85-11.8) 

7.91 
(6.57-9.25) 

9.07 

(7.84-10.3) 

AUC↑ 90.0 

(81.5-98.4) 

92.1 

(90.8-93.5) 

98.2 
(97.6-98.8) 

AP↑ 35.7 

(23.3-48.2) 

57.3 

(50.5-64.1) 

61.9 
(59.4-64.4) 

Target-wise 

Recall↑ 39.7 

(17.6-61.8) 

44.0 

(39.4-48.6) 

82.1 
(78.2-86.0) 

FPs per case↓ 1.10 
(0.36-1.84) 

3.72 

(1.38-6.06) 

4.38 

(2.91-5.85) 

FPs per case is the number of false positive predictions per case. 95%HD is given in mm. Other 
Values are given in units of %. 

  



 

 

 

Figure S1. Segmentation performance of the ablation study on the internal test dataset. 
(A) ROC curve and (B) precision-recall curve of our GLIA-Net without global positioning network, 
our GLIA-Net without pyramid weighted loss, and our final GLIA-Net are shown. The AP and 
AUC values are given in “mean (95%CI)”. Most of the evaluation metrics get much worse 
without the support of our global positioning network. 

  



 

 

 

Figure S2. Segmentation results for 4 IAs of different sizes in the internal test dataset. 
The blue arrow points out the false positive predictions. The pink circle means the model fails 
to find the lesion area. The blue crosshair indicates the position of IAs.  

  



 

 

Table S2. Clinical study performance of different institutions. 

 Time↓ 

Voxel-wise Target-wise Case-wise 

DSC↑ 

(95%CI) 

Precision↑ 

(95%CI) 

Recall↑ 

(95%CI) 

Specificity↑ 

(95%CI) 

Sensitivity↑ 

(95%CI) 

ACC↑ 

(95%CI) 

Institution 

α 

Without 

Assist 

147 

(134-159) 

70.9 

(56.4-85.4) 

90.9 

(75.5-100) 

83.3 

(66.0-100) 

83.3 

(55.0-100) 

97.2 

(92.5-100) 

93.8 

(87.0-100) 

With 

assist 

123 

(108-138) 

74.8 

(70.5-79.2) 

93.2 

(81.6-100) 

95.8 

(91.8-99.9) 

100 

(100-100) 

94.4 

(89.0-99.9) 

95.8 

(91.8-99.9) 

Institution 

β 

Without 

assist 

133 

(115-151) 

41.3 

(23.8-58.8) 

79.7 

(73.2-86.3) 

56.3 

(49.5-63.0) 

100 

(100-100) 

75.7 

(62.8-88.6) 

83.3 

(75.2-91.5) 

With 

assist 

120 

(105-134) 

54.4 

(44.7-64.1) 

85.2 

(74.2-96.3) 

78.1 

(70.3-86.0) 

85.4 

(70.8-100) 

77.3 

(69.9-84.7) 

79.2 

(72.1-86.2) 

Institution 

γ 

Without 

assist 

161 

(144-179) 

47.0 

(32.4-61.5) 

89.3 

(71.1-100) 

62.5 

(37.8-87.2) 

91.7 

(77.5-100) 

71.5 

(55.9-87.2) 

77.1 

(62.5-91.7) 

 
With 

assist 

154 

(136-172) 

53.9 

(34.9-72.9) 

91.7 

(77.5-100) 

85.4 

(76.5-94.3) 

100 

(100-100) 

88.5 

(80.8-96.3) 

91.7 

(85.9-97.4) 

 

  



 

 

 

Figure S3. Annotation details for aneurysm segmentation. There are two label annotations 
achieved by radiologists in which the red mask is the annotation label. The boundary between 
aneurysms and brain tissue is very blurry, let alone that between aneurysms and their attached 
vascular, especially for the small case from the right figure. This is not a labeling error, but a 
result of the low resolution of CTA images and the definition of lesion regions. So we propose 
a pyramid weighted loss strategy to overcome this phenomenon. 

  



 

 

 

Figure S4. The pipeline of building the pyramid weights. The patch label map is eroded 
recursively and summed up to build the pyramid weights, which has high values in the target 
center, and low values on the edge. The highest and lowest weight values are fixed and the 
values in between are linearly scaled. 

 

  



 

 

 

Figure S5. Label consistency before and after using the pyramid-weighted strategy. Each 
of the two image samples contains 9 pixels, which represents a small aneurysm with a ”certain 
area” in the center and “uncertain areas” on the edge. P and N represent positive and negative 
labels. Both the left and right samples may occur in the training set because of the different 
labeling standards. Before pyramid-weighting, all the pixels have the same loss weights of 1.0, 
leading a label distance between the two images to 8. After pyramid weighting, the weights of 
the neighboring pixels are decreased to 0.5, which decreases the label distance by 50%. With 
a low label consistency, the model may think these training samples to be noise and will not 
learn anything from them. This weighting strategy can increase the labeling consistency in the 
training set, thus enhancing our model's training procedure. 

  



 

 

 

Figure S6. CTA viewing and annotation tool to assist radiologists in the IA diagnosis 
procedure. The software supports common scan viewing functions like the adjustment of the 
HU window and image statistics display. It also offers functions like IA annotation and target 
navigation, which is helpful to deal with large 3D images. 

