Supplementary material for Modelling the effect of birth and feeding modes on the development of human gut microbiota

Xiyan Xiong, Sara Loo, Li Zhang, Mark Tanaka

1 Analysis of model using a quasi-steady state approximation

To obtain the simplified system using the quasi-steady-state approximation at $Z(t) = 0$, we apply the condition $B_1 = \hat{B_1} = 0$. The original model at equilibria reduces to

$$
\dot{B}_2 = rB_2(1 - B_2 - \alpha B_3) + f_2 = 0,
$$
\n(S1)

$$
\dot{B}_3 = rB_3(1 - B_3 - \alpha B_2) + f_3 = 0.
$$
 (S2)

We solve the quasi-steady-state approximation to obtain the equilibria of the system analytically. We add (S1) and (S2) to obtain

$$
r(-B_2^2 - 2\alpha B_2 B_3 + B_2 - B_3^2 + B_3) + f_2 + f_3 = 0,
$$
 (S3)

and then subtract (S1) and (S2) to obtain

$$
r(-B_2^2 + B_3^2 + B_2 - B_3) + f_2 - f_3 = 0.
$$
 (S4)

Thus, from (S4) we have

$$
B_2 - B_2^2 = \frac{-(B_3 - 1)B_3r - f_2 + f_3}{r}.
$$
 (S5)

Substituting (S5) into (S3), we obtain

$$
2(f_3 - B_3r(\alpha B_2 + B_3 - 1)) = 0,
$$
 (S6)

which simplifies to

$$
B_2 = \frac{f_3 - (B_3 - 1)B_3r}{\alpha B_3r}.
$$
 (S7)

We then substitute (S7) into (S4) to obtain a quartic function of B_3

$$
aB_3^4 + bB_3^3 + cB_3^2 + dB_3 + e = 0,
$$
 (S8)

where

$$
a = (\alpha^{2} - 1) r^{2},
$$

\n
$$
b = (\alpha - 1)(\alpha + 2) (-r^{2}),
$$

\n
$$
c = r (\alpha^{2} f_{2} - (\alpha^{2} - 2) f_{3} + (\alpha - 1)r),
$$

\n
$$
d = (\alpha - 2) f_{3} r,
$$

\n
$$
e = -f_{3}^{2}.
$$

From (S1), we can solve for the nullclines

$$
B_2 = \frac{r - \alpha B_3 r \pm \sqrt{(r - \alpha B_3 r)^2 + 4f_2 r}}{2r}.
$$

Since $4f_2r > 0$,

$$
\sqrt{(r-\alpha B_3r)^2+4f_2r} > |r-\alpha B_3r|,
$$

and thus

$$
B_2 = \frac{r - \alpha B_3 r + \sqrt{(r - \alpha B_3 r)^2 + 4f_2 r}}{2r} > 0,
$$
\n(S9)

$$
B_2 = \frac{r - \alpha B_3 r - \sqrt{(r - \alpha B_3 r)^2 + 4f_2 r}}{2r} < 0. \tag{S10}
$$

Similarly, from $(S2)$, the nullclines for B_3 are

$$
B_3 = \frac{r - \alpha B_2 r \pm \sqrt{(r - \alpha B_2 r)^2 + 4f_3 r}}{2r},
$$

where

$$
B_3 = \frac{r - \alpha B_2 r + \sqrt{(r - \alpha B_2 r)^2 + 4f_3 r}}{2r} > 0,
$$
\n(S11)

$$
B_3 = \frac{r - \alpha B_2 r - \sqrt{(r - \alpha B_2 r)^2 + 4f_3 r}}{2r} < 0. \tag{S12}
$$

The bacterial populations B_2 and B_3 are always positive. Therefore, we only consider the nullclines (S9) and (S11)

