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1. ONLINE SUPPLEMENTARY METHODS  18 

1.1 Study cohort 19 

A total of 4,520 UK juvenile idiopathic arthritis (JIA) samples were recruited from 20 

multiple sources: the British Society for Paediatric and Adolescent Rheumatology (BSPAR) 21 

National Repository of JIA, the Childhood Arthritis Prospective Study (CAPS), the 22 

Childhood Arthritis Response to Medication Study (CHARMS), the UK JIA Genetics 23 

Consortium (UKJIAGC), The Biologics for Children with Rheumatic Diseases (BCRD) 24 

study, and the British Society for Paediatric and Adolescent Rheumatology Etanercept Cohort 25 

Study (BSPAR-ETN), a group of UK cases with long-standing JIA as described 26 

previously[1]. JIA participants were recruited with ethical approval and provided informed 27 

consent, including from the North West Multi-centre for Research Ethics Committee 28 

(MREC:02/8/104 and MREC:99/8/84), West Midlands Multi-centre Research Ethics 29 

Committee (MREC:02/7/106), North West Research Ethics Committee (REC:09/H1008/137) 30 

and the NHS Research Ethics Committee (REC:05/Q0508/95). JIA cases were classified 31 

according to the International League of Associations for Rheumatology (ILAR) criteria[2] 32 

(Supplementary Table 1). Healthy controls data on 9,965 individuals was obtained from the 33 

UK Household Longitudinal Study (https://www.understandingsociety.ac.uk/) accessed via 34 

the European Genome-phenome Archive. 35 

1.2 Genotyping and quality control 36 

JIA DNA samples were genotyped on the Illumina Infinium CoreExome and Infinium 37 

OnmiExpress genotyping arrays in accordance to the manufacturer’s instructions. Genotype 38 

calling was performed by the GenCall algorithm in the GenomeStudio Data Analysis software 39 

platform (Genotyping Module v1.8.4). Preliminary genotype clustering was performed using 40 

the default Illumina cluster file to identify poor quality samples (call rate < 0.90). Following 41 

exclusion of low-quality samples, automated reclustering was performed to calibrate genotype 42 
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clusters based on the study samples. Sample-level quality control (QC) was performed based 43 

on the following exclusion criteria: final call rate < 0.98, outlier based on autosomal 44 

heterozygosity (2 standard deviations from the mean) and discrepancy between genetically 45 

inferred sex and database records. Single-nucleotide polymorphisms (SNPs) were excluded if 46 

they were non-autosomal, had a call rate < 0.98 or a minor allele frequency (MAF) < 0.01. 47 

Healthy controls were genotyped at the Wellcome Trust Sanger Institute using the Illumina 48 

Infinium CoreExome genotyping array. Sample and SNP QC was consistent with that 49 

described above for JIA case samples. 50 

The two datasets were combined retaining the intersection of SNPs. Identity-by-51 

descent was used to identify related individuals (kinship coefficient > 0.0884) across all study 52 

samples performed with the KING software package (version 1.9)[3]. For each related pair, 53 

the sample with the highest call rate was preferentially retained. Individuals were excluded if 54 

they were identified as outliers based on ancestry using principal component analysis (PCA) 55 

performed with the flashpca software package (version 2.0) where outliers were identified 56 

using aberrant R library (version 1.0)[4,5]. 57 

The total number of individuals that remained in the final QC-filtered dataset was 58 

12,501 (3,305 cases and 9,196 healthy controls). 59 

1.3 Imputation 60 

  QC-filtered GWAS dataset was subjected to whole-genome genotype imputation. 61 

Prior to imputation, SNPs with ambiguous alleles (C/G and A/T) were excluded and 62 

remaining SNPs were aligned to the Haplotype Reference Consortium (HRC) panel (version 63 

1.1) using the HRC imputation preparation tool 64 

(https://www.well.ox.ac.uk/~wrayner/tools/)[6]. Phasing and imputation were performed in 65 

the Michigan Imputation server using SHAPEIT2[7] and Minimac3[8] respectively, and HRC 66 
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panel for reference. Following imputation, SNPs were excluded based on a MAF < 0.01 and 67 

imputation quality (r
2
) < 0.4. 68 

1.4 Association testing and meta-analysis 69 

  Case-control association testing was performed by SNPTEST software package 70 

(version 2.5.2) using the score method to account for imputation uncertainty. Three principal 71 

components, calculated as described above following exclusion of outliers, were included as 72 

covariates to account for any residual population sub-structure. Lambda genomic control 73 

