nature research

Corresponding author(s): Gustavo Turecki

Last updated by author(s): Oct 17, 2020

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

Statistics

Fora	all st	atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Cor	firmed
	x	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	X	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
	×	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	X	A description of all covariates tested
	×	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	x	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	x	For null hypothesis testing, the test statistic (e.g. <i>F, t, r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable</i> .
×		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
×		For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	×	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
		Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information	n about <u>availability of computer code</u>
Data collection	No software was used for data collection.
Data analysis	Most code and command lines used in this study are detailed in the Supplementary Information File (section 4.). Also, all analytical tools used in this study have already been published and are freely available. These notably include: BSmooth for differential DNA methylation analysis; Kallisto and DESeq2 R packages for gene expression analysis; TopHat v2.1.0 for RNA-Seq alignment; the HTSeq-count v0.6.1p1 for gene quantification; the python scripts region_analysis and deepTools; BWA for alignment of WGBS data; FASTX-Toolkit and Trimmomatic for adapter trimming; Picard for removing ChIP-Seq duplicates; and diffReps for differential enrichment of ChIP-Seq reads.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a <u>data availability statement</u>. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data - A description of any restrictions on data availability

Raw and processed data reported in this study using brain tissue from the lateral amygdala are publicly available via the Gene Expression Omnibus, with accession GSE151827, at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151827. Source data are provided with this paper for all figures. RNA-Sequencing data generated using brain tissue from the anterior cingulate cortex is available upon request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

× Life sciences

Behavioural & social sciences

Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Sample size calculation was not performed. However, we justified experiment sample size based on several previously published reports using similar or even smaller sample sizes (Lutz et al, Am J Psychiatry 2017, 174(12):1185-1194; Labonté et al, Am J Psychiatry 2013, 170(5):511-20; Labonté et al, Arch Gen Psychiatry 2012 69(7):722-31; Sibille et al, Am J Psychiatry 2009 166(9):1011-24) and showing the power to detect significant statistical differences.
Data exclusions	No statistical outlier was removed.
Replication	Validity of our dataset was assessed by conducting systematic comparisons among multiple epigenetic layers, and against gene expression. Each library preparation and sequencing experiment was performed once.
Randomization	Given the nature of our experimental post-mortem design in humans, groups were not randomized. However, they were were balanced for the following covariates: age, post-mortem interval and brain pH. In addition, groups were characterized by the same psychological autopsy methods, therefore avoiding the occurrence of systematic biases.
Blinding	Investigators were blinded to group allocation during data collection and analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

Methods

n/a	/a Involved in the study		Involved in the study
	X Antibodies		X ChIP-seq
×	Eukaryotic cell lines	×	Flow cytometry
×	Palaeontology and archaeology	×	MRI-based neuroimaging
×	Animals and other organisms		
	X Human research participants		
×	Clinical data		
×	Dual use research of concern		

Antibodies

Antibodies used	H3K4me1: Cell Signaling Technologies, cat #5326BF, lot #2
	H3K4me3: Cell Signaling Technologies, cat #9751BF, lot#6
	H3K9me3: Abcam, cat #Ab8898, lot #GR93671-1
	H3K27me3: Cell Signaling Technologies, cat #9733S, lot #6
	H3K27ac: Diagenode, cat #pAB-196-050, lot #A1723-0041D
	H3K36me3: Active motif, cat #MABI0333, lot #12003
/alidation	H3K4me1: see https://www.cellsignal.com/products/primary-antibodies/mono-methyl-histone-h3-lys4-d1a9-xp-rabbit-mab/5326
	H3K4me3: https://www.cellsignal.com/products/primary-antibodies/tri-methyl-histone-h3-lys4-c42d8-rabbit-mab/9751
	H3K9me3: see https://www.abcam.com/histone-h3-tri-methyl-k9-antibody-chip-grade-ab8898.html
	H3K27me3: see https://www.cellsignal.com/products/primary-antibodies/tri-methyl-histone-h3-lys27-c36b11-rabbit-mab/9733
	H3K27ac: see https://www.diagenode.com/en/p/h3k27ac-polyclonal-antibody-premium-50-mg-18-ml?
	utm_source=CiteAb&utm_medium=listing&utm_campaign=Ab
	H3K36me3: see https://www.activemotif.com/catalog/details/61021/histone-h3-trimethyl-lys36-antibody-clone-mab-clonemabi-
	0333