  



 

 

Supplemental Experimental Procedures 

Implementation Details of GLIA-Net 

Model Structure 

Our segmentation model consists of a global positioning network and a local segmentation 
network whose inputs are the resized global CTA image and the local image patch with the 
same size of 96x96x96. They share some similar basic blocks in the building design. We use 
residual blocks1 as the unit blocks in all architectures, which has 3 3D-convolution layers and 
a residual connection. All the convolution layers are followed by a group normalization layer2 
and a leaky relu activation layer3. We use bottleneck design for our residual block in which the 
kernel size for the first and last convolutions is 1 and that for the second is 3. Depending on the 
residual block, we design a universal encode block, which consists of a max-pooling layer if 
needs down-sampling and a residual block. 

The global positioning network contains a global feature generator and a local feature generator. 
The global feature generator takes the resized global CTA image as input and has 5 encode 
blocks to build the global feature map whose output channels are 8, 16, 32, 64, and 128 
separately, the 2nd and 3rd of which use down-sampling. Then the global feature map is cropped 
by a roi-pooling layer and reshaped to 6x6x6 whose bounding-box is the position of the current 
local patch. Finally, the local feature generator will be applied, which contains 2 encode blocks 
with 64 and 32 output channels. This local feature of the global positioning network for the 
current patch will be used to (1) compute the global positioning loss and (2) guide the local 
segmentation network through skip-connections. In (1), there are a 3D-convolution layer with 
group normalization and leaky relu, a global max-pooling layer, and a fully connected layer 
before the softmax computation of the global positioning loss. In (2), the output feature of the 
global positioning network is average-adaptive-pooled to different sizes in different scales of 
the local segmentation network and is activated by a sigmoid layer after a 3D-convolution layer. 

The local segmentation network uses the encoder-decoder design with skip-connections 
between them, like U-net4. The encoder consists of 4 encode blocks with output channels 16, 
32, 64, and 128. Except for the 1st encode block, all the other blocks contain down-sampling. 
So, the output feature map sizes of them are 96x96x96, 48x48x48, 24x24x24, and 12x12x12. 
The skip-connections is composed of the output feature maps of the first 3 encode blocks and 
are element-wise multiplied by specific adapted-sized local feature maps of the global 
positioning network. Then the enhanced skip-connections are conveyed to the decoder. The 
decoder of our local segmentation network consists of 3 decode blocks with output channels 
64, 32, and 16 that can restore the feature map size to the original size of the input image step 
by step. The decode block takes the output of the former decode block (output of the encoder 
for the first decode block) and a skip-connection feature as input. It contains a 3D-transposed-
convolution layer and a residual block. Then a final convolution layer whose output channel is 
2 is applied to generate the final local segmentation probability map. The pipeline of building 



 

 

pyramid weighted loss is shown in Figure S4. 

Input Transformation 

All the CTA images in our dataset are loaded as 3D images. The resolution of original images 
is Dx512x512, where D indicates the number of 2D images in each CTA scan. We clip the HU 
(Hounsfield unit scale) value of the images into 3 input channels before sending them to the 
network, each with a range of 0-100, 100-200, and 200-800. All the values in the 3 input 
channels are then normalized to 0-1. The clipping strategy is inspired by the diagnostic 
procedure of clinical practice.  

The global image is resized from the original CTA image to 96x96x96 while keeping the same 
aspect ratio (with zero-padding) before fed into the global positioning network. The local image 
with a size of 96x96x96 is cropped from the original CTA image using a 3D tiling method. In 
clinical usage, we use a sliding window to generates local image patches from the global image 
with an overlap of 64 voxels, making sure that no possible target is lost. But when training, 
because of the severe label unbalance, we collect the training patches into a positive group 
and a negative group with the same numbers. For the positive group, we locate all lesion region 
centers and extract patches with a random deviation that is a maximum of 38 pixels from the 
center points, together with data augmentation of random flipping and rotation. For the negative 
group, we randomly select the patch centers from the global image. 

Training Details 

We train our end-to-end model using a deep learning framework PyTorch on RTX2080ti with 
11GB memory. Adam optimizer is adopted with an initial learning rate of 0.0002 and the learning 
rate is decayed by 0.95 every 10000 steps. The training batch size is set to 3 and we train the 
model for about 200k steps. 𝜔!"#$%" and 𝜔&#'%" in the total loss function of the training is set 
to 0.1 and 1.0. 𝜔()'* and 𝜔+,#-- in the local loss are 0.8 and 0.2. 𝛾()'* and 𝛾+,#-- in cross-
entropy loss are both 0.3. In the cross-entropy loss of local loss, the pyramid weight for targets 
larger than 400 voxels is set to 3.0~20.0, and that for small targets is fixed to 11.5. The loss 
weight for negative voxels is set to 1.0. 

Implementation Details of Other Methods 

U-Net 

Because the memory consumption in the 3D convolution network is heavy, the original U-net 
cannot be transferred to a 3D version while keeping the same parameter scale. We modify the 
original U-net to a similar parameter scale to our model. The encoder and decoder use the 
same structure as our model, except that it has no global feature to guide the skip-connections. 
This modified U-net uses batch-normalization and softmax cross-entropy loss to train.  



 

 

HeadXNet 

We follow the model structure described in the HeadXNet paper5. Because the specific model 
structure like the output channels for each block is not given, we design it to fit a similar 
parameter scale as ours. The HeadXNet model takes the same local images as ours and the 
training batch size is also 3. The output channels for each encoder block are set to 8, 16, 32, 
64 and the output channel for the ASPP block is 64. There is only one max-pooling layer in the 
model as described in the paper, and we follow it. We also test the version that all the encoder 
blocks have a max-pooling layer, but the performance gets worse. We use softmax cross-
entropy loss in the training period because the training using the combination of dice loss and 
softmax cross-entropy loss always leads to an unstable result that generates all-black outputs. 
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