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1. Geometrically-frustrated Ising model and initial conditions

The magnetic system studied herein is a square-octagonal lattice whose spins are partitioned into four-spin ferro-
magnetically (FM) coupled chains (Fig. 1a). The chains are coupled to one another antiferromagnetically (AFM).
Ferromagnetic and antiferromagnetic couplings have respective strengths of Jij = −1.8 and Jij = 1. Each plaquette
of the lattice (square or octagon) has three antiferromagnetic bonds, meaning that in any classical spin state, each
plaquette has at least one frustrated bond. One very desirable property of the square-octagonal lattice is that it can
be embedded directly (without a multi-qubit approximation to single qubits) into the “Chimera”1 qubit connectivity
of the QA processor (see Supplementary Fig. 5).

In the classical ground state of the square-octagonal lattice the ferromagnetic chain bonds are never frustrated. By
contracting each four-qubit chain down into a single spin (Supplementary Fig. 3a–c) we can transform the square-
octagonal lattice into the triangular antiferromagnet. Therefore to describe the statistical mechanics of the square-
octagonal lattice we begin with the triangular antiferromagnet, which has the same low-energy description.

a. Triangular antiferromagnet and order-by-disorder

The triangular antiferromagnet is an archetypal example of geometric frustration, and has been widely studied both
in the quantum case3–8 and earlier in the related stacked magnet9–11. In the classical case (i.e., with Γ = 0), it does
not exhibit long-range order but is critical at T = 0 [12].

To understand the ordering influence of the transverse field we begin with a single AFM triangle. In the classical
Ising model this system has six ground states: ↑↑↓, ↑↓↑, ↓↑↑, ↑↓↓, ↓↑↓, ↓↓↑ (Supplementary Fig. 2a). Adding a small
transverse field Γ results in six different ground states (to first order perturbation in Γ): |↑↑l〉, |↑↓l〉, |↓l↑〉, |↑l↓〉,
|l↑↓〉, |l↓↑〉, where l indicates a spin in symmetric superposition of up and down: (|↑〉 + |↓〉)/

√
2, aligned with the

transverse field and having σz = 0 and σx = 1. In addition to the energetic contribution of the classical Ising portion
of the Hamiltonian, the transverse field contributes −Γ to the ground state energy due to the transverse-field-aligned
spin. Extending these states from individual triangular plaquettes to the triangular lattice, we can tile any one of
these six perturbative ground states across the lattice such that each triangle has one spin up, one spin down, and one
spin aligned with the transverse field, giving a ground state of the entire triangular lattice (Supplementary Fig. 2d).

Excitations in the lattice can be understood through a mapping from an Ising spin state to a state of complex
“pseudospin” rotors on the lattice plaquettes (Supplementary Fig. 2b–c). Given a perturbative ground state of the
lattice as described above (Supplementary Fig. 2d), we note that the spins of the lattice are partitioned into three
sublattices based on spin value: one up, one down, and one transverse field aligned. This allows us to map a spin
state to a set of complex rotors on each plaquette Pj as follows. Denoting the three sublattices as S1, S2, S3 and
the Pauli z-operators on the spins of a triangle in each of these sublattices as σzj1, σzj2, σzj3 respectively, we define the
plaquette’s pseudospin as

ψj =
(
σzj1 + e2πi/3σzj2 + e4πi/3σzj3

)
/
√

3, (1)

where σz gives magnetization in the z-basis (Supplementary Fig. 2c). We can map both classical and quantum spin
states of a plaquette onto complex rotors as shown in Supplementary Fig. 2b–c. The three-sublattice long range
order for a lattice can be quantified by the average of ψj over all plaquettes; within order 1/L corrections from the

a b c

Supplementary FIG. 1. Square-octagonal and triangular geometrically-frustrated lattices. In this work we simulate
a square-octagonal lattice (a) containing four-spin ferromagnetic chains (blue) coupled together antiferromagnetically (red).
When each chain is contracted (b) into a single spin (c), the result is the widely-studied triangular antiferromagnet. The
low-energy physics and phase diagram of the square-octagonal transverse field Ising model can be understood by analogy to
the triangular case, as established in previous work2.
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Supplementary FIG. 2. Ordering effect of transverse field. a, Each triangular plaquette has six degenerate ground states in
the classical case. Two such ground states can differ by a single spin flip, resulting in a “flippable” spin that does not affect the
energy. A small transverse field compels a flippable spin to align with the transverse field, assuming symmetric superposition
and giving an energetic contribution proportional to the transverse field. This leads to a sixfold degenerate perturbative ground
state. b,c, Each of these ground states maps to a complex pseudospin. d, A perturbative ground state for a single plaquette
can be tiled across the lattice, maximizing the number of flippable states. e, When there is a fluctuation in the plaquette
pseudospin field, triangles at the interface have no contribution from the transverse field, leading to an excitation proportional
to the interface boundary and the transverse field.