Substituting the expression for B_3 (S11) into B_2 (S9), we get

$$
\frac{1}{2}\alpha \left(\sqrt{(r-\alpha B_2r)^2 + 4f_3r} + \alpha(-B_2)r + r\right) + 2B_2r - r =
$$

$$
\sqrt{\left(r - \frac{1}{2}\alpha \left(\sqrt{(r-\alpha B_2r)^2 + 4f_3r} + \alpha(-B_2)r + r\right)\right)^2 + 4f_2r}.
$$

We replace \mathcal{B}_2 with $\mathcal B$ for notational simplicity. Squaring the LHS and RHS we get

$$
LHS^{2} = \frac{1}{2}\alpha^{4}B^{2}r^{2} - 2\alpha^{2}B^{2}r^{2} + 4B^{2}r^{2} +
$$

$$
\left(-\frac{1}{2}\alpha^{3}Br + 2\alpha Br + \frac{\alpha^{2}r}{2} - \alpha r\right)\sqrt{(r - \alpha Br)^{2} + 4fsr} -
$$

$$
\alpha^{3}Br^{2} + \alpha^{2}Br^{2} + 2\alpha Br^{2} - 4Br^{2} + \alpha^{2}fsr + \frac{\alpha^{2}r^{2}}{2} - \alpha r^{2} + r^{2},
$$

and

$$
RHS^{2} = \frac{1}{2}\alpha^{4}B^{2}r^{2} - \alpha^{3}Br^{2} + \alpha^{2}Br^{2} + \alpha^{2}f_{3}r + 4f_{2}r + \frac{\alpha^{2}r^{2}}{2} - \alpha r^{2} + r^{2}
$$

$$
\left(-\frac{1}{2}\alpha^{3}Br + \frac{\alpha^{2}r}{2} - \alpha r\right)\sqrt{(r - \alpha Br)^{2} + 4f_{3}r}.
$$

Let
$$
LHS^2 = RHS^2
$$
:
\n
$$
r(-\alpha B\sqrt{r(r(\alpha B - 1)^2 + 4f_3)} + Br(-\alpha + (\alpha^2 - 2)B + 2) + 2f_2) = 0.
$$

Because $r \neq 0$, we get

$$
-\alpha B\sqrt{r(r(\alpha B - 1)^2 + 4f_3)} + Br(-\alpha + (\alpha^2 - 2)B + 2) + 2f_2 = 0
$$

$$
\Rightarrow Br(-\alpha + (\alpha^2 - 2)B + 2) + 2f_2 = \alpha B\sqrt{r(r(\alpha B - 1)^2 + 4f_3)}.
$$

Again taking the square both sides and simplifying, we obtain

$$
(\alpha^2 - 1) B^4 r^2 - (\alpha^2 + \alpha - 2) B^3 r^2 +
$$

\n
$$
B^2 r (\alpha^2 f_3 - (\alpha^2 - 2) f_2 + (\alpha - 1)r) + (\alpha - 2) B f_2 r - f_2^2 = 0.
$$
\n(S13)

The coefficients of the quartic equation from high to low degree are:

$$
\frac{4}{\left[\left(\alpha^2 - 1\right)r^2, \quad \left(\alpha^2 + \alpha - 2\right)\left(-r^2\right),\right.}
$$
\n
$$
\overbrace{r\left(\alpha^2 f_3 - \left(\alpha^2 - 2\right)f_2 + \left(\alpha - 1\right)r}^2, \quad \overbrace{(\alpha - 2)f_2r}^1, \quad \overbrace{-f_2^2}
$$

Provided $\alpha > 0, r > 0, f_2 > 0, f_3 > 0, f_2 \ll r$ and $f_3 \ll r$ as per our definitions of the parameters, we get the following conditions for positive coefficients:

