Supplementary Information

A quantitative evaluation of computational methods to accelerate the study of alloxazinederived electroactive compounds for energy storage

Qi Zhang^{1,2,3}, Abhishek Khetan^{1,2}, Süleyman Er^{1,2*}

 ¹ DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
 ² CCER – Center for Computational Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
 ³ Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The

Netherlands

* E-mail: <u>s.er@differ.nl</u>

Explanation of the abbreviations used in the below tables:

SMILES: simplified molecular-input line-entry system

FF: force field

SEQM: semi-empirical quantum mechanics

DFTB: density functional tight-binding

DFT: density functional theory

OPT: geometry optimization

SPE: single point energy

SOL: implicit aqueous medium

R²: coefficient of determination

RMSE: root-mean-square error

MAE: mean absolute error

Figure S1. Performance of (a) ΔU_{rxn} , (b) ΔG_{rxn}^{o} , and (c) ΔH_{rxn} as descriptors for the prediction of experimentally measured redox potentials, E_{exp}^{o} . The DFT computations are performed using PBE functional.

Figure S2. Performance comparisons of exchange-correlation functionals for the prediction of experimentally measured redox potentials, E_{exp}^{o} . The scatter plots in columns from left to right show linear correlations (versus E_{exp}^{o}) of the DFT calculated energy difference between the reactant and product compounds (ΔE_{rxn}), the LUMO energy (E_{LUMO}) of the reactant molecules and the HOMO energy (E_{HOMO}) of the product molecules. The color orange represents both OPT and SPE in gas-phase, the color yellow represents OPT in gas-phase followed by SPE with SOL (including implicit aqueous solvation), and the color green represents both OPT and SPE with SOL.

Figure S3. Performance comparisons of exchange-correlation functionals for the prediction of experimentally measured redox potentials, E_{exp}^{o} . The bar plots (a) and (b) show R² for ΔE_{rxn} and E_{LUMO} , respectively. The color orange represents both OPT and SPE in gas-phase, the color yellow represents OPT in gas-phase followed by SPE with SOL, and the color green represents both OPT and SPE with SOL.

Figure S4. Performance comparisons of low-level methods: FF, SEQM and DFTB. (a) shows R² for SPE values calculated at these three different levels of theory. Similarly, (b) shows R² for PBE calculated SPE data on the geometries obtained from these three different levels of theory. In (a) the solid bars show R² for SPE when using the ΔE_{rxn} descriptor and the hashed bars show R² for SPE when using the E_{LUMO} descriptor. In (b) the solid bars show the SPE results without the implicit solvation effect whereas the hashed bars show the results with the implicit solvation effects taken into account.

Figure S5. OPT and SPE using two different implicit solvation methods, PBF and PCM (COSMO), respectively. Color orange represents OPT and SPE in gas phase; Color yellow represents OPT in gas phase and SPE in solution phase; Color green represents OPT and SPE in solution phase; Color pink represents OPT in solution phase and SPE in gas phase.

Table S1. A summary of 2D structures, SMILES representations, experimentally measured redoxpotentials and the predicted redox potentials for 21 alloxazine-based molecules considered in this work.The measured redox potential values have been corrected versus RHE at pH = 7. When analyzing theperformance of each descriptor, we divided the set of errors of the 21 molecule into three groups ofseven molecules each. The seven molecules with the lowest errors under each approximation arecolored yellow, the seven molecules with the highest errors are colored red and the seven in the middleare colored orange. 2D molecule representations have been created using ChemDraw Professional[version18.0.0.231(4318)]https://www.perkinelmer.com/product/chemdraw-professional-chemdrawpro.

<i>#</i>	Mologulo	E ^o exp	$E_{\rm g}^{\rm o}$	E_s^0	E ^o aq	$SE - E^0 E^0$	$SE = E^0 E^0$	\$ <i>E</i> - <i>E</i> ⁰ <i>E</i> ⁰	Dof
#	Wiolecule	(V)	(V)	(V)	(V)	OL-Lg-Lexp	$0L-E_{\rm S}-E_{\rm exp}$	OL-Laq-Lexp	Kei
1	c1cccc(c12)nc3c(n2C)n	-0.186	-0.200	-0.185	-0.204	-0.014	0.001	-0.018	[1]
2	clcc(C)cc(cl2)nc3c(n2)C)nc(=O)[nH]c3=O	-0.198	-0.167	-0.202	-0.164	0.031	-0.004	0.034	[1]
3	c1c(C)ccc(c12)nc3c(n2)	-0.218	-0.176	-0.217	-0.223	0.042	0.001	-0.005	[1]
4	$\begin{array}{c} \underset{H_{3}C}{\overset{H_{3}C}{\underset{H_{3}C}{\overset{H_{3}}{\underset{H_{3}C}{\overset{H_{3}}{\underset{H_{3}C}{\overset{H_{3}}{\underset{H_{3}C}{\overset{H_{3}}{\underset{H_{3}C}{\overset{H_{3}}{\underset{H_{1}}{\underset{H_{1}}{\atopH_{1}}{\underset{H_{1}}$	-0.235	-0.191	-0.225	-0.241	0.044	0.01	-0.006	[1]
5		-0.150	-0.147	-0.137	-0.144	0.003	0.013	0.006	[1]