cylindrical boundary, this is equal to the complex order parameter ψ as also defined in Equation (2) in the main text
for the square-octagonal lattice:

ψ =
1

|P|
∑
j

ψj =

(
1

|S1|
∑
i∈S1

σzi +
ei2π/3

|S2|
∑
i∈S2

σzi +
ei4π/3

|S3|
∑
i∈S3

σzi

)
/
√

3. (2)

Considering only states in which each triangle is in either a quantum or classical ground state, we note that since
any two neighboring triangles share two spins, their pseudospins differ in angle by at most π/3. Indeed, starting
from a perturbative ground state of the lattice, we can rotate a region by π/3 into a different perturbative ground
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Supplementary FIG. 3. Phase diagrams of triangular and square-octagonal lattices. Both the triangular lattice (a)
and the square-octagonal lattice (b) have rich phase diagrams with the same qualitative features: In the Γ/J , T/J plane,
ordered and critical regions form domes delineated by topological Kosterlitz-Thouless phase transitions at finite temperature,
with a quantum critical point at Γ/J ≈ 1.65 and Γ/J ≈ 1.76 respectively2,5.

state. The excitation created by this fluctuation in the pseudospin field comes from its boundary: each triangle at
the interface between the two phases is in a classical ground state with no energetic contribution from the transverse
field. Thus the energy associated with rotating a domain by π/3 against a prevailing pseudospin alignment is linearly
proportional to both the size of the fluctuation’s boundary and the strength of the transverse field.

Although the microscopic details are different, this situation is qualitatively similar to the six-state discrete XY
model13 (sometimes called the six-state clock model14) used to describe certain properties of the phase diagram. In
this model each degree of freedom is a rotor with angle θi = 0, π/3, 2π/3, ..., 5π/3, with Hamiltonian

H = −JXY

∑
〈i,j〉

cos(θi − θj). (3)

In this model adjacent rotors can differ by more than π/3. The relationship between the discrete XY model and
the triangular lattice was studied in the stacked magnet by Blankschtein et al.9 and later established fully in the
transverse field Ising model via theory and PIMC simulations3–5. In the limit Γ→ 0, the corresponding XY exchange
strength JXY is linearly proportional to the single-qubit tunneling Γ [8]. It is in the pseudospin that we see the familiar
topological excitations—vortices and antivortices—that lead to topological phase transitions in the transverse field
Ising model2,4,15–17.

The work of Moessner and others3–5 expanded the picture beyond the perturbative limit, establishing a rich phase
diagram (Supplementary Fig. 3) in the (Γ/J, T/J) plane with an ordered phase at low temperature forming a dome
between the critical point at Γ = 0, T = 0 and a quantum critical point at Γ/J ≈ 1.65, T = 0 [5]. Above the ordered
phase there is an extended critical region with power-law decay of correlations, and at even higher temperature the
system is paramagnetic. The finite-temperature phase transitions bounding the critical region are Kosterlitz-Thouless
phase transitions in the 2D XY universality class, while the quantum phase transition is in the 3D universality class4.

b. Square-octagonal lattice

Having established the situation for the triangular antiferromagnet in the transverse field Ising model, we return
to the subject of the experimental demonstration: the square-octagonal lattice. Qualitatively, the foundation we laid
out for the triangular lattice transfers directly to the square-octagonal lattice. The classical ground states are in
one-to-one correspondence between the square-octagonal and triangular lattices, since no ferromagnetic chain bond
is frustrated in a ground state. Therefore both lattices are critical at Γ = 0, T = 0. More generally, it was previously
established (see [2] Extended Data Fig. 9) that this lattice has a phase diagram with all the features seen in the
triangular lattice, shown in Supplementary Fig. 3.