$$
(\alpha^2 - 1) r^2 > 0 \Rightarrow \alpha > 1,
$$

$$
(\alpha^2 + \alpha - 2) (-r^2) > 0 \Rightarrow 0 < \alpha < 1,
$$

$$
r\left(\alpha^{2}f_{3} - \left(\alpha^{2} - 2\right)f_{2} + \left(\alpha - 1\right)r\right) > 0,
$$
\n
$$
\Rightarrow \begin{cases}\n\frac{r - \sqrt{r^{2} - 4(f_{2} - f_{3})(r - 2f_{2})}}{2(f_{2} - f_{3})} < \alpha < \frac{r + \sqrt{r^{2} - 4(f_{2} - f_{3})(r - 2f_{2})}}{2(f_{2} - f_{3})} & \text{if } 0 < f_{3} < f_{2} \\
\alpha > 1 - \frac{2f_{2}}{r} & \text{if } f_{2} = f_{3}, \\
\alpha > \frac{r - \sqrt{r^{2} - 4(f_{2} - f_{3})(r - 2f_{2})}}{2(f_{2} - f_{3})} & \text{if } f_{3} > f_{2},\n\end{cases}
$$
\n
$$
\approx \begin{cases}\n\frac{r - \sqrt{(r - 2(f_{2} - f_{3}))^{2}}}{2(f_{2} - f_{3})} \simeq 1 < \alpha < \frac{r + \sqrt{r^{2} - 4r(f_{2} - f_{3})}}{2(f_{2} - f_{3})} & \text{if } 0 < f_{3} < f_{2}, \\
\alpha > 1 & \text{if } f_{2} = f_{3}, \\
\alpha > \frac{r - \sqrt{(r - 2(f_{2} - f_{3}))^{2}}}{2(f_{2} - f_{3})} \simeq 1 & \text{if } f_{3} > f_{2},\n\end{cases}
$$

$$
(\alpha - 2)f_2 r > 0 \Rightarrow \alpha > 2,
$$

$$
-f_2^2<0.
$$

We then use the Descartes' rule of signs to determine the number of positive real roots, therefore the number of positive equilibira, of the quasi-steady-state. This is summarised in Table S1.

α	Sign of the coefficients Number of positive real roots
$0 < \alpha < 1$	2 or 0
$\alpha=1$	
$1 < \alpha < 2$	3 or 1
$\alpha = 2$	3 or 1
$\alpha > 2$	3 or 1

Table S1: Sign analysis for quartic coefficients

2 Supplementary figures

Figure S1: The proportion of milk in infant's diet over time given by function $Z(t) = \frac{1}{1+e^{\omega(t-h)}},$ where h controls the horizontal positioning (timing of weaning) and ω controls the slope (speed of weaning).

Figure S2: Longitudinal dynamics of the three bacterial populations with low between-population competition ($\alpha = 0.7$) and initial conditions representing vaginal birth (A) and C-section (B); other parameters are set at baseline values (given in Table 1 in the main text). The blue two-dash line represents the infant-type Bifidobacteria B1, the green solid line represents the adult-type Bifidobacteria B2, and the red dashed line represents the commensal competitor B3. The y-axes population densities on a log scale. The dynamics are simulated for three years allowing the system to reach a post-weaning steady state. Birth modes have no effect on the long-term microbial profile here because the system only has one equilibrium as described in section 3.1 and shown in Figure 3A in the main text.

Figure S3: Dynamics of the original model (green) and its quasi-steady-state approximation (red) over time using baseline parameters. Light green lines represent fibre-consuming Bifidobacteria B2, and dark green line represent Commensal competitor B3 in the original model. Dotted red lines represent B2, and dot-dash red lines represent B3 at quasi-steady-state approximation. Parameters are set at baseline values (given in Table 1 in the main text).

Figure S4: The long-term equilibria of the original model (green) versus that of the quasi-steady-state approximation (red) against a range of α values. Light green lines represent fibre-consuming Bifidobacteria B2, and dark green line represent Commensal competitor B3 in the original model. Dotted red lines represent B2, and dot-dash red lines represent B3 at quasi-steady-state approximation. Other parameters are set at baseline values (Table 1).

Figure S5: The long-term equilibria of the original model (green) versus that of the quasi-steady-state approximation (red) against a range of h values (halflife of milk). Light green lines represent fibre-consuming Bifidobacteria B2, and dark green line represent Commensal competitor B3 in the original model. Dotted red lines represent $B2$, and dot-dash red lines represent $B3$ at equilibrium given the quasi-steady-state approximation. Other parameters are set at baseline values (Table 1).