(a) The predicted redox potentials when using ΔE_{rxn} as the descriptor calculated with PBE.

	c1cc(Cl)cc(c12)nc3c(n2								
	C)nc(=O)[nH]c3=O								
	<u></u>								
6	$c_{I} \leftarrow c_{N} \leftarrow c_{N$	-0.164	-0.163	-0.174	-0.153	0.001	-0.01	0.011	[1]
7	$c_{n}^{CH_{3}} = c_{n}^{CH_{3}} + c_{n$	-0.117	-0.163	-0.127	-0.150	-0.046	-0.01	-0.033	[1]
8	$c_{H_{3}c} \leftarrow c_{N} \leftarrow$	-0.169	-0.172	-0.178	-0.185	-0.003	-0.009	-0.016	[1]
9	c1c(C)c(C1)cc(c12)nc3c $(n2C)nc(=O)[nH]c3=O$	-0.181	-0.173	-0.174	-0.189	0.008	0.007	-0.008	[1]
10	$\downarrow^{H} \downarrow \downarrow \downarrow^{CH_{3}} \downarrow^{N} \downarrow^{N} \downarrow^{O}$ $clcc(F)cc(c12)nc3c(n2)$ $C)nc(=O)[nH]c3=O$	-0.145	-0.143	-0.145	-0.147	0.002	0	-0.002	[1]
11	clc(F)ccc(cl2)nc3c(n2)	-0.178	-0.177	-0.202	-0.185	0.001	-0.024	-0.007	[1]
12	$h_{SC} \xrightarrow{CH_{S}} h_{SC} \xrightarrow{CH_{S}} h_{S$	-0.177	-0.171	-0.182	-0.214	0.006	-0.005	-0.037	[1]

13	$c_{F}^{CH_{3}} \xrightarrow{CH_{3}}_{NH} \xrightarrow{V}_{NH}^{N}$ c1c(Cl)c(F)cc(c12)nc3c (n2C)nc(=O)[nH]c3=O	-0.123	-0.137	-0.132	-0.128	-0.014	-0.009	-0.005	[1]
14	$\begin{array}{c} \overset{H}{\longrightarrow} \overset{CH_{3}}{\longrightarrow} \overset{N}{\longrightarrow} \overset{N}{\rightarrow} \overset{O}{\rightarrow} $	-0.175	-0.169	-0.163	-0.187	0.006	0.012	-0.012	[1]
15	$ \begin{array}{c} \overset{\circ}{\overset{\circ}{\underset{H}{\overset{H}{\underset{H}{\underset$	-0.359	-0.246	-0.328	-0.355	0.113	0.031	0.004	[1]
16	$\sum_{\mu=0}^{NC} \sum_{\mu=0}^{CH_3} \sum_{\nu=0}^{N+1} $	-0.062	-0.115	-0.075	-0.068	-0.053	-0.013	-0.006	[1]
17	$ \begin{array}{c} \overset{H}{\longrightarrow} \overset{CH_{3}}{\longrightarrow} \overset{H}{\longrightarrow} \overset{GH_{3}}{\longrightarrow} \overset{H}{\longrightarrow} \overset{O}{\longrightarrow} \\ \overset{N}{\longrightarrow} \overset{R}{\longrightarrow} \overset{C}{\longrightarrow} \overset{H}{\longrightarrow} \overset{O}{\longrightarrow} \\ \overset{H}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{H}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \\ \overset{R}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\to} \overset{C}{\longrightarrow} \overset{C}{\to} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\to} \overset{C}{\to} \overset{C}{\to$	-0.100	-0.135	-0.100	-0.108	-0.035	0	-0.008	[1]
18	$ \begin{array}{c} \overset{H_{9}C}{\longrightarrow} {\longrightarrow} \overset{N}{\longrightarrow} \overset{N}{\longrightarrow} \overset{H}{}_{0} \overset{O}{}_{0} \overset{N}{}_{0} \overset{N}{}_{0} \overset{O}{}_{0} \overset{N}{}_{0} \overset{N}{\overset{N}}_{0} \overset{N}{\overset{N}_{0} \overset{N}{\overset{N}_{0} \overset{N}{\overset{N}}_{0} \overset{N}{\overset{N}_{0} \overset{N}{\overset{N}}_{0} \overset{N}{\overset{N}_{0} \overset{N}{\overset{N}}_{0} \overset{N}{\overset{N}}_{0} \overset{N}{\overset$	-0.286	-0.283	-0.270	-0.243	0.003	0.016	0.043	[2]
19		-0.206	-0.257	-0.180	-0.152	-0.051	0.026	0.054	[2]