It should be recognized that for the temperature, transverse fields and lattice sizes studied herein finite size effects
are strong, and behaviour cannot be well characterized by perturbative approximations or the thermodynamic limit.
The phase diagram is a guide, and the perturbative limits provide some intuition, but we do not argue that the
parameterizations studied (Fig. 3a) are exemplars for the phases predicted by a scaling analysis. Understanding
deviations and corrections to the thermodynamic limit at mesoscopic scales is a task well suited to PIMC and QA
relative to other methods that may capture only thermodynamic or perturbative limits, and methods that capture
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only qualitative or universal features of the phases. Furthermore, the triangular lattice is not sufficient to understand
the square-octagonal lattice physics.

One important difference from the triangular lattice is that in the perturbative limit Γ→ 0, order-by-disorder can
be explained by energy splitting from cotunneling of a four-qubit chain in a Greenberger-Horne-Zeilinger (GHZ) state

(|↑↑↑↑〉 + |↓↓↓↓〉)/
√

2, rather than the tunneling of a single spin. This difference in the number of qubits involved
in cotunneling explains the difference in the shape of the phase diagram at small Γ. The ordering in the square
octagonal lattice also occurs at lower temperature in the triangular lattice, this can be intuitively understood by
noting the additional degrees of freedom per plaquette. As a consequence of the increased entropy, disordered phases
are preferred to lower temperature. Although there is a one-to-one correspondence between ground states of the
triangular and square octagonal lattices, additional patterns of excitation are possible around plaquettes in the square
octagonal case owing to frustration of ferromagnetic bonds. Such frustrations are common at the temperatures and
transverse fields we study. Perhaps the most interesting consequence of such breaks is a symmetry breaking between
directions of pseudospin rotation (Fig. 2e Supplementary Fig. 22). At finite temperature we can also demonstrate
that patterns of entanglement between and within chains are distinct from those in the triangular model (Methods
8).

c. Initial conditions for the simulation

The QA processor can be initialized with an arbitrary classical Ising spin state. The simplest of these is an ordered
state (Fig. 1d), in which the three sublattices are ↑↑↓ or ↓↓↑ in some permutation. There are six such states, and

they have have complex order parameter ψ = eikπ/3 · 2/
√

3, k = 1, . . . , 6 (Fig. 1c). Accordingly, we denote the states
by Sk, k = 1, . . . , 6.

To construct the CCW initial condition for a lattice on 6m rows of four-spin chains (Supplementary Fig. 4), we
divide the lattice into six slices, with slice k being the spins of rows ((k − 1)m+ 1), . . . , km. On the spins of slice k,
we assign the value they are given in Sk. In this way we construct a state in which the pseudospin winds in a full
rotation along the periodic dimension of the cylinder. Similarly, we construct the CW initial condition by giving the
spins of slice k the value they have in state S7−k.

The CCW and CW states are thereby constructed with topological obstruction. They are classical ground states,
and through four-qubit flips we can explore limited parts of the ground state manifold. It is impossible, however, to
escape the topological winding: one cannot reach an ordered state with these local rearrangements. In this sense the
CCW and CW states correspond to metastable valleys in the quantum potential when a perturbative transverse field
is added.

Moreover, the CCW and CW states differ from one another in subtle ways. Since the four-qubit chains have
an orientation with respect to the cylindrical boundary condition, they are not actually symmetric to one another,
unlike the corresponding configurations in the triangular lattice. In terms of both equilibrium properties and escape
dynamics, there are subtle differences between the CCW and CW states. The fact that these are captured in the QA
simulation (Fig. 2e, Supplementary Fig. 22) is quite remarkable.

We study lattices on 4L(2L− 6) spins with cylindrical boundary condition, with L chains from one open boundary
to the other, and 2L− 6 chains around the periodic dimension. AFM couplings at the boundary are set to Jij = 1/2
instead of 1 in order to maintain high degeneracy of classical ground states. We study instances with L ∈ {6, 9, 12, 15},
the largest system having 1440 spins. The presence of inoperable qubits prevents us from repeating the study of an
1800-spin system2. For each lattice size we use two embeddings (Supplementary Fig. 5) to ensure consistency of
results.

The construction of the square octagonal lattice for every lattice size studied, and construction of the classical
initial condition, are implemented in C++ in the open source code (Methods 10).

d. Winding number

We quantify topological winding of the pseudospin field as follows. We take a pseudospin field P as a square lattice
whose rows alternate between neighboring octagonal and square plaquettes; a cylindrical lattice with L = 15 made
up of a 15-by-24 lattice of chains then becomes a 28-by-24 square grid of plaquette pseudospins. We then take the
two-dimensional Fourier transform

M(a, b) =

L1−1∑
j=0

L2−1∑
k=0

exp(2πi jam ) exp(2πikbn )Pj,k (4)
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Supplementary FIG. 4. CCW and CW wound initial conditions. Shown are examples of wound initial conditions for
the largest system size studied: a 24× 15 lattice of four-qubit chains. The lattice is divided into six stripes of four rows each;
each stripe is assigned to a different ordered initial condition Sk winding around in a complete rotation. The three sublattices,
derived from the triangular antiferromagnet, are shown with different marks: circles, squares, and triangles respectively. The
state Sk has complex order parameter eikπ/3 · 2/

√
3. The resulting CCW and CW states are ground states of the classical

potential. The winding of the pseudospin provides a topological obstruction from which QA and PIMC must escape.

where L1 and L2 are the dimensions of the square lattice representation of P. Note that the zeroth order in the Fourier
term is proportional to the order parameter up to corrections at the boundary m = M(0, 0)/(L1L2) +O(1/L2). For
an integer winding number w, we define

f(w) =

√√√√L1−1∑
a=0

( |M(a,w)|
L1L2

)2

.

This gives us 24 possible values of w. The ordered, CCW, and CW states have peaks in f(w) at w = 0, w = 1,
and w = −1 respectively. The relationships between equilibrium values of these quantities is explored in Fig. 2e and
Supplementary Fig. 22, offering a richer set of observables than just the order parameter.

2. Quantum annealing processor

Quantum annealing experiments were performed on a quantum processing unit with a similar circuit architecture
to the processor used in previous quantum simulation experiments1,2,18 but using a lower-noise fabrication process.
In the previous system2,18, all 2048 radio-frequency SQUID flux qubits and 6016 couplers were operational. In this
experiment, 2030 qubits and 5909 couplers were operational; consequently we studied systems of up to 1440 spins
instead of up to 1800 spins.

Each lattice size is embedded in two different ways in the qubit connectivity graph of the QA processor, differing
primarily by a half rotation. As in previous experiments2, we maintain a calibration refinement to compensate
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Embedding A

Embedding B

Supplementary FIG. 5. Lattice embeddings for the 1440-spin system. All experiments are run using two lattice em-
beddings to ensure consistency; they differ mainly by a rotation of 180 degrees. Shown here are the embeddings of the largest
lattice simulated in this work, which has L = 15 chains from one end of the cylinder to the other, and 2L − 6 = 24 chains
around the periodic dimension.

for static crosstalks and minimize time-dependent drift in the Hamiltonian. This refinement minimizes variance
in individual qubit magnetizations using flux-bias offsets. Using fine-grained modifications of coupling energies, it
minimizes variance among the statistics of isomorphic antiferromagnetic couplers that relate to one another either by
rotation of the cylinder or by isomorphic location in the two embeddings.

Quantum annealing itself typically involves sweeping the annealing parameter s from 0 to 1 in the Hamiltonian
(Equation (1) in the main text), using a schedule of J(s) and Γ(s) such that J(0) � Γ(0) and J(1) � Γ(1) [19].
This approach is closely related to adiabatic quantum computing20,21 performed at finite temperature. In this work
we use a QA processor to probe Hamiltonian (Equation (1) in the main text) at an intermediate value of s, rather
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than annealing s gradually. Experiments were run in a quantum evolution Monte Carlo (QEMC) loop2, which mimics
Markov-chain Monte Carlo but replaces the Markov chain update step with a reverse anneal. The QPU is initialized
with a classical state, which for the first reverse anneal is a specified input, and for later anneals is the output of the
previous step. Each anneal, aimed at evolution of the Hamiltonian H(s∗), begins with s = 1, reduces s to s∗ over
1−s∗ microseconds, pauses for time tp, then increases s from s∗ to 1 over 1−s∗ microseconds (detail in Supplementary
Fig. 7). The major benefit of using QEMC in this experiment is that it allows fine-grained examination of intermediate
points of the relaxation from initial condition to the converged distribution. At the end of each anneal, we insert
a pause of 10 ms to minimize potential heating and sