
1. Supplementary Figures legends 
Supplementary Figure 1. Quality controls for chromatin immunoprecipitation 
sequencing (ChIP-Seq). (a) ChIP-Seq libraries were prepared and sequenced by expert 

technicians at the Genome Québec Innovation Center, in the framework of the International 

Human Epigenomics Consortium (IHEC). We compared psychiatrically healthy controls (C, 

n=4 pools; see also Supplementary Table 3 below) and subjects with a history of early-life 

adversity (ELA, n=7 pools), and analyzed 4 ‘broad’ (H3K9me3, H3K27me3, H3K36me3, 

H3K4me1) and 2 ‘narrow’ (H3K4me3, H3K27ac) marks, for which we aimed at sequencing 

roughly 60 and 30 million reads per library, respectively, as per the IHEC consortium’s 

guidelines. A two-way ANOVA indicated that there was no difference among C and ELA groups 

in terms of sequencing depths [F(1,63)=0.52; p=0.47]. Values are mean±sem. (b) Quality 

controls analyses showed that samples for narrow marks showed greater than 0.8 and 1.05 

Relative Strand Cross and Normalized Strand Cross correlations, respectively, thereby meeting 

ENCODE consensus thresholds for quality control1.  
 
Supplementary Figure 2. Comparison of amygdalar histone profiles for individual marks 
with datasets from inferior temporal lobe (Inf Temp), anterior caudate (Ant Caud), and 
peripheral blood mononuclear cells (Blood). Data were downloaded from the Roadmap 

Epigenomics Consortium (ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) and compared to 

each C and ELA amygdalar sample from the present study, using deepTools Pearson 

correlations and unsupervised clustering2, for each of the 6 histone marks: (a) H3K4me1; (b) 
H3K27ac; (c) H3K4me3; (d) H3K36me3; (e) H3K9me3; (f) H3K27me3. Accession numbers: 

1) for inferior temporal lobe: datasets GSM772995 (H3K27ac), GSM772993 (H3K27me3), 

GSM772982 (H3K36me3), GSM772992 (H3K4me1), GSM772996 (H3K4me3), GSM772994 

(H3K9me3); 2) for anterior caudate: datasets GSM772832 (H3K27ac), GSM772827 

(H3K27me3), GSM772828 (H3K36me3), GSM772830 (H3K4me1), GSM772829 (H3K4me3), 

GSM772831 (H3K9me3); 3) for blood mononuclear cells: datasets GSM1127145 (H3K27ac), 

GSM1127130 (H3K27me3), GSM1127131 (H3K36me3), GSM1127143 (H3K4me1), 

GSM1127126 (H3K4me3), GSM1127133 (H3K9me3). Of note, H3K4me1, H3K27ac and 

H3K27me3 better discriminated between tissue types than the 3 other marks. 

 
Supplementary Figure 3. Characterization of amygdalar chromatin states defined using 
ChromHMM, and comparison with external datasets from human brain hippocampus 
and gastric tissues. (a) A snapshot of the ChromHMM 10-state model that was generated 

using amygdalar data for 6 histone marks is shown. (b) The graph depicts the number of 

genomic regions identified for each chromatin state; each region is defined as continuous 

genomic bins showing a similar combination of individual histone marks in the consensus 



ChromHMM model (see Methods). (c) Distribution of genomic size of regions identified for 

each chromatin state (with the number of regions identified for each state indicated in panel 

b). Box plots show median and interquartile range, with whiskers representing minimum and 

maximum values. (d) Methylation levels in the CAC context (y-axis) were plotted against the 

region size (x-axis) for the 3 Promoter states: Active Promoter (Act Prom, upper panel), Weak 

Promoter (Wk Prom, middle panel), and Flanking Promoter (Flk Prom, lower panel). (e-f) 
Comparison of the amygdalar ChromHMM 10-state consensus model generated here using 

amygdalar tissue with similar chromHMM models generated by the NIH Roadmap. Brain 

hippocampus and gastric tissue datasets were downloaded from the Roadmap Epigenomics 

Project portal (Epigenome ID E071 and E094 respectively, for the core 15-state model, 

egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html) and compared using Bedtool’s 

Jaccard coefficient to our consensus map (generated using ChromHMM, see Methods). Note 

that our amygdala chromatin model more strongly correlates with that of the brain 

hippocampus than with gastric tissue, as expected.  

 
Supplementary Figure 4. Relationship between chromHMM chromatin state and gene 
expression levels. For each gene (+/- 3kb), the percentage of its genomic span covered by 

each chromatin state was computed. Values were then ordered by gene expression level and 

averaged over bins of 500 genes (values depicted are mean ± sem). Here are shown the 

average percentage coverage of genes by (a) Weak transcription (Wk Trans) and Strong 

transcription (Str Trans), (b) Genic enhancer (Gen Enh) and Enhancer (Enh), (c) Active 

promoter (Act Prom), Weak promoter (Wk Prom) and Flanking promoter (Flk Prom) states. 

These chromatin states exhibited expected correlations with gene expression: (i) the Wk Trans 

state was more frequently observed in gene bodies of lowly expressed genes compared with 

the Str Trans state, (ii) enhancer states were enriched in genes with strong expression and (iii) 

the Wk Prom state was more frequently observed in lowly expressed genes compared with 

the Act Prom state. Values are mean±sem. 

 

Supplementary Figure 5. Quality controls for whole-genome bisulfite sequencing 
libraries (WGBS). To compare DNA methylation patterns among psychiatrically healthy 

individuals (controls, C) and subjects with a history of severe child abuse (early-life adversity, 

ELA), WGBS libraries were prepared. (a) Bisulfite conversion efficiencies were measured for 

each DNA sample using spiked-in unmethylated lambda DNA, and were similar between 

groups: C: 99.3±0.07%, ELA: 99.2±0.06% (two-sided Student t-test: t=0.63, p=0.53). (b) In 

addition, over-conversion (i.e. methylated cytosines converted to uraciles during bisulfite 

conversion) was determined experimentally using spiked-in fully methylated pUC19 DNA, and 

similar values were observed between groups: C: 5.6±0.10%, ELA: 5.7±0.05% (two-sided 



Student t-test: t=0.19, p=0.85). (c) Each WGBS library was then sequenced on 1 lane of a 

HiSeq 2000 (100 base pair, paired-end sequencing) at the Génome Québec Innovation 

Center, yielding similar sequencing depth across groups: C: 164±3 million reads, ELA: 163±3 

million reads (Student t-test: t=0.15, p=0.88). (d) During the processing of raw sequencing 

data, duplicates were removed from downstream analysis, and results indicated similar 

diversity (Student t-test: t=1.18, p=0.25) among libraries from the C (C:22.5±1.2%) and ELA 

(C:20.8±0.9%) groups. (e) The graphs depicts the number of CG sites that met distinct average 

coverages among the 38 WGBS libraries. For the characterization of genome-wide abundance 

and distribution of CG and CAC methylation levels (Fig.2 and Supplementary Fig.6-9), we 

focused on cytosines with a coverage >= 5. Abbreviations: cov., coverage. Values are 

mean±sem. 