Human research participants

Policy information about studies involving human research participants

Population characteristics	Brain tissue was obtained from the Douglas Bell Canada Brain Bank (DBCBQ; Douglas Mental Health Institute, Verdun, Québec; www.douglasbrainbank.ca). All subjects were Caucasians of French–Canadian descent, a population with a well identified founder effect. Sociodemographic and clinical information are listed in Supplementary Table1. Inclusion criteria for both cases and controls were the following: the subject had to be Caucasian and of French Canadian origin and the subject had to die suddenly without prolonged agonal state. Tissue dissection was performed by histopathologists using reference neuroanatomical maps. Information concerning psychiatric history and socio-demographics was obtained by way of psychological autopsies performed by trained clinicians with the informants best acquainted with the deceased. Diagnoses were obtained using DSM-IV criteria by means of SCID-I interviews adapted for psychological autopsies. Control (C) and early- life adveristy (ELA) groups were matched for age, gender, post mortem interval and RNA integrity values, all meaningful covariates.
Recruitment	The Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca) collects brain tissue in collaboration with the Montréal coroner office as described in the text. Psychological autopsies were performed by trained clinicians on both controls and cases, with the informants best-acquainted with the deceased, as validated by our group and others. Diagnoses were assigned based on DSM IV criteria. Characterization of early-life histories was based on adapted Childhood Experience of Care and Abuse (CECA) interviews assessing experiences of sexual and physical abuse, psychological abuse, as well as neglect, and for which scores from siblings are highly concordant. We considered as severe early-life adversity reports of non-random major physical and/or sexual abuse during childhood (up to 15 years). Only cases with the maximum severity ratings of 1 and 2 were included. This information was then complemented with medical charts and coroner records. Ethical approval was obtained from the Institutional Review Board of the Douglas Mental Health University Institute. Written informed consent was obtained from the families of each of the deceased subjects prior to inclusion in the study.
Ethics oversight	This study was approved by our IRB (Douglas Mental Health Institute Research Ethics Board), and signed informed consent was obtained from next of kin.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

x Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links May remain private before publication.	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151827
Files in database submission	Raw files:
	S1_BS.bam
	S2_BS.bam
	S3_BS.bam
	S4_BS.bam
	S5_BS.bam
	S6_BS.bam
	S7_BS.bam
	S8_BS.bam
	S9_BS.bam
	S10_BS.bam
	S11_BS.bam
	S12_BS.bam
	S13_BS.bam
	S14_BS.bam
	S15_BS.bam
	S16_BS.bam
	S17_BS.bam
	S18_BS.bam
	S19_BS.bam
	S20_BS.bam
	S21_BS.bam
	S22_BS.bam
	S23_BS.bam
	S24_BS.bam
	S25_BS.bam
	S26_BS.bam
	S27_BS.bam

S28_BS.bam S29_BS.bam S30 BS.bam S31 BS.bam S32_BS.bam S33_BS.bam S34_BS.bam S35_BS.bam S36_BS.bam S37 BS.bam S38_BS.bam S1_LatAmy_Brain_RNASeq.bam S2 LatAmy Brain RNASeg.bam S3_LatAmy_Brain_RNASeq.bam S4_LatAmy_Brain_RNASeq.bam S5_LatAmy_Brain_RNASeq.bam S6_LatAmy_Brain_RNASeq.bam S7_LatAmy_Brain_RNASeq.bam S8_LatAmy_Brain_RNASeq.bam S9_LatAmy_Brain_RNASeq.bam S10_LatAmy_Brain_RNASeq.bam S11_LatAmy_Brain_RNASeq.bam S12_LatAmy_Brain_RNASeq.bam S13_LatAmy_Brain_RNASeq.bam S14_LatAmy_Brain_RNASeq.bam S15_LatAmy_Brain_RNASeq.bam S16_LatAmy_Brain_RNASeq.bam S17_LatAmy_Brain_RNASeq.bam S18_LatAmy_Brain_RNASeq.bam S19_LatAmy_Brain_RNASeq.bam S20_LatAmy_Brain_RNASeq.bam S21_LatAmy_Brain_RNASeq.bam S22_LatAmy_Brain_RNASeq.bam S23_LatAmy_Brain_RNASeq.bam S24_LatAmy_Brain_RNASeq.bam S25_LatAmy_Brain_RNASeq.bam S26_LatAmy_Brain_RNASeq.bam S27_LatAmy_Brain_RNASeq.bam S28_LatAmy_Brain_RNASeq.bam S29 LatAmy Brain RNASeq.bam S30_LatAmy_Brain_RNASeq.bam S31_LatAmy_Brain_RNASeq.bam S32_LatAmy_Brain_RNASeq.bam S33_LatAmy_Brain_RNASeq.bam S34_LatAmy_Brain_RNASeq.bam S35_LatAmy_Brain_RNASeq.bam S36_LatAmy_Brain_RNASeq.bam S37_LatAmy_Brain_RNASeq.bam S38_LatAmy_Brain_RNASeq.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S11_13_16_Pool10_LatAmy_Brain_ChIP_Input_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K27ac_QCrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K27me3_QCrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K36me3_QCrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K4me1_QCrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K4me3_QCrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_H3K9me3_QCrun.bam

S1_25_Pool2_LatAmy_Brain_ChIP_Input_PRODrun.bam S1_25_Pool2_LatAmy_Brain_ChIP_Input_QCrun.bam S14_17_19_23_Pool8_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S14 17 19 23 Pool8 LatAmy Brain ChIP H3K27me3 PRODrun.bam S14_17_19_23_Pool8_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S14_17_19_23_Pool8_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S14_17_19_23_Pool8_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S14_17_19_23_Pool8_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S14_17_19_23_Pool8_LatAmy_Brain_ChIP_Input_PRODrun.bam S2_10_Pool9_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S2_10_Pool9_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam S2_10_Pool9_LatAmy_Brain_ChIP_H3K36me3 PRODrun.bam S2 10 Pool9 LatAmy Brain ChIP H3K4me1 PRODrun.bam S2_10_Pool9_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S2_10_Pool9_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S2_10_Pool9_LatAmy_Brain_ChIP_Input_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S21_28_33_34_Pool11_LatAmy_Brain_ChIP_Input_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K27ac_QCrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K27me3_QCrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K36me3_QCrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K4me1_QCrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K4me3_QCrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_H3K9me3_QCrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_Input_PRODrun.bam S22_29_32_37_Pool5_LatAmy_Brain_ChIP_Input_QCrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K27ac_QCrun.bam S3 12 38 Pool6 LatAmy Brain ChIP H3K27me3 PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K27me3_QCrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K36me3_QCrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K4me1_QCrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K4me3_QCrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_H3K9me3_QCrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_Input_PRODrun.bam S3_12_38_Pool6_LatAmy_Brain_ChIP_Input_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K27ac_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K27me3_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K36me3_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K4me1_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K4me3_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_H3K9me3_QCrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_Input_PRODrun.bam S4_5_15_20_26_36_Pool1_LatAmy_Brain_ChIP_Input_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K27ac_PRODrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K27ac_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K27me3_PRODrun.bam

S6_7_Pool4_LatAmy_Brain_ChIP_H3K27me3_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K36me3_PRODrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K36me3_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K4me1_PRODrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K4me1_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K4me3_PRODrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K4me3_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K4me3_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K9me3_PRODrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K9me3_QCrun.bam S6_7_Pool4_LatAmy_Brain_ChIP_H3K9me3_QCrun.bam

Processed files: S1.profile S2.profile S3.profile S4.profile S5.profile S6.profile S7.profile S8.profile S9.profile S10.profile S11.profile S12.profile S13.profile S14.profile S15.profile S16.profile S17.profile S18.profile S19.profile S20.profile S21.profile S22.profile S23.profile S24.profile S25.profile S26.profile S27.profile S28.profile S29.profile S30.profile S31.profile S32.profile S33.profile S34.profile S35.profile S36.profile S37.profile S38.profile LatAmy_Brain_RNASeq.raw.counts S11_13_16_Pool10_H3K27ac.bw S11_13_16_Pool10_H3K27me3.bw S11_13_16_Pool10_H3K36me3.bw S11_13_16_Pool10_H3K4me1.bw S11_13_16_Pool10_H3K4me3.bw S11_13_16_Pool10_H3K9me3.bw S11_13_16_Pool10_Input.bw S1_25_Pool2_H3K27ac.bw S1_25_Pool2_H3K27me3.bw S1_25_Pool2_H3K36me3.bw S1_25_Pool2_H3K4me1.bw S1_25_Pool2_H3K4me3.bw S1_25_Pool2_H3K9me3.bw S1_25_Pool2_Input.bw S14_17_19_23_Pool8_H3K27ac.bw S14_17_19_23_Pool8_H3K27me3.bw S14_17_19_23_Pool8_H3K36me3.bw

S14_17_19_23_Pool8_H3K4me1.bw S14_17_19_23_Pool8_H3K4me3.bw S14_17_19_23_Pool8_H3K9me3.bw S14 17 19 23 Pool8 Input.bw S2_10_Pool9_H3K4me3.bw S2_10_Pool9_H3K27ac.bw S2_10_Pool9_H3K27me3.bw S2_10_Pool9_H3K36me3.bw S2_10_Pool9_H3K4me1.bw S2 10 Pool9 H3K9me3.bw S2_10_Pool9_Input.bw S21_28_33_34_Pool11_H3K27ac.bw S21 28 33 34 Pool11 H3K27me3.bw S21_28_33_34_Pool11_H3K36me3.bw S21_28_33_34_Pool11_H3K4me1.bw S21_28_33_34_Pool11_H3K4me3.bw S21_28_33_34_Pool11_H3K9me3.bw S21_28_33_34_Pool11_Input.bw S22_29_32_37_Pool5_H3K27ac.bw S22_29_32_37_Pool5_H3K27me3.bw S22_29_32_37_Pool5_H3K36me3.bw S22_29_32_37_Pool5_H3K4me1.bw S22_29_32_37_Pool5_H3K4me3.bw S22_29_32_37_Pool5_H3K9me3.bw S22_29_32_37_Pool5_Input.bw S3_12_38_Pool6_H3K27ac.bw S3_12_38_Pool6_H3K27me3.bw S3_12_38_Pool6_H3K36me3.bw S3_12_38_Pool6_H3K4me1.bw S3_12_38_Pool6_H3K4me3.bw S3_12_38_Pool6_H3K9me3.bw S3_12_38_Pool6_Input.bw S4_5_15_20_26_36_Pool1_H3K27ac.bw S4_5_15_20_26_36_Pool1_H3K27me3.bw S4_5_15_20_26_36_Pool1_H3K36me3.bw S4_5_15_20_26_36_Pool1_H3K4me1.bw S4_5_15_20_26_36_Pool1_H3K4me3.bw S4_5_15_20_26_36_Pool1_H3K9me3.bw S4 5 15 20 26 36 Pool1 Input.bw S6 7 Pool4 H3K27ac.bw S6_7_Pool4_H3K27me3.bw S6_7_Pool4_H3K36me3.bw S6_7_Pool4_H3K4me1.bw S6 7 Pool4 H3K4me3.bw S6_7_Pool4_H3K9me3.bw S6 7 Pool4 Input.bw S8_30_31_35_Pool7_H3K27ac.bw S8_30_31_35_Pool7_H3K27me3.bw S8_30_31_35_Pool7_H3K36me3.bw S8_30_31_35_Pool7_H3K4me1.bw S8_30_31_35_Pool7_H3K4me3.bw S8_30_31_35_Pool7_H3K9me3.bw S8_30_31_35_Pool7_Input.bw S9_27_39_Pool3_H3K27ac.bw S9_27_39_Pool3_H3K27me3.bw S9_27_39_Pool3_H3K36me3.bw http://genome.ucsc.edu/cgi-bin/hgTracks? db = hg19& last VirtModeType = default& last VirtModeExtraState = & virtModeType = default& virtMode= 0& nonVirtPosition = & position = & positionion=chrX%3A15578261%2D15621068&hgsid=842700757 BMUbvoSamAiEMdbGagOu9lp1XXvm

Methodology

(e.g. <u>UCSC</u>)

Genome browser session

ReplicatesNo technical replicates were analyzed. Because of the small size of the amygdala lateral nucleus, and the large amounts of tissue
required for multiple immune-precipitations and the ChIP-seq analysis of 6 histone marks, tissue from 17 C and 21 ELA subjects were
distributed into 7 ELA and 4 C pools, and the 6 marks were analyzed in each of the 11 resulting pools.Sequencing depthSequencing was performed using the Illumina HiSeq2000 to achieve at least 30 and 60 million reads for narrow (H3K27ac, H3K4me3)
and broad (H3K27me3, H3K36me3, H3K4me1, H3K9me3) marks, respectively (see Supplementary Figure S1a), following standard

	recommandations from the International Human Epigenome Consortium.
Antibodies	H3K4me1: Cell Signaling Technologies, cat #5326BF, lot #2
	H3K4me3: Cell Signaling Technologies, cat #9751BF, lot#6
	H3K9me3: Abcam, cat #Ab8898, lot #GR93671-1
	H3K27me3: Cell Signaling Technologies, cat #9733S, lot #6
	H3K27ac: Diagenode, cat #pAB-196-050, lot #A1723-0041D
	H3K36me3: Active motif, cat #MABI0333, lot #12003
Peak calling parameters	No peak calling was conducted. Groups were compared by looking for differential enrichment of ChIP-Seq reads using diffReps, as well as by comparing ChromHMM maps of chromatin states across groups.
Data quality	Coverage profiles were visualized using IGV. Duplicate read removal and GC bias correction were performed with PICARD and deepTools, respectively. Relative and normalized strand cross correlations cutoffs were 0.8 and 1.05, respectively, for narrow marks. ChIP-Seq signal consistency throughout the cohort was assessed through hierarchical clustering of Pearson correlations using deepTools. Identification of differential enrichment sites for each histone mark was done using diffReps with window size 1000bp and sliding step 100bp. A FDR <10% and p <0.0001 for negative binomial test were used as significance cutoffs.
Software	Trimmomatic, BWA, Picard and deepTools were used to pre-process and align the sequencing reads. Global visualization for the ChIP- seq data was done using IGV and ngs.plot. Inter-sample correlations and hierarchical clustering were achieved using deepTools. Identification of differential enrichment sites for each histone mark was done using diffReps. ChromHMM was used to annotate chromatin states.