(GC), corrected for sample size (1000), was calculated to test for inflation of test statistics 74 

attributable to population stratification not accounted for in the analysis. Any SNP with a p-75 

value < 5 x 10
-6 

was selected for validation in GWAS summary statistics from an independent 76 

dataset of 2,751 JIA cases (oligoarticular arthritis (oligoJIA) and rheumatoid factor (RF)-77 

negative polyarthritis  (RF–polyJIA)) and 15,886 controls of European Ancestry[9]. An 78 

inverse variance weighted fixed effects meta-analysis was performed using the software 79 

package GWAMA (version 2.2.2)[10]. The presence of heterogeneity of odds ratios (ORs) 80 

across datasets was evaluated with the test statistics I
2
 and Q.  81 

1.5 Heritability estimation 82 

 SNP-based heritability estimates were calculated using GCTA based on imputed data 83 

for all JIA cases[11]. Imputed SNPs were stratified into linkage disequilibrium (LD) score 84 

bins and a genetic relationship matrix (GRM) was calculated separately for each bin followed 85 

by restricted maximum likelihood (REML) analysis performed on the multiple GRMs. 86 

1.6 Clinical subtype specificity 87 

The specificity and sharing of JIA susceptibility SNPs across ILAR subtypes was 88 

interrogated using Bayesian multinomial logistic regression assuming an additive model 89 

implemented in the software package Trinculo (version 0.96) using default correlation priors 90 

(0.04) for all index SNPs with p-value < 5x10
-6

[12]. In addition, we have included previously 91 
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reported JIA susceptibility SNPs based on analysis of a combined oligoJIA and RF-polyJIA 92 

cohort[13].  Trinculo identifies the best disease-specific model, the best sharing model, and 93 

estimates the Bayes factor between them at each analysed locus. Model selection was based 94 

on comparison of log-Bayes factors where a positive log-Bayes factor for specificity was 95 

interpreted as evidence that a particular association is specific to an ILAR subtype and a 96 

negative value indicative of sharing across multiple ILAR subtypes. The undifferentiated 97 

subtype was not included in this analysis.  98 

1.7 Statistical fine-mapping of JIA-associated loci 99 

  The boundaries of independently associated loci were defined by a genetic distance of 100 

0.1 centimorgans (cM) upstream and downstream of each lead SNP using HapMap fine-scale 101 

recombination rate estimates. Statistical fine-mapping of the association signal within each 102 

locus was performed using the FINEMAP software package (version 1.3.1) using the shotgun 103 

stochastic search function to identify independent effects using an LD panel of 4,000 104 

randomly selected controls from the Understanding Society dataset[14]. The 95% credible 105 

SNP sets for each locus were selected on the summation of the posterior inclusion 106 

probabilities (PIPs) for the most likely causal SNPs. Any independent effects within each 107 

locus identified by the stochastic search approach were verified by conditional and joint 108 

analysis using GCTA-COJO with the same LD panel as FINEMAP (version 1.92.4)[15]. All 109 

identified credible SNPs were annotated with gene location based on RefSeq transcript and 110 

evidence for association with other diseases using data from the GWAS catalogue[16]. Non-111 

synonymous credible SNPs were annotated with the pre-calculated Combined Annotation 112 

Dependent Depletion (CADD) raw score and scaled score from dbNSFP (version 3.3a)[17]. 113 

Annotation was performed with ANNOVAR (version 2019Oct24)[18]. 114 

1.8 Functional annotation enrichment analysis 115 
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 Summary statistics from the association analysis of all ILAR subtypes were tested for 116 

enrichment in four categories of annotations based on experimental functional genomic data 117 

including gene structure (coding sequence (CDS), 3`UTR and 5`UTR) from the GENCODE 118 

Project, binding sites for 165 transcription factors from the ENCODE Project, and enhancers 119 

and active promoters for 98 cell types derived from the Roadmap Epigenomics Project[19–120 

21]. Enrichment of JIA associations were tested separately in each annotation using fgwas 121 

(version 0.3.6)[22]. A joint model of independent enrichments was identified using a forward 122 

selection approach of selecting the most significant annotation and sequentially adding 123 

additional significant annotations and retaining those that significantly increase the likelihood 124 

of the joint model using cross-validation with penalised likelihood to identify the model with 125 

the highest cross-validation likelihood. 126 

1.9 Gene prioritisation with eQTL 127 

Expression quantitative trait locus (eQTL) data for 15 cell types was downloaded from 128 

the DICE (Database of Immune Cell Expression, eQTLs and Epigenomics) project 129 

website[23]. Cell types consisted of three innate immune cell types (CD14
high

 CD16
-
 classical 130 

monocytes, CD14
- 
CD16

+
 non-classical monocytes, CD56

dim
 CD16

+
 natural killer (NK) cells), 131 

four adaptive immune cell types that have not encountered cognate antigen in the periphery 132 

(naive B cells, naive CD4
+
 T cells, naive CD8

+
 T cells, and naive regulatory T cells [Treg]), 133 

six CD4
+ 

memory or more differentiated T cell subsets (TH1, TH1/17, TH17, TH2, follicular 134 

helper T cell [TfH], and memory Treg [mTreg]), and two activated cell types (naive CD4
+
 and 135 

CD8
+
 T cells that were stimulated ex vivo) (description from DICE website https://dice-136 

database.org/). Correlation of susceptibility association signals and gene expression were 137 

identified by selecting the top eQTL SNP for each gene in each eQTL dataset and retaining 138 

those that were also present in the combined list of all FINEMAP credible SNPs for 139 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Ann Rheum Dis

 doi: 10.1136/annrheumdis-2020-218481–328.:321 80 2021;Ann Rheum Dis, et al. López-Isac E

https://dice-database.org/
https://dice-database.org/


7 

 

associated loci. Colocalisation of the susceptibility association and eQTL signals was then 140 

confirmed using the coloc R package using approximate Bayes factors[24]. 141 

1.10 Chromatin interaction analysis in human B and T cell types 142 

Prioritisation of causal genes was further complemented by the interrogation of 143 

chromatin interaction data for SNPs correlated with eQTL signals. H3K27ac HiChIP data in 144 

GM12878, primary human naïve T cells (CD4
+
CD45RA

+
CD25

-
CD127

high
), regulatory T 145 

(Treg) cells (CD4
+
CD25

+
CD127

low
) and TH17 cells (CD4

+
CD45RA

-
CD25

-
146 

CD127
high

CCR6
+
CXCR5

-
) were interrogated to identify target genes of JIA-associated 147 

regions[25]. In detail, sequencing data for the HiChIP libraries was filtered and the adapters 148 

were removed using fastp v0.19.4[26]. Then we mapped the reads to the human reference 149 

genome GRCh38 with Hi-C Pro v2.11.0 using default settings[27]. HiChIP-peaks v0.1.1 was 150 

used with default settings and false discovery rate (FDR) < 0.01 to identify H3K27ac peaks 151 

enriched regions[28]. Identification of significant chromatin loops was performed with 152 

FitHiChIP using the following settings: Coverage normalization, stringent background with 153 

merging enabled, peaks generated from HiChIP-peaks and 5kb bin size[29]. We explored 154 

chromatin interaction profiles of the credible SNPs sets from each locus. To identify the 155 

connectivity of credible SNPs to target genes, we subsetted the interactions to those linking a 156 

transcription start site (TSS) and SNPs overlapping a H3K27ac HiChIP peak in a 5kb 157 

resolution. We also nominated the genes for which the TSS was within 1kb of a credible SNP 158 

overlapping an H3K27ac peak as identified from HiChIP data. In addition, we explored 159 

chromatin interaction maps obtained by capture Hi-C experiments in GM12878 and Jurkat 160 

cell types[30]. Credible SNPs were set as anchor points to identify physical interactions 161 

between restriction fragments containing the variants and gene promoters using IRanges and 162 

GenomicRanges R packages.  163 

 164 
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2. SUPPLEMENTARY FIGURE LEGENDS 166 

Supplementary Figure 1. Bayesian model selection analysis for ILAR subtype 167 

specificity of JIA susceptibility SNPs. Comparison of log Bayes factor for best 168 

specific ILAR subtype model (x axis) and best shared model (y axis). Susceptibility 169 

SNPs (represented by blue dots for loci from this study, red dots for previously 170 

published SNPs based on oligoJIA and RF-polyJIA) above the grey line indicate 171 

evidence for sharing of association across multiple ILAR subtypes.  172 

Supplementary Figure 2. Enrichment of JIA susceptibility SNPs in transcription 173 

factor binding sites. Annotations showing significant enrichment are displayed in 174 

green.  175 

Supplementary Figure 3. Enrichment of JIA susceptibility SNPs in regulatory 176 

regions of 98 cells. Supplementary Table 5 provides the correspondence between cell 177 

codes and cell types. 178 

Supplementary Figure 4. Enrichment of JIA susceptibility SNPs in active 179 

promoters of 98 cells. Supplementary Table 6 provides the correspondence between 180 

cell codes and cell types. 181 

 182 
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3. SUPPLEMENTARY FIGURES 184 
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