 

Supplementary Figure 6. Distribution of non-CG DNA methylation in the human brain 
lateral amygdala. (a) The graph depicts the distribution of genome-wide average non-CG 

methylation levels that were observed in the human brain lateral amygdala in healthy controls 

(C, n=17 subjects), and subjects with a history of child abuse (early-life adversity, ELA, n=21 

subjects). The ordering of these 12 non-CG contexts at bulk tissue level is identical to one 

described by Mo et al3 in the mouse at cell-type specific level for 3 neuronal populations: 

glutamatergic neurons (Exc), parvalbumin-expressing (PV) and vasoactive intestinal peptide 

(VIP)-expressing inhibitory neurons. Values are mean±sem, shown here for the whole cohort 

(combined C and ELA groups, n=38 subjects). (b) While most cytosines in non-CG contexts 

were unmethylated, a minority of these positions nevertheless showed methylation levels 

between 5 and 25%, whatever the 3-letter context considered, with a peak between 15 to 20%. 

These results indicate that while different numbers of cytosines might be methylated across 

various non-CG contexts, the abundance of DNA methylation (i.e., the proportion of cells 

affected) at those sites seems relatively homogeneous. Box plots show median and 

interquartile range, with whiskers representing minimum and maximum values 

 

Supplementary Figure 7. Distribution of CG and CAC DNA methylation among distinct 
genomic features and chromosomes. (a) CAC and CG methylation levels were computed 

across distinct genomic features defined using the region_analysis package4. In the CG 

context, DNA methylation levels strongly varied as a function of the genomic feature (two-sided 

2-way ANOVA, [F(7,252)=953; p<0.0001]), while there was no significant difference 

[F(1,36)=0.50; p=0.48] among psychiatrically healthy individuals (C, n=17 subjects) and 

subjects with a history of early-life adversity (ELA, n=21 subjects). Post-hoc comparisons 

confirmed that, as expected, lowest CG methylation levels were observed in promoter regions, 

in particular within a 250-base pair distance from the TSS (ProximalPromoter), where 



methylation levels were significantly lower than in any other gene feature (p<0.0001). In the 

CAC context, similar significant and non-significant effects were found for genomic features 

[F(7,252)=917; p<0.0001] and for clinical grouping [F(1,36)=0.03; p=0.85], respectively. In 

contrast with the CG context, lowest CAC methylation levels were observed in pericentromeric 

regions (defined by region_analysis as regions located between the boundary of a centromere 

and the closest gene minus 10kbp of that gene's regulatory region4), which showed strongly 

significant differences with all other features (p<0.0001). Values are mean±sem. (b) CAC and 

CG methylation levels were computed in each chromosome across the whole cohort. As 

expected, DNA methylation levels were much higher in the CG than in the CAC context (2-way 

ANOVA; context effect: [F(1,1850)=1238951; p<0.0001]), and methylation abundance strongly 

varied among chromosomes in each context (chromosome effect: [F(24,1850)=2673; 

p<0.0001]). As expected also, methylation was extremely low in the mitochondrial genome in 

both the CG and CAC contexts. Values are mean±sem, shown here for the whole cohort 

(combined C and ELA groups, n=38 subjects).  
 
Supplementary Figure 8. Correlations between the expression of genes and DNA 
methylation levels in their sense or antisense strands, in the CG and CAC contexts. The 

1000 most highly (top1000) and 1000 most lowly expressed genes were identified using RNA-

Sequencing data, and compared for abundance of DNA methylation in: (a,d) both DNA 

strands; (b,e) the strand where genes are located (sense strand), and (c,f) the strand  

antisense to the one where genes are located. Negative correlations between DNA methylation 

and gene expression were observed in all cases: (a) [F(1,74)=736.1; p<2E-16] (b) 
[F(1,74)=742.8; p<2E-16] (c) [F(1,74)=615.1; p<2E-16] (d) [F(1,74)=145.3; p<2E-16] (e) 
[F(1,74)=119.2; p<2E-16] (f) [F(1,74)=142.6; p<2E-16] (2-way repeated measures ANOVA, 

main effects of gene category, top1000 versus bottom1000 averaged over 100 bins). Results 

therefore indicate that gene expression is predicted to the same extent by mCAC on either 

strand, at least for the coverage achieved in this study. 

 

Supplementary Figure 9. Annotation of DNA methylation features in the human brain 
lateral amygdala. (a) Unmethylated (UMR) and lowly methylated (LMR) genomic regions 

were identified using the methylseekR algorithm, as described in5. No partially methylated 

domains (PMDs) were identified, similar to previous studies on mouse retina6, human 

embryonic stem cells and neural progenitor cells7. (b-c) LMR (n=115254) and UMR (n=21267) 

showed methylation levels in the CG context (b) and size (c) consistent with previous reports5, 

while UMR (mean ± sem = 2516 ± 41 bp) were generally larger than LMR (738 ± 107 bp). 

Dashed and dotted lines represent medians and quartiles, respectively. (d) Among all CpG 

islands in the human genome (RefSeq reference, n= 28691), a vast majority (n=19193; 



n=66.9%) intersected with CpG-dense UMR, while a small minority corresponded to LMR 

(n=2743; 9.6%), as described previously for other tissue types7. (e) Methylation in the CG 

(mCG) and CAC (mCAC) contexts were computed across RefSeq genomic features, UMR 

and LMR, and found to strongly differ, as expected. While mCAC levels are much lower than 

mCG levels, a similar pattern of variation is observed across the 2 cytosine contexts. Values 

are mean±sem, shown here for the whole cohort (combined C and ELA groups, n=38 

subjects). (f) mCG (left panel) and mCAC (right panel) levels were computed in each 

intersection among RefSeq genomic features, LMR, or UMRn and chromatin states (identified 

using ChromHMM, see Methods), across our entire cohort. Of note, while mCG abundance in 

LMRs remained constant between 25 and 35% across all chromatin states, mCAC was more 

variable, and notably lower in Polycomb Repressed (PcR), heterochromatin (Heterochr) and 

Strong Transcription (Str Trans) states. Also, mCAC was more abundant in Wk Trans than in 

Str Trans within genes, consistent with the fact that Wk Trans was more abundant in lowly 

expressed genes (see Supplementary Fig.9a), and previous reports8. 
 
Supplementary Figure 10. Histone profiles at lowly methylated regions (LMR) and 
unmethylated regions (UMR). (a) Enrichment of chromatin states at and around positions of 

UMR (left panel) and LMR (right panel) were evaluated using chromHMM’s 

NeighborhoodEnrichment function. As expected, UMRs co-located with Weak and Active 

Promoters (Wk Prom, Act Prom), and were flanked by the Flanking Promoter (Flk Prom) state. 

In contrast, LMRs were consistently surrounded by Str Enh and Enh states, which spanned 2 

and 1 Kb around LMR positions, respectively, consistent with their role as distinct regulatory 

element7. (b-g) Average enrichments of ChIP-seq reads over input are shown for each histone 

mark within LMR and UMR, as well as in flanking up- and down-stream regions (+/- 1 Mb). 

Patterns are consistent with those reported by Stadler et al7 for 2 marks (H3K4me1, 

H3K4me3), and provide new information related to the other 4 marks: i) LMR and UMR 

associated with increased levels of H3K4me1, H3K4me3 and H3K27ac, and these effects 

were more pronounced for UMR than for LMR, consistent with the fact that CpG islands 

showed a stronger overlap with UMR than with LMR (FigS7d); ii) The other 3 marks 

(H3K36me3, H3K9me3, H3K27me3) were depleted within UMR and LMR; iii) interestingly, 

while LMR regions showed uniform enrichment or depletion throughout their whole genomic 

span, more complex patterns were observed for UMR. Their enrichment for H3K4me1 showed 

a biphasic pattern, and preferentially affected their 5’ and 3’ shores, very similar to results 

obtained by Stadler et al in mouse embryonic stem cells; further, this biphasic enrichment was 

also present for H3K4me3 and H3K27ac, albeit to a lesser extent, and was mirrored by a 

biphasic H3K9me3 depletion in UMR shores.  

 



Supplementary Figure 11. Distributions of histone reads across gene bodies and 
differential sites (DS). For each histone mark, the figure depicts the distribution of reads 

(average enrichment of ChIP-seq reads over input) across all gene bodies (All Genes). In 

addition, and as a control, we also analyzed their distribution at genomic sites where Up- and 

Down-DS were identified between control (C, n=4 pools) and early-life adversity (ELA, n=7 

pools) groups. Values are mean±sem. 
 
Supplementary Figure 12. Identification of genomic features where histone differential 
sites (DS) were localized. (a) Localization of DS (identified using diffRep, see Methods) 

among distinct genomic features (defined using region_analysis4), for each histone mark. The 

observed distributions were significantly different across histone marks (df=25, χ2 =1244, 

p<0.001). In addition, comparisons between observed and expected (genome-wide distribution 

of reads among genomic features in the 2 C and ELA groups combined) distributions showed 

that, for each type of histone modification, ELA-associated DS were non-randomly located in 

specific genomic features: H3K27ac (df=1, χ2 =81.2, p<0.001); H3K27me3 (df=1, χ2 =42.3, 

p<0.001); H3K36me3 (df=1, χ2 =138, p<0.001); H3K4me1 (df=1, χ2 =287, p<0.001); H3K4me3 

(df=1, χ2 =90.9, p<0.001); H3K9me3 (df=1, χ2 =22.6, p<0.001). (b) Analysis of the directionality 

of DS showed that ELA more frequently associated with decreases (Down-DS) than increases 

(Up-DS) in read density, as found for 4 marks: H3K4me1 (df=1, χ2 =231, p<0.001); H3K4me3 

(df=1, χ2 =73, p<0.001); H3K36me3 (df=1, χ2 =345, p<0.001); H3K27me3 (df=1, χ2 =228, 

p<0.001). DS were equally distributed among Up- and Down-DS for the 2 remaining marks: 

H3K27ac (df=1, χ2 =0.13, p=0.19); H3K9me3 (df=1, χ2 =1.7, p=0.19). (c) Integrin signaling is 

enriched across multiple histone changes and state transitions. GREAT pathway analysis 

using MsigDB showed recurrent enrichment of the integrin signaling pathway across six types 

of state transitions, as well as for H3K27ac down-DS (differential sites). Each analysis passed 

hypergeometric and binomial testing (fold change ≥ 1.5 and Q ≤ 0.1 for both tests). Negative 

logarithmic P-value is shown for the binomial test. Chromatin states: Str-Trans, strong 

transcription; Wk-Trans, weak transcription; Str-Enh, strong enhancer; Enh, enhancer.  
 
Supplementary Figure 13. Comparison of main metrics for CG and CAC differentially 
methylated regions (DMR). (a-d) 840 CAC- and 795 CG-DMRs were identified using 

BSmooth (see Methods), and metrics are compared here for the 2 categories of DMRs. Box 

plots show median and interquartile range, with whiskers representing minimum and maximum 

values. (a) Compared to CG-DMRs, CAC-DMRs were composed of slightly fewer cytosines 

(CG: 7.63±0.11; CAC: 7.14±0.08; two-sided Student t-test: [t(1,1633)=4.12, p=4.0E-05]), and 

(b) were smaller (CG: 321±7 bp; CAC: 245±4 bp; two-sided Student t-test: [t(1,1633)=10.54, 

p<1E-10]). The amplitude of methylation changes observed in subjects from the ELA group 



was smaller in the CAC than in the CG context, as shown by (c) smaller % changes in 

methylation levels (CG: 7.75±0.05%; CAC: 4.6±0.03%; two-sided Student t-test: 

[t(1,1633)=59.0], p<1E-10), and (d) smaller areaStat values (a metric measuring the statistical 

strength of methylation changes among cytosines composing each DMR9; CG: 32.3±0.5%; 

CAC: 28.9±0.4%; two-sided Student t-test: [t(1,1633)=6.1], p=1.6E-09). (e) Visualization of all 

CG- and CAC-DMRs across the human genome using chromPlot. There was absolutely no 

intersection between the 2 types of DMRs. 

 
Supplementary Figure 14. Comparison of histone mark profiles at CG and CAC DMRs. 
(a-f) Average enrichments of ChIP-seq reads over input are shown for each histone mark 

around each type of DMRs (CG, green n=795; CAC, orange, n=840): (a) H3K4me1, (b) 
H3K9me3, (c) H3K4me3, (d) H3K36me3, (e) H3K27ac, and (f) H3K27me3. Histone reads 

enrichment significantly varied within DMRs and flanking regions (+/- 2 kilobases, kb) for the 6 

marks (2-way repeated measures ANOVA, main effects of cytosine position, x-axis; p<0.0001). 

Also, significant differences in histone reads density (y-axis) among the 2 cytosine contexts 

were observed for 4 marks (H3K27ac, H3K4me3, H3K27me3, H3K4me1; p<0.05), but not for 

H3K9me3 (p=0.08) or H3K36me3 (p=0.57). Importantly, significant interactions between 

histone reads density and cytosine position within DMRs were observed for all marks 

(p<0.0001). In particular, post-hoc comparisons confirmed that, compared with their flanking 

regions, CAC-DMRs were significantly enriched for H3K36me3 and depleted in H3K9me3; in 

contrast, CG-DMRs were characterized by significant enrichments for H3K4me1, H3K4me3, 

and H3K27ac, and a depletion in H3K36me3 (p<0.0001 for each post-hoc comparison). Values 

are mean±sem across the n=11 pools. (g) Enrichment of each chromatin state over CG and 

CAC differentially methylated regions (DMRs). The figure depicts the enrichment of each 

chromatin state (as identified using ChromHMM and the combination of all 6 histone marks, 

see main text) among genomic regions corresponding to CG- and CAC-DMRs, compared to 

their relative abundance in the overall human genome. CG-DMRs shown in blue, CAC-DMRs 

shown in red. Chromatin states: Act-Prom, active promoter; Wk-Prom, weak promoter; Flk-

Prom, flanking promoter; Str-Trans, strong transcription; Wk-Trans, weak transcription; Str-

Enh, strong enhancer; Enh, enhancer; PcR, polycomb repressed; Hetero, heterochromatin. 

 
Supplementary Figure 15. RNA-Sequencing quality controls. Total RNAs extracted from 

lateral amygdala tissue (controls, C, n=17; early-life adversity, ELA, n=21) were used for the 

preparation of RNA-Sequencing libraries and processed in parallel. (a) RNA integrity values 

(RIN) were not significantly different across RNA samples extracted from C (n=17) and ELA 

(n=21) subjects (Mann-Whitney U=171; p=0.83). (b) The number of reads sequenced in each 

library was similar across C and ELA groups (two-sided Student t-test: t=0.72; p=0.48). (c-d) 



Similarly, there was no significant difference in percentages of duplicates (two-sided Student 

t-test: t=1.25; p=0.22) nor in alignment rate (two-sided Student t-test: t=0.51; p=0.62) between 

the 2 groups. Values are mean±sem. 

 
Supplementary Figure 16. RNA-Sequencing results. (a) Very similar results (linear 

regression: r=0.82, p< 2.2E-16) were obtained using 2 distinct bio-informatic pipelines for the 

analysis of RNA-Sequencing data. Raw reads were aligned & counted using either HTSeq-

count or Kallisto, followed by the analysis of differential expression between C and ELA groups 

using DESeq2. FC, Fold Change. (b) Genome-wide gene expression changes occurring in the 

lateral amygdala (this study) and the anterior cingulate cortex (ACC, our previous work14) as a 

function of ELA were compared using the RRHO2 algorithm15. Results uncovered strong 

patterns of common dysregulation, whereby 2 large groups of genes show similar down- (p-

adj=10-487, Benjamini-Yekutieli correction for multiple testing) or up-regulation (10-388) or in both 

regions in ELA subjects (see lower-left quadrant, UP/UP, and upper-right quadrant, 

DOWN/DOWN). (c) The 2 gene lists obtained from RRHO2 were then used for Gene Ontology 

enrichment analysis (FDR<0.1). Results showed that a large number of GO terms previously 

identified during multi-epigenetic analysis of the single amygdala dataset (see panel e below) 

also emerged from the combined analysis of transcriptomes from both regions. These results 

suggest that at least part of the transcriptional changes observed in the amygdala also affect 

another brain region, the ACC, that significantly contributes to mood regulation and depression 

pathophysiology. (d-e) Gene Set Enrichment Analysis (GSEA) of RNA-Sequencing data in the 

lateral amygdala. Genes were ranked based on their log2 fold changes (‘Ranked list metric’, 

from the differential gene expression analysis between C and ELA groups, represented in grey 

in the lower portion of each panel); genes with highest positive fold changes (in red, 

upregulated in the ELA group) were at the extreme left of the distribution, and those with lowest 

negative fold changes (in blue, downregulated in the ELA group) were at the extreme right of 

the distribution. A running enrichment score (green line, upper portion of each panel) was 

computed for gene sets from the C2 MSigDB curated molecular signatures database, and 

used to identify enriched gene sets16. Depicted are the 2 single gene sets that achieved the 

highest normalized enrichment scores (with the middle portion of each panel showing vertical 

black lines where members of the gene set appear in the ranked list of genes). (d) A collection 

of genes related to oligodendrocytes and myelin physiology (left panel), which we recently 

found downregulated in the ACC of subjects with a history of ELA14, showed an opposite 

upregulation in the lateral amygdala (GSEA normalized enrichment score, NES=2.91; family-

wise error rate, FWER p-value<0.05), suggesting that opposed transcriptional adaptations 

might occur as a function of ELA between cortical and subcortical structures in this glial 

population. The right panel depicts log2 FC in both the lateral amygdala and ACC for this 



myelin genes collection. (e) These finding were reinforced by the second-best gene set, which 

was significantly enriched for upregulated genes in our amygdala data (GSEA normalized 

enrichment score, NES=2.75; family-wise error rate, FWER p-value<0.05). The later gene 

collection was previously associated with depression in the middle temporal gyrus17, and found 

enriched  in  myelin-related  genes,  suggesting  that  similar  stress-related  transcriptomic 

changes  may  affect  oligodendrocytes  among  distinct  portions  of  the  temporal  lobe.  (f) 
Identification of Gene ontology (GO) processes most consistently affected by ELA, as identified 

by the combined analysis of individual histone marks, chromatin states, DNA methylation, and 

gene expression (see main text). 

 
Supplementary  Figure  17.  Deconvolution  of  WGBS  and  RNA-Sequencing  data.  (a) 
Consistent with the cortical nature of the lateral nucleus of the amygdala and with estimates 

from  neuroanatomical  studies10,11,  RNA-Seq  deconvolution  using  BSEQ-sc  Cibersort12 

indicated that the neuronal population in our samples was composed of 80% excitatory and 

20% inhibitory neurons. Importantly, we found no differences in cell-type composition between 

C (n=17 subjects) and ELA (n=21 subjects) groups (2-way ANOVA; cell-type effect p<0.0001; 

group  effect,  p=0.61),  whether  at  the  level  of  5  major  cell  types  (excitatory  and  inhibitory 

neurons, microglia, astrocytes, oligodendroglia, endothelial cells) (b), or when considering the 

full spectrum of 26 cell-type clusters that were identified (c). We then deconvoluted WGBS 

data using the same Cibersort algorithm and, to our knowledge, the only available dataset for 

single-cell methylomes in the human brain13. Despite the fact that only non-CG methylation 

levels, but not CG methylation, are available from the later study, we nevertheless observed a 

significant correlation between the estimated proportion of excitatory neurons in this second 

approach, and the proportion of the most abundant population of excitatory neurons (Ex_5_L5) 

observed during deconvolution of RNA-Seq data (d), indicating some convergence between 

the 2 deconvolutions. (e) Importantly, consistent with RNA-Sequencing data, no significant 

difference  in  cell-type  proportions  were  identified  among  C  and  ELA  groups  in  WGBS 

deconvolution (2-way ANOVA; cell-type effect p<0.0001; group effect, p=0.11). Panel a, values 

are  mean±sem;  panels  b,  c  and  d,  box  plots  show  median  and  interquartile  range,  with 

whiskers representing minimum and maximum values. 
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1. Supplementary Tables 
Supplementary Table 1. Cohort demographics. Statistical differences were evaluated using 

Student t-tests. 

 Controls (C)  Early-life adversity 
(ELA)  

N 17 21 p-value 

Age (years) 50.3±5.1 42.0±2.6 0.14 

Gender M/F 13/4 15/6 0.73 

PMI (hours) 25.6±5.2 26.6±4.6 0.91 

pH 6.5±0.1 6.6±0.1 0.34 
 
 
Supplementary Table 2. Type of early-life adversity (ELA) experienced by subjects from the 

control (C) and ELA groups, and mean of death in the ELA group. 

 Neglect (%) Physical abuse 
(%) 

Sexual abuse 
(%) 

Psychological 
abuse (%) 

>1 type of 
abuse 

(%) 
C 0 0 0 0 0 

ELA 42,9 66,7 23,8 19,0 42,9 

 
 
Supplementary Table 3. Tissue pools used in ChIP-Seq experiments. 

Group Pool nbr Number of 
subjects 
pooled 

Gender Tissue 
available for 
ChIP (mg) 

C 1 6 Male 637 
C 5 4 Female 589 
C 6 3 Male 383 
C 7 4 Male 448 

ELA 2 2 Male 397 
ELA 3 3 Male 475 
ELA 4 2 Male 470 
ELA 8 4 Female 449 
ELA 9 2 Male 403 
ELA 10 3 Male 416 
ELA 11 4 Male 525 

 
 
 
 
 
 
 



Supplementary Table 4. Distribution of CG and CAC DMRs among genomic features 
(expressed in counts or % of total in each context), as assessed using region_analysis. 
 

Count CG CAC 
Proximal Promoter 28 7 

Promoter 1k 132 17 
Promoter 3k 138 59 
Gene body 287 450 

Other intergenic 198 233 
Gene desert 12 71 
subtelomere 0 2 

pericentromere 0 1 
TOTAL 795 840 

 
% CG CAC 

Proximal Promoter 3,52 0,83 
Promoter 1k 16,60 2,02 
Promoter 3k 17,36 7,02 
Gene body 36,10 53,57 

Other intergenic 24,91 27,74 
Gene desert 1,51 8,45 
subtelomere 0 0,24 

pericentromere 0 0,12 
TOTAL 100 100 

 
 
Supplementary Table 5. Distribution of CG and CAC DMRs among chromatin states 
(expressed in counts or % of total in each context), as assessed using ChromHMM data. 
 

Count CG CAC 
Void 281 644 

Act Prom 68 5 
Wk Prom 60 5 
Flk Prom 37 1 
Str Trans 16 12 
Wk Trans 43 94 
Genic Enh 45 10 

Enh 113 30 
PRC 8 1 

Hetero 5 1 
Total 676 803 

 
% CG CAC 

Void 41,57 80,20 
Act Prom 10,06 0,62 
Wk Prom 8,88 0,62 
Flk Prom 5,47 0,12 
Str Trans 2,37 1,49 
Wk Trans 6,36 11,71 
Genic Enh 6,66 1,25 

Enh 16,72 3,74 
PRC 1,18 0,12 

Hetero 0,74 0,12 
Total 100 100 

 
 
 
 



Supplementary Note 1: Analysis codes 
4.1 ChIP-Sequencing analyses 
#run FASTQC on raw sequencing files:  
fastqc FILE 
 
#Use Trimmomatic for adapters and quality  
java -jar trimmomatic-0.35.jar SE -phred33 FILE FILE.trim 
ILLUMINACLIP:FILENAME:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:25 
MINLEN:36 
 
#Align fastQ files against the hg19 genome 
bwa aln GENOME_GRCh37 FILE  
bwa samse GENOME_GRCh37 FILE 
samtools view -Sb FILE 
 
#Use Picard to remove duplicates 
java -jar picard.jar MarkDuplicates I=FILE O=FILE.dedup M=dedupmetrics.txt 
VALIDATION_STRINGENCY=LENIENT REMOVE_DUPLICATES=true 
 
#Use DeepTools computeGCBias and correctGCbias functions to correct the GC bias 
computeGCBias -b FILE --effectiveGenomeSize 2451960000 -g hg19.2bit -l 200 -p 3 -freq 
Gcbias.txt 
correctGCBias -b FILE --effectiveGenomeSize 2451960000 -g hg19.2bit -o FILE.GCcor.bam 
-p 3 -freq Gcbias.txt 
 
#Use PhantomPeakQualTools to compute the Normalized and Relative Strand Cross 
Correlations (FigS1b) 
Rscript run_spp.R -c=FILE -p=10 -odir=DIRECTORY -savp - 
out=PhantomPeak_measureSummary.txt 
 
#Use DeepTools bamCompare to create bigwig files (Fig1a) 
bamCompare --ratio subtract -p 10 --normalizeUsingRPKM -e 100 -b1 SIGNAL_FILE -b2 
INPUT_FILE -of bigwig -o FILE.bw 
 
#Use ngs.plot to visualize histone profiles around genes (Fig1c) 
ngs.plot.r -G hg19 -R genebody -L 2000 -FL 200 -C CONFIG_FILE -O DIRECTORY 
 
#Do hierarchical clustering based on the signals of our files (Fig1b) 
multiBigwigSummary bins -b FILE_1.bw FILE_2.bw ... -out SUMMARY.npz  
plotCorrelation -in SUMMARY.npz -c pearson -p heatmap -o PLOT  
 
#Do hierarchical clustering based on the signals of our files and histone profiles from the 
anterior caudate, blood cells and brain inferior temporal tissue (FigS2) 
multiBigwigSummary bins -b ANT_CAUD.bw BLOOD.bw INF_TEMP.bw FILE_1.bw 
FILE_2.bw ... -out SUMMARY.npz  
plotCorrelation -in SUMMARY.npz -c pearson -p heatmap -o PLOT  
 
#Calculate number of histone reads at genebodies (H3K36me3, H3K27me3, H3K9me3, 
H3K4me1) or TSS (H3K4me3, H3K27ac), organized by gene expression levels. These are 
then normalized against input levels before plotting (see below) 
bedtools multicov -bed GENEBODY.bed -bams H3K36me3.bam H3K27me3.bam 
H3K9me3.bam H3K4me1.bam INPUT.bam > GENEBODY_MARKS.csv 
bedtools multicov -bed TSS.bed -bams H3K4me3.bam H3K27ac.bam  INPUT.bam > 
TSS_MARKS.csv 



 
#Plot rolling averages of histone read number at genes ranked by gene expression (data 
points generated using the "zoo" R package) (Fig1d) 
 library(zoo) 
 avg.MARK<-rollmean(zoo(data$MARK),1000) 
 
#Use DiffReps to identify differential sites, done for each histone mark independently 
diffReps.pl -gn hg19 --frag 200 -me nb -tr SIGNAL_ELA1 SIGNAL_ELA2 ... -co 
SIGNAL_CONTROL1 SIGNAL_CONTROL2 ... --btr INPUT_ELA1 INPUT_ELA2 ... --bco 
INPUT_CONTROL1 INPUT_CONTROL2 ... -re FILE.txt  
 
#Annotate each DS with region_analysis (FigS12a) 
region_analysis.pl -r -d ensembl -g hg19 -i FILE 
 
#Create chromatin state maps with ChromHMM (Fig1e) 
java -jar $CHROMHMM BinarizeBed -peaks hg19.txt DIRECTORY cellmarkfile.txt 
DIRECTORY #with cellmarkfile organized as per chromHMM standard instructions, with cell 
= ELA or Control, mark = 6 histone marks 
java -jar $CHROMHMM LearnModel DIRECTORY DIRECTORY 10 hg19 
bedtools multiinter -i CONTROL1_STATE1.bed CONTROL2_STATE1.bed 
ELA1_STATE1.bed ELA2_STATE1.bed ... | awk '($4>="6") {print $0}' | bedtools merge -i | 
cut -f1,2,3 > CHARACTERIZATION_STATE1.bed 
 
#Create a consensus chromatin state map for each group, and making 200bp windows 
(FigS3q) 
bedtools multiinter -i CONTROL1_STATE1.bed CONTROL2_STATE1.bed | awk '($4>="3") 
{print $0}' | bedtools merge -i | cut -f1,2,3 > CONTROL_STATE1.bed 
bedtools multiinter -i ELA1_STATE1.bed ELA2_STATE1.bed | awk '($4>="5") {print $0}' | 
bedtools merge -i | cut -f1,2,3 > ELA_STATE1.bed 
bedtools makewindows -b CONTROL_STATE1.bed -w 200 > 
CONTROL_STATE1_windowed.bed 
bedtools makewindows -b ELA_STATE1.bed -w 200 > ELA_STATE1_windowed.bed 
 
#Compare each state of C to ELA (perl script) to identify state transitions 
 #! /usr/bin/perl 
 use warnings; 
 use strict; 
 
 my $k = 1; 
 for (my $i = 1; $i<=10; $i++) { 
     for (my $j = 1; $j<=10; $j++) { 
     print $k." - Generating file CONTROL".$i."_to_ELA".$j.".bed...\n"; 
     system("bedtools intersect -a CONTROL_STATE".$i."_windowed.bed -b 
ELA_STATE".$j."_windowed.bed > C".$i."_to_ELA".$j.".bed"); 
     $k++; 
     } 
 } 
 
#Annotate each ST with region_analysis (Fig4b) 
region_analysis.pl -r -d ensembl -g hg19 -i FILE 
 
#Compute jaccard coefficient between our chromHMM states and publically available 
hippocampus and gastric chromatin states (FigS3e-f) 
bedtools jaccard -a CHARACTERIZATION_FILE -b PUBLIC_FILE 
 



#Visualize histone profiles at DMRs with ngs.plot (Fig6c-d) 
ngs.plot.r -G hg19 -R bed -L 2000 -FL 200 -C CONFIG_FILE -O PLOT 
 
#Calculate the number of DMRs intersecting with each type of chromatin state (Fig6e) 
bedtools intersect -b CONSENSUS_STATE1.bed -a DMR.bed -f 0.50 | wc -l  
 
#Visualize the neighborhood enrichment of chromatin states around UMRs and LMRs 
(FigS10a) 
java -jar ChromHMM.jar NeighborhoodEnrichment -nostrand -m FILE FILE.bed UMR.bed 
PLOT 
 
#Visualize histone profiles around UMRs and LMRs with ngsplot (FigS10b-g) 
ngs.plot.r -G hg19 -R bed -L 1000000 -FL 200 -C CONFIG_FILE -O PLOT  
 
#Visualize histone profiles around DS with ngsplot (FigS11) 
ngs.plot.r -G hg19 -R bed -L 2000 -FL 200 -C CONFIG_FILE -O PLOT  
 
#Call peaks using MACS2. For K36me3, K4me1, K27me3 and K9me3 the broad and 
nomodel parameters are used. Peaks across the samples are merged. The number of DS 
having an intersection with peaks were then identified 
macs2 callpeak -t SIGNAL_FILE.bam -f BAM -g hs -n NAME -c INPUT_FILE.bam 
macs2 callpeak -t SIGNAL_FILE.bam -f BAM -g hs -n NAME -c INPUT_FILE.bam --nomodel 
--broad 
ls *MARK | parallel "cat {} | cut -f1,2,3 | bedtools sort -i - | bedtools merge -i -" 
bedtools intersect -u -a DS_FILE -b PEAK_FILE  
 
## Compute statistics for enrichment of MACS peaks vs chromHMM DS using regioneR:  
> library(regioneR) 
> result_MARK_DS <- overlapPermTest(MARK_DS, MARK_MACS, ntimes=100000, 
genome="hg19", count.once=TRUE) 
 
4.2 WGBS Analyses 
# See Johnson et al, Current Protocols in Molecular Biology (2012) 21.23.1-21.23.28 (DOI: 
10.1002/0471142727.mb2123s99) for details. 
 
# Create C-to-T and G-to-A converted reference genomes 
cat hg19.fa | perl -pe ’if(!(/ˆ>/)){ tr/cC/tT/ }’ > hg19.ct.fa 
cat hg19.fa | perl -pe ’if(!(/ˆ>/)){ tr/gG/aA/ }’ > hg19.ga.fa 
 
# Index the converted reference genome sequence 
bin/bwa-0.5.9/bwa index -a bwtsw data/reference/hg19.ct.fa.gz 
bin/bwa-0.5.9/bwa index -a bwtsw data/reference/hg19.ga.fa.gz 
 
# Clip off first base of read 1 (same for read 2): 
cat dat/reads/bsseq 1 sequence.fq \ 
| perl -pe ‘$seq header=$ ; 
$seq=<>; 
$seq=substr($seq, 1); 
$qual header=<>; 
$qual=<>; 
$qual=substr($qual, 1); 
$ ="$seq header$seq$qual header$qual"’ \ 
> data/reads/bsseq 1 sequence.trim.fq 
 
# C-to-T convert read 1 (similar for G-to-A conversion of read 2): 



cat data/reads/bsseq 1 sequence.trim.fq \ 
| perl -pe ’$seq header=$ ; 
$seq=<>; 
$qual header=<>; 
$qual=<>; 
$seq =∼ tr/cC/tT/; 
$ ="$seq header$seq$qual header$qual"’ \ 
> data/reads/bsseq 1 sequence.ct.fq 
 
# Map reads to the converted reference genome (same for reverse strand): 
bwa-0.5.9/bwa aln -I -t 8 -q 20 \ 
data/reference/hg19.ct.fa.gz \ 
data/reads/bsseq 1 sequence.ct.fq.gz \ 
> results/mapping/bsseq 1 sequence.ct.hg19.ct.sai 
 
bin/bwa-0.5.9/bwa aln -I -t 8 -q 20 \ 
data/reference/hg19.ct.fa.gz \ 
data/reads/bsseq 2 sequence.ga.fq.gz \ 
> results/mapping/bsseq 2 sequence.ga.hg19.ct.sai 
 
# Generate SAM file of forward-strand mapping containing the unconverted read 
sequence and convert SAM to BAM formatted file (same for reverse strand): 
bin/bwa-0.5.9/bwa sampe 
data/reference/hg19.ct.fa.gz \ 
results/mapping/bsseq 1 sequence.ct.hg19.ct.sai \ 
results/mapping/bsseq 2 sequence.ga.hg19.ct.sai \ 
data/reads/bsseq 1 sequence.trim.fq.gz \ 
data/reads/bsseq 2 sequence.trim.fq.gz \ 
| samtools view -bS - \ 
> results/mapping/bsseq.hg19.forward.bam 
 
# Clip 3’ end of overlapping read pairs in forward and reverse strand mappings: 
java -jar bin/nxtgen-utils-0.1/NxtGenUtils.jar \ 
ClipOverlappingReadPairs \ 
-i $PWD/results/mapping/bsseq.hg19.forward.bam \ 
-o $PWD/results/mapping/bsseq.hg19.forward.clipped.bam \ 
-s $PWD/results/mapping/bsseq.hg19.forward.clipping.stats 
 
java -jar bin/nxtgen-utils-0.1/NxtGenUtils.jar \ 
ClipOverlappingReadPairs \ 
-i $PWD/results/mapping/bsseq.hg19.reverse.bam \ 
-o $PWD/results/mapping/bsseq.hg19.reverse.clipped.bam \ 
-s $PWD/results/mapping/bsseq.hg19.reverse.clipping.Stats 
 
# Sort read mappings by read name: 
bin/samtools-0.1.18/samtools sort -n \ 
results/mapping/bsseq.hg19.forward.clipped.bam \ 
results/mapping/bsseq.hg19.forward.clipped.readname.sorted 
bin/samtools-0.1.18/samtools sort -n \ 
results/mapping/bsseq.hg19.reverse.clipped.bam \ 
results/mapping/bsseq.hg19.reverse.clipped.readname.sorted 
 
# Identification of DMR was conducted as described in the methods section, using BSmooth 
at default settings for smoothing: 
  



# Remove clonal reads, read pairs not mapped at the expected distance based on the 
library insert size, and reads with a mapping quality score below 20: 
bin/samtools-0.1.18/samtools view -b -q 20 -f 2 -F 1024 
results/mapping/bsseq.hg19.forward.clipped.processed.dupmark.bam \ 
-o results/mapping/bsseq.hg19.forward.clipped.processed.dupmark.filtered.1.bam 
 
bin/samtools-0.1.18/samtools view -b -q 20 -f 2 -F 1024 
results/mapping/bsseq.hg19.reverse.clipped.processed.dupmark.bam \ 
-o results/mapping/bsseq.hg19.reverse.clipped.processed.dupmark.filtered.1.bam 
 
# Generate multi-pileup of reverse and forward strand read mappings: 
bin/samtools-0.1.18/samtools mpileup -f data/reference/hg19.fa \ 
results/mapping/bsseq. hg19.reverse.clipped.processed.dupmark.filtered.2.bam \ 
results/mapping/bsseq.hg19.forward.clipped.processed.dupmark.filtered.2.bam \ 
| gzip > results/profile/bsseq.hg19.mpileup.gz 
 
# Call methylation profile from multi-pileup file: 
java -jar bin/nxtgen-utils-0.1/NxtGenUtils.jar 
ProfileMethylation \ 
-i $PWD/results/profile/bsseq.hg19.mpileup.gz \ 
-o $PWD/results/profile/bsseq.hg19.profile \ 
-r lambda 
 
# Identification of lowly methylated and unmethylated regions (LMR and UMR), using  
# methylseekR: 
# where ALL_C is a table containing the pooled counts of methylated (M) and unmethylated  
# (T) cytosines, in a CpG context, generated by position-wise addition of all the methylation  
# profiles from the 38 subjects of the study. 
> CPGs <- makeGRangesFromDataFrame(ALL_C, keep.extra.columns=TRUE, 
ignore.strand=TRUE, seqnames.field="chr", start.field="pos", end.field="pos") 
> library(MethylSeekR) 
> library("BSgenome.Hsapiens.UCSC.hg19") 
> sLengths=seqlengths(Hsapiens) 
> library(rtracklayer) 
> session <- browserSession() 
> genome(session) <- "hg19" 
> query <- ucscTableQuery(session, "cpgIslandExt") 
> CpGislands.gr <- track(query) 
> genome(CpGislands.gr) <- NA 
> CpGislands.gr <- suppressWarnings(resize(CpGislands.grm 5000, fix="center")) 
> stat <- calculateFDRs(m=CPGs, CGIs=CpGislands.gr, PMDs=NA, num.cores=1) 
> FDR.cutoff <- 5 
> m.sel <- 0.5 
> n.sel = as.integer(names(stat$FDRs[as.character(m.sel), ][stats$FDRs[as.character(m.sel), 
]<FDR.cutoff])[1]) 
> UMRLMRs <- segmentUMRsLMRs(m=CPGs, meth.cutoff=m.sel, nCpG.cutoff=n.sel, 
PMDs=NA, num.cores=1, myGenomeSeq=Hsapiens, seqLengths=sLengths) 
 
# Comparison of DNA methylation patterns between highly and lowly expressed genes 
(top1000 and bot1000 genes, as of RNA-Seq data; see Fig2d and FigS8) was conducted 
using python & perl scripts available on GitHub at: 
https://github.com/zahiaaouabed/correlation-between_methylation_and_expression 
 
4.3 RNA-Sequencing 



# quality trimming and adapter clipping: 
fastx_trimer -Q33 -f 10 -z -i [R1.fastq] -o [trim1.R1.fastq.gz] 
fastx_trimer -Q33 -f 10 -z -i [R2.fastq] -o [trim1.R2.fastq.gz] 
java -jar trimmomatic-0.36.jar PE -phred33 -trimlog trimmomatic.LOG [trim1.R1.fastq.gz] 
[trim1.R2.fastq.gz] [trim2.R1.fastq.gz] [trim2.R2.fastq.gz] [trim2.U1.fastq.gz] 
[trim2.U2.fastq.gz] ILLUMINACLIP:adapters_TruSeq.fa:3:30:9 LEADING:5 TRAILING:5 
SLIDINGWINDOW:4:15 MINLEN:20 
prinseq-lite.pl -fastq [trim2.R1.fastq] -fastq2 [trim2.R2.fastq] -out_good [trimFinal.keep] -
out_bad [trim.Final.discard] -trim_tail_left 5 -trim_tail-rigth 5 
 
# read alignment with TopHat2: 
tophat2 -p 8 --b2-sensitive --no-novel-indels -G [ENSEMBL 75 gtf file] -o [output folder] [hg19 
bowtie indices] [R1 fastq] [R2 fastq] 
 
# transcript quantification with HTSeq-count: 
htseq-count -r name -union -i gene_name --stranded=reverse [name sorted indexed bam] 
[ENSEMBL 75 gtf file] 
 
# differential expression analysis in R with DESeq2: 
> dds <- DESeqDataSetFromMatrix(countData = countData, colData = colData, design =~  
Sex + Age + PMI + pH + RIN + Group) 
> dds <- DESeq(dds) 
> res <- results (dds) 
 
# RRHO2 in R: 
> library(ggplot2) 
> library(ggpointdensity) 
library(viridis) 
> amy_rank <- cbind(data.frame(amy$geneName,stringsAsFactors =TRUE), -
log(amy$pvalue, base = 10)*sign(amy$log2FoldChange)) 
> acc_rank <- cbind(data.frame(acc$Gene.Name,stringsAsFactors =TRUE), -log(acc$pvalue, 
base = 10)*sign(acc$log2FoldChange)) 
> amy_rank_overlap <- amy_rank[amy_rank$amy.geneName %in% 
acc_rank$acc.Gene.Name,] 
> acc_rank_overlap <- acc_rank[acc_rank$acc.Gene.Name %in% 
amy_rank$amy.geneName,] 
> amy_rank_overlap_sorted <- amy_rank_overlap[order(amy_rank_overlap$`-
log(amy$pvalue, base = 10) * sign(amy$log2FoldChange)`),] 
> acc_rank_overlap_sorted <- acc_rank_overlap[order(acc_rank_overlap$`-log(acc$pvalue, 
base = 10) * sign(acc$log2FoldChange)`),] 
> rownames(amy_rank_overlap_sorted) <- amy_rank_overlap_sorted$amy.geneName 
> rownames(acc_rank_overlap_sorted) <- acc_rank_overlap_sorted$acc.Gene.Name 
> RRHO2(amy_rank_overlap_sorted, acc_rank_overlap_sorted, 
labels=c("Amygdala","ACC"), plots=TRUE, outputdir="~/OUTPUTDIR/") 