	O=C(O)c(c1)ccc(c12)nc 3c(n2)c(=O)[nH]c(=O)[nH]3								
20	$\begin{array}{c} \overset{\text{MeO}}{\underset{\text{MeO}}{\overset{}}} \overbrace{\overset{}{\overset{}}} \overset{}{\underset{}} \overset{}{}} \overset{}{\underset{}} \overset{}{} \overset{}{} \overset{}{} \overset{}}{} \overset{}} \overset{}{} \overset{}{} \overset{}}{} \overset{}} \overset{}}{} \overset{}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{}} \overset{}}{} \overset{}}{}} \overset{}}{}} \overset{}}{}} \overset{}}{} \overset{}}{} \overset{}}{} \overset{}}{}} \overset{}}{}} \overset{}}{}} \overset{}}{}}\overset{}}{}\overset{}}{}}\overset{}}\overset{}}{}\overset{}}{}\overset{}}{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}{}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}{}\overset{}\\\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}\overset{}}\overset{}}\overset{}\overset{}}\overset{}}$	-0.336	-0.378	-0.373	-0.358	-0.042	-0.037	-0.022	[2]
21	$ \begin{array}{c} {}^{HO} \qquad \qquad$	-0.316	-0.323	-0.319	-0.289	-0.007	-0.003	0.027	[2]
		MAE		0.025	0.011	0.017			
	Maximum signed erro	or [Mole	cule #]	0.113 [15]	-0.037 [20]	0.054 [19]			

(b) The predicted redox potentials when using E_{LUMO} as the descriptor calculated with PBE.

#	Molecule	E ^o exp	Ego	E_s^0	E ^o aq	$\delta F = F^0 - F^0$	$\delta F = F^0 - F^0$	$\delta F = F^0 - F^0$	Ref
	Monceare	(V)	(V)	(V)	(V)	OL Lg Lexp	or D's D'exp	on nad nexp	I.C.I
1	c1cccc(c12)nc3c(n2C)	-0.186	-0.192	-0.185	-0.182	-0.006	0.001	0.004	[1]
2	c1cc(C)cc(c12)nc3c(n 2C)nc(=O)[nH]c3=O	-0.198	-0.209	-0.197	-0.193	-0.011	0.001	0.005	[1]
3	$H_{3}C \xrightarrow{CH_{3}} N \xrightarrow{V} N $	-0.218	-0.217	-0.208	-0.205	0.001	0.01	0.013	[1]

4	$H_{3C} \xrightarrow{C}_{N} \xrightarrow{V}_{N} \xrightarrow{V}_{N} \xrightarrow{V}_{N}$ $c1c(C)c(C)cc(c12)nc3$ $c(n2C)nc(=O)[nH]c3$	-0.235	-0.234	-0.220	-0.218	0.001	0.015	0.017	[1]
5	$c_{q} \xrightarrow{CH_{3}} \underbrace{K}_{N} \xrightarrow{CH_{3}} \underbrace{K}_{N} \xrightarrow{C}_{N} \underbrace{K}_{N} \underbrace{K}_{N} \xrightarrow{C}_{N} \underbrace{K}_{N} \xrightarrow{C}_{N} \underbrace{K}_{N} \underbrace{K}_{N} \underbrace{K}_{N} \xrightarrow{C}_{N} \underbrace{K}_{N} $	-0.150	-0.147	-0.146	-0.146	0.003	0.004	0.004	[1]
6	$c_{\text{I}} = c_{\text{I}} $	-0.164	-0.160	-0.158	-0.158	0.004	0.006	0.006	[1]
7	$c_{I} \neq f_{N} \neq f_{N} \neq f_{N} \neq f_{N}$ $c_{I}c(CI)c(CI)cc(c12)nc$ $3c(n2C)nc(=O)[nH]c3$ $=O$	-0.117	-0.127	-0.125	-0.128	-0.01	-0.008	-0.011	[1]
8	$c_{H_{3}C} \xrightarrow{CH_{3}} \xrightarrow{N} \xrightarrow{V} \xrightarrow{O}$ $c_{H_{3}C} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{V} \xrightarrow{N}$ $c_{1}c(Cl)c(C)cc(cl2)nc$ 3c(n2C)nc(=O)[nH]c3 =O	-0.169	-0.179	-0.170	-0.171	-0.01	-0.001	-0.002	[1]
9	$H_{H^{C}} \xrightarrow{C} N \xrightarrow{V}_{N} \xrightarrow{V}_{N} \xrightarrow{V}_{N} \xrightarrow{V}_{N}$ $c1c(C)c(Cl)cc(c12)nc$ $3c(n2C)nc(=O)[nH]c3$ $=O$	-0.181	-0.174	-0.170	-0.170	0.007	0.011	0.011	[1]
10	$\begin{array}{c} \overset{PH_{3}}{\underset{F}{\longrightarrow}}\overset{PH_{3}}{\underset{N}{\longrightarrow}}\overset{N}{\underset{N}{\longrightarrow}}\overset{P}{\underset{N}{\longrightarrow}}\overset{PH_{3}}{\underset{N}{\longrightarrow}}\overset{N}{\underset{N}{\longrightarrow}}^{P}\\ c1cc(F)cc(c12)nc3c(n\\ 2C)nc(=O)[nH]c3=O\end{array}$	-0.145	-0.149	-0.154	-0.152	-0.004	-0.009	-0.007	[1]

11	$F_{H} \xrightarrow{P}_{N} \xrightarrow{P}$	-0.178	-0.174	-0.179	-0.176	0.004	-0.001	0.002	[1]
12	$ \begin{array}{c} \overset{P_{h_{0}}C}{\underset{F}{\overset{C}{\overset{N}}}}}}}}}$	-0.177	-0.180	-0.181	-0.178	-0.003	-0.004	-0.001	[1]
13	$c_{F} \leftarrow F_{N} \leftarrow F_{N$	-0.123	-0.126	-0.131	-0.131	-0.003	-0.008	-0.008	[1]
14	$H \rightarrow H \rightarrow$	-0.175	-0.218	-0.204	-0.199	-0.043	-0.029	-0.024	[1]
15	c1cc(N(C)C)cc(c12)n $(C)c3c(n2)c(=O)[nH]$ $c(n3)=O$	-0.359	-0.331	-0.341	-0.339	0.028	0.018	0.02	[1]
16	$\sum_{\mu=1}^{NC} \sum_{n=1}^{CH_3} \sum_{n=1}^{N+2} $	-0.062	-0.064	-0.066	-0.071	-0.002	-0.004	-0.009	[1]
17		-0.100	-0.085	-0.102	-0.105	0.015	-0.002	-0.005	[1]

	N#Cc(c1)ccc(c12)n(C								
)c3c(n2)c(=O)[nH]c(n								
	3)=O								
18	$ \begin{array}{c} \overset{H_{5}C}{\underset{H_{5}C}{\leftarrow}} \overset{H_{5}C}{\underset{N}{\leftarrow}} $	-0.286	-0.290	-0.292	-0.296	-0.004	-0.006	-0.01	[2]
19	$\int_{HOOC} \left(\sum_{n \in \mathbb{Z}} \sum_{n$	-0.206	-0.183	-0.187	-0.195	0.023	0.019	0.011	[2]
20	$MeO_{MeO} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} N$	-0.336	-0.360	-0.362	-0.367	-0.024	-0.026	-0.031	[2]
21	$ \begin{array}{c} {}^{HO} \underbrace{ \begin{array}{c} \\ \\ \\ \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \begin{array}{c} \\ \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} \underbrace{ \end{array}} \underbrace{ \end{array}} \underbrace{ \end{array}} \underbrace{ \begin{array}{c} \end{array}} \underbrace{ \end{array}} $	-0.316	-0.289	-0.307	-0.309	0.027	0.009	0.007	[2]
		MAE		0.011	0.009	0.010			
	Maximum sign	ed erroi	· [Molec	-0.043 [14]	-0.029 [14]	-0.031 [20]			

Table S2. Performance comparisons of the exchange-correlation functionals for the prediction of the experimentally measured redox potentials. DFT_g represents both OPT and SPE in gas phase; DFT_s represents OPT in gas-phase followed by SPE in SOL; DFT_{aq} represents both OPT and SPE in SOL.

Scheme for OPT and SPE	DFTg		D	FTs	DFT _{aq}		
DFT methods	R ²	RMSE (V)	R ²	RMSE (V)	R ²	RMSE (V)	
LDA	0.801	0.035	0.944	0.019	0.880	0.027	
PBE	0.756	0.039	0.959	0.016	0.910	0.024	
PBE-D3	0.752	0.039	0.958	0.016	0.916	0.023	
BLYP	0.741	0.040	0.958	0.016	0.935	0.020	
BLYP-D3	0.729	0.041	0.939	0.019	0.937	0.020	
B3LYP	0.719	0.042	0.934	0.020	0.934	0.020	
B3LYP-D3	0.660	0.046	0.834	0.032	0.934	0.020	
PBE0	0.725	0.041	0.939	0.019	0.927	0.021	
PBE0-D3	0.720	0.042	0.932	0.020	0.923	0.022	
HSE06	0.711	0.042	0.922	0.022	0.925	0.022	
M08-HX	0.680	0.044	0.875	0.028	0.907	0.024	

(a) R^2 and RMSE when using ΔE_{rxn} as the descriptor

(b) R^2 and RMSE when using E_{LUMO} as the descriptor

Scheme for OPT and SPE		DFTg	D	FTs	DFT_{aq}		
DFT methods	R ²	RMSE (V)	R ²	RMSE (V)	R ²	RMSE (V)	
LDA	0.958	0.016	0.973	0.013	0.971	0.013	
PBE	0.956	0.016	0.974	0.013	0.972	0.013	
PBE-D3	0.956	0.016	0.974	0.013	0.972	0.013	
BLYP	0.955	0.017	0.974	0.013	0.974	0.013	
BLYP-D3	0.955	0.017	0.976	0.012	0.974	0.013	
B3LYP	0.960	0.016	0.967	0.014	0.960	0.016	
B3LYP-D3	0.960	0.016	0.967	0.014	0.960	0.016	
PBE0	0.960	0.016	0.961	0.015	0.952	0.017	
PBE0-D3	0.960	0.016	0.961	0.016	0.952	0.017	
HSE06	0.961	0.015	0.966	0.015	0.958	0.016	
M08-HX	0.961	0.015	0.943	0.019	0.927	0.021	

Scheme for OPT and SPE	DFTg		DF	Ts	DFT _{aq}		
DFT methods	R ²	RMSE (V)	R ²	RMSE (V)	R ²	RMSE (V)	
LDA	0.770	0.038	0.801	0.035	0.803	0.035	
PBE	0.743	0.040	0.700	0.043	0.731	0.041	
PBE-D3	0.741	0.040	0.687	0.044	0.715	0.042	
BLYP	0.732	0.041	0.678	0.045	0.684	0.044	
BLYP-D3	0.727	0.041	0.651	0.046	0.671	0.045	
B3LYP	0.706	0.043	0.595	0.050	0.594	0.050	
B3LYP-D3	0.700	0.043	0.481	0.057	0.578	0.051	
PBE0	0.711	0.042	0.592	0.050	0.568	0.052	
PBE0-D3	0.705	0.043	0.567	0.052	0.556	0.052	
HSE06	0.729	0.041	0.542	0.053	0.604	0.049	
M08-HX	0.615	0.049	0.325	0.064	0.363	0.063	

(c) R^2 and RMSE when using E_{HOMO} as the descriptor

Table S3. Performance comparisons of nine different SEQM methods for the prediction of experimentally measured redox potentials. SEQM_g represents OPT or SPE in gas-phase. PBE_g and B3LYP_g represent SPE calculation in gas-phase with the two respective functionals. PBE_s and B3LYP_s represent SPE calculation in SOL and with the two respective functionals.

Scheme for	OPT	:SEQM _g	OPT	:SEQMg	OPT	:SEQMg	OPT	: SEQMg	OPT	: SEQMg
OPT and SPE	SPE	:SEQM _g	SP	E:PBEg	SP	E:PBE _s	SPE:	B3LYP _g	SPE: B3LYPs	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
AM1	0.288	0.066	0.763	0.038	0.932	0.020	0.707	0.043	0.933	0.020
MNDO	0.100	0.074	0.630	0.048	0.823	0.033	0.576	0.051	0.818	0.034
MNDOD	0.206	0.070	0.650	0.046	0.845	0.031	0.595	0.050	0.830	0.032
PM3	0.502	0.055	0.737	0.040	0.946	0.018	0.683	0.044	0.919	0.022
PM6	0.598	0.050	0.773	0.037	0.866	0.029	0.727	0.041	0.881	0.027
PM6-D3	0.598	0.050	0.778	0.037	0.914	0.023	0.722	0.041	0.918	0.022
PM6-D3H4X	0.591	0.050	0.753	0.039	0.821	0.033	0.710	0.042	0.842	0.031
PM7	0.688	0.044	0.691	0.044	0.834	0.032	0.666	0.045	0.837	0.032
RM1	0.523	0.054	0.816	0.034	0.954	0.017	0.816	0.034	0.976	0.012

(a) R^2 and RMSE when using ΔE_{rxn} as the descriptor

(b)	\mathbf{R}^2 and	RMSE when	using I	ELUMO	as the descriptor
------------	--------------------	-----------	---------	-------	-------------------

Scheme for OPT:SEQM _g		:SEQM _g	OPT:SEQM _g		OPT:SEQMg		OPT: SEQMg		OPT: SEQMg	
OPT and SPE	SPE	:SEQM _g	SPE:PBEg		SPE:PBE _s		SPE: B3LYPg		SPE: B3LYPs	
Method	R ²	RMSE(V)	\mathbb{R}^2	RMSE(V)	\mathbb{R}^2	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
AM1	0.923	0.022	0.938	0.020	0.965	0.015	0.947	0.018	0.963	0.015
MNDO	0.874	0.028	0.936	0.020	0.962	0.015	0.947	0.018	0.961	0.016
MNDOD	0.857	0.030	0.938	0.020	0.963	0.015	0.948	0.018	0.960	0.016
PM3	0.875	0.028	0.918	0.023	0.945	0.018	0.926	0.021	0.936	0.020
PM6	0.903	0.024	0.933	0.020	0.954	0.017	0.942	0.019	0.954	0.017
PM6-D3	0.903	0.025	0.934	0.020	0.955	0.017	0.942	0.019	0.955	0.017
PM6-D3H4X	0.907	0.024	0.934	0.020	0.953	0.017	0.945	0.018	0.960	0.016
PM7	0.904	0.024	0.945	0.018	0.960	0.016	0.955	0.017	0.962	0.015
RM1	0.919	0.022	0.940	0.019	0.962	0.015	0.940	0.019	0.966	0.014

Table S4. Performance comparisons of nine different SEQM methods for prediction of experimentally measured redox potentials. $SEQM_{aq}$ represents OPT or SPE in SOL. PBE_g and $B3LYP_g$ represent SPE calculation in gas-phase with the two respective functionals. PBE_s and $B3LYP_s$ represent SPE calculation in SOL and with the two respective functionals.

Scheme for	Scheme for OPT:SEQM _{aq}		OPT:SEQMaq		OPT:SEQM _{aq}		OPT: SEQMaq		OPT: SEQM _{aq}	
OPT and SPE	SPE	:SEQM _{aq}	SPE:PBEg		SPE:PBE _s		SPE: B3LYPg		SPE: B3LYPs	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
AM1	0.684	0.044	0.676	0.045	0.850	0.030	0.656	0.046	0.846	0.031
MNDO	0.448	0.058	0.490	0.056	0.803	0.035	0.477	0.057	0.812	0.034
MNDOD	0.424	0.060	0.489	0.056	0.817	0.034	0.470	0.057	0.819	0.033
PM3	0.678	0.045	0.789	0.036	0.892	0.026	0.765	0.038	0.928	0.021
PM6	0.820	0.033	0.712	0.042	0.928	0.021	0.673	0.045	0.927	0.021
PM6-D3	0.817	0.034	0.699	0.043	0.914	0.023	0.660	0.046	0.911	0.023
PM6-D3H4X	0.801	0.035	0.678	0.045	0.855	0.030	0.634	0.048	0.851	0.030
PM7	0.877	0.028	0.678	0.045	0.917	0.023	0.632	0.048	0.895	0.025
RM1	0.804	0.035	0.692	0.044	0.855	0.030	0.662	0.046	0.881	0.027

(a) R^2 and RMSE when using ΔE_{rxn} as the descriptor

	(ł	b)	\mathbb{R}^2	and	RN	ASE	when	using	$E_{\rm LUMO}$	as the d	escriptor
--	----	----	----------------	-----	----	------------	------	-------	----------------	----------	-----------

Scheme for	Scheme for OPT:SEQM _{aq}		OPT:SEQM _{aq}		OPT:SEQM _{aq}		OPT: SEQM _{aq}		OPT: SEQMaq	
OPT and SPE	SPE	:SEQM _{aq}	SPE:PBEg		SPE:PBE _s		SPE: B3LYPg		SPE: B3LYPs	
Method	R ²	RMSE(V)	\mathbb{R}^2	RMSE(V)	\mathbb{R}^2	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
AM1	0.785	0.036	0.949	0.018	0.973	0.013	0.957	0.016	0.967	0.014
MNDO	0.660	0.046	0.966	0.014	0.976	0.012	0.958	0.016	0.942	0.019
MNDOD	0.668	0.045	0.965	0.015	0.975	0.012	0.958	0.016	0.941	0.019
PM3	0.700	0.043	0.936	0.020	0.951	0.017	0.938	0.020	0.928	0.021
PM6	0.927	0.021	0.944	0.019	0.961	0.016	0.943	0.019	0.951	0.017
PM6-D3	0.927	0.021	0.944	0.019	0.960	0.016	0.944	0.019	0.951	0.017
PM6-D3H4X	0.929	0.021	0.943	0.019	0.959	0.016	0.942	0.019	0.951	0.017
PM7	0.934	0.020	0.953	0.017	0.965	0.015	0.955	0.017	0.951	0.017
RM1	0.839	0.031	0.955	0.017	0.967	0.014	0.961	0.016	0.963	0.015

Table S5. Performance comparisons of FF(OPLS3e) in combination with the different DFT methods for the prediction of experimentally measured redox potentials. FF_g represents OPT or SPE in gasphase. FF_{aq} represents OPT or SPE in SOL. PBE_g and $B3LYP_g$, represent SPE calculation in gasphase with the two respective functionals. PBE_s and $B3LYP_s$ represent SPE calculation in SOL and with the two respective functionals.

(-)		υ								
Scheme for	С	PT:FFg	0	PT: FF _g	0	PT: FF _g	0	PT: FF _g	OI	PT: FFg
OPT and SPE	s	PE:FFg	SPE: PBEg		SPE: PBE _s		SPE: B3LYPg		SPE: B3LYPs	
Method	R ² RMSE(V)		R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
OPLS3e	3e 0.494 0.056		0.612	0.049	0.798	0.035	0.647	0.047	0.767	0.038
Scheme for	OPT:FF _{aq}		OPT: FF _{aq}		0	PT: FF _{aq}	OPT: FF _{aq}		OP	T: FF _{aq}
OPT and SPE	SPE:FF _{aq}		SPE: PBEg		SPE: PBE _s		SPE: B3LYP _g		SPE:	B3LYP _s
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
OPLS3e	OPLS3e 0.039 0.077		0.664	0.046	0.872	0.028	0.644	0.047	0.815	0.034

(a) \mathbb{R}^2 and RMSE when using ΔE_{rxn} as the descriptor

(b) R^2 and RMSE when using E_{LUMO} as the descriptor

Scheme for	OP	T: FFg	0	PT: FFg		OPT: FFg	OP'	T: FF _g
OPT and SPE	SPE	E: PBE _g	SF	PE: PBE _s	SI	PE: B3LYP _g	SPE: B3LYPs	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
OPLS3e	0.837	0.032	0.895 0.025		0.847	0.031	0.914	0.023
Scheme for	OP	T: FF _{aq}	0	PT: FF _{aq}		OPT: FF _{aq}	OPT	Γ: FF _{aq}
OPT and SPE	SPE	: PBE _{aq}	SF	PE: PBE _s	SI	PE: B3LYPg	SPE:	B3LYP _s
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
OPLS3e	0.845	0.031	0.908	0.024	0.855	0.030	0.925	0.021

Table S6. Performance comparisons of the two different DFTB methods for the prediction of experimentally measured redox potentials. DFTB_g represents OPT or SPE in gas-phase. PBE_g and $B3LYP_g$ represent SPE calculation in gas-phase with the two respective functionals. PBE_s and $B3LYP_s$ represent SPE calculation in SOL and with the two respective functionals.

Scheme for	OPT:DFTBg		OPT: DFTBg		OPT: DFTBg		OPT:	DFTBg	OPT: DFTBg	
OPT and SPE	SPE:DFTB _g		SPE: PBEg		SPE: PBE _s		SPE: 1	B3LYP _g	SPE: B3LYPs	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
DFTB-D3	0.448	0.058	0.746	0.040	0.946	0.018	0.715	0.042	0.925	0.021
GFN1-xTB	0.672	0.045	0.744	0.040	0.863	0.029	0.704	0.043	0.854	0.030

(a) R^2 and RMSE when using ΔE_{rxn} as the descriptor

		using	² L0M		esemptor						
Scheme for	OP	T:DFTBg	OPT: DFTBg		OPT:	DFTBg	OPT:	DFTBg	OPT: DFTBg		
OPT and SPE	SP	E:DFTBg	SP	E: PBE _g	SPE	: PBE _s	SPE: 1	SPE: B3LYP _g SPE: B3I		: B3LYPs	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
DFTB-D3	0.910	0.024	0.950	0.018	0.971	0.013	0.947	0.018	0.948	0.018	
GFN1-xTB	0.927	0.021	0.954	0.017	0.972	0.013	0.960	0.016	0.972	0.013	

(b) R^2 and RMSE when using E_{LUMO} as the descriptor

Table S7. Performance comparisons of two different DFTB methods for the prediction of experimentally measured redox potentials. $DFTB_{aq}$ represents OPT or SPE in SOL. PBE_g and $B3LYP_g$ represent SPE calculation in gas-phase with the two respective functionals. PBE_s and $B3LYP_s$ represent SPE calculation in SOL and with the two respective functionals.

() It und It												
Scheme for	OPT:DFTB _{aq}		r OPT:DFTB _{aq}		OPT:DFTBaq OPT: DFTBaq		OPT:	OPT: DFTB _{aq}		DFTB _{aq}	OPT: DFTBaq	
OPT and SPE	E SPE:DFTB _{aq}		SPE: PBEg		SPE: PBEs		SPE: B3LYPg		SPE: B3LYPs			
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)		
DFTB-D3	0.647	0.047	0.735	0.040	0.881	0.027	0.703	0.043	0.885	0.027		
GFN1-xTB	0.854	0.030	0.685	0.044	0.801	0.035	0.642	0.047	0.811	0.034		

(a) \mathbb{R}^2 and RMSE when using ΔE_{rxn} as the descriptor

(b) R^2 and R	MSE when using	$E_{\rm LUMO}$ as the d	escriptor	
Sahama for	ODT-DETD	ODT: DETP	ODT: DETD	

Scheme for	cheme for OPT:DFTB _{aq}		OPT: DFTB _{aq}		OPT: DFTB _{aq}		OPT: DFTB _{aq}		OPT: DFTB _{aq}	
OPT and SPE	SPI	E:DFTB _{aq}	SP	E: PBEg	SPE	: PBE _s	SPE:	B3LYP _g	SPE	: B3LYP _s
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
DFTB-D3	0.872	0.028	0.955	0.017	0.977	0.012	0.951	0.017	0.961	0.016
GFN1-xTB	0.944	0.019	0.961	0.016	0.975	0.012	0.962	0.015	0.971	0.013

DFT calculation details

As DFT options in Jaguar, a medium grid density for OPT and a fine grid density for SPE calculations have been used. Energy and RMS density matrix change convergence criteria are set to the default values of 5.0×10^{-5} and 5.0×10^{-6} Hartree, respectively. The direct inversion in the iterative subspace is employed as the convergence scheme. For OPT, we used Jaguar's mixed pseudospectral grids with default cutoffs. For SPE calculations, we used pseudospectral grids with accurate cutoffs. To treat the solvated molecules in water, we used the PBF solver.^{3,4} The calculations are performed with LACVP^{**++} basis set with polarization and diffuse functions.^{5,6} The LACVP basis set includes effective core potentials (ECP), which represent the core electrons in a parametrized form. Therefore, ECPs speed up calculations on light elements. We note that for the elements from H to Ar, such as in the current work, the widely employed 6-31G basis and the LACVP are essentially the same. The alloxazines considered in this work contain C, H, O, N, F and Cl atoms, and thus, the use of LACVP^{**++} basis in this work is consistent with a 6-31G^{**++} basis.

References for Supplementary Information

- 1. Hasford, J. J. & Rizzo, C. J. Linear free energy substitutent effect on flavin redox chemistry. J. Am. Chem. Soc. 120, 2251–2255 (1998).
- 2. Lin, K. *et al.* A redox-flow battery with an alloxazine-based organic electrolyte. *Nat. Energy* **1**, 16102 (2016).
- 3. Tannor, D. J. *et al.* Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory. *J. Am. Chem. Soc.* **116**, 11875–11882 (1994).
- 4. Bochevarov, A. D. *et al.* Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. *Int. J. Quantum Chem.* **113**, 2110–2142 (2013)
- Hay, P. J. & Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials. for K to Au Including the Outermost Core Orbitale. J. Chem. Phys. 82, 299–310 (1985).
- 6. Jaguar, version 10.5. Schrödinger, Inc., New York, NY, 2019.