Figure S6: Changing the initial colonisation make the system switch from one equilibrium to another. The initial conditions are expressed as a ratio of Bifidobacteria on commensal competitor B_{b0}/B_{c0} , where B_{b0} is the initial value of Bifidobacteria $(B_1 + B_2)$, and B_{c0} is the initial value of the commensal competitor. Other parameters are as specified in Table 1.

Figure S7: Long-term equilibria of $B2$ and $B3$ against a range of f_z values. Other parameters are set at baseline values (Table 1). The initial condition for C-section is used.

Figure S8: The effect of breast milk and weaning schedule in a version of the extended model where Bifidobacteria B2 are subject to the same strength of immune clearance as the commensals B3 ($\mu_b = \mu_c = 200$). Other parameters are set at baseline values (given in Table 1 in the main text). Initial conditions representing vaginal birth (A and C) and C-section (B and D) are used. The blue two-dash line represents the infant-type Bifidobacteria B1, the green solid line represents the adult-type Bifidobacteria B2, the red dashed line represents the commensal competitor B3, and the brown dotted line represents immune factor M . The y-axes are log-scaled population densities at equilibria. The x-axes of panels A and B are log-scaled Bifidobacteria levels carried by milk f_z representing the amount of breast milk in diet, and the time h when milk takes up 50% of the diet (C and D) representing the duration of breastfeeding. In comparison to Figure 4 in the main text, the Bifidobacteria B2 here is suppressed by a higher level of breast milk due to the immune effect and competition with B3.

Figure S9: The effect of feeding practices $(h \text{ and } f_z)$ and bacteria supply from the environment $(f_2 \text{ and } f_3)$ on the relative abundance of Bifidobacteria against commensal. The ratio of fibre-consuming Bifidobacteria to commensal competitor at equilibria is shown in colour and expressed on a log scale (Ratio $= \log_{10}(B_2/B_3)$. Blue indicates a negative $\log_{10}(B_2/B_3)$ value, which means the abundance of Bifidobacteria is lower than commensal $(B_2/B_3 < 1)$. Each panel shows this ratio against a range of h (the half life of milk) and f_z (the amount of breast milk) values. Panels from left to right have increasing f_2 values (supply of Bifidobacteria B2 from the environment). Panels from top to bottom have increasing f_3 values (supply of commensal from the environment).

Figure S10: Longitudinal dynamics of a generalised model with immune response where $\dot{M} = \gamma (B_1 + B_2) - \mu M$. We define γ and μ as the rates of growth and decay of the immune response. We use $\mu = \gamma = 0.001$, other parameters are set at baseline values (given in Table 1 in the main text). The blue two-dash line represents the infant-type Bifidobacteria $B1$, the green solid line represents the adult-type Bifidobacteria B2, and the red dashed line represents the commensal competitor B3. The dynamics are simulated for three years allowing the system to reach a post-weaning steady state. In this version, the long-term microbial configuration is insensitive to birth modes because the stable state is dominated by the effect of immune clearance.

Figure S11: The effect of γ and μ in the generalised model with immune response where $M = \gamma(B_1 + B_2) - \mu M$. We define γ and μ as the rates of growth and decay of the immune response. We use $\mu = \gamma = 0.001$, other parameters are set at baseline values (given in Table 1 in the main text). The relative abundance of Bifidobacteria against commensals is given for different combinations of γ and μ . The ratio of fibre-consuming Bifidobacteria to commensal competitor at equilibria is shown in colour and expressed on a log scale (Ratio $= \log_{10}(B_2/B_3)$. Red indicates a positive $\log_{10}(B_2/B_3)$ value, which means the abundance of Bifidobacteria is higher than commensal $(B_2/B_3 > 1)$. The growth of the immune response γ promotes the establishment of Bifidobacteria B2 while the decay in the immune response, μ , dampens the establishment of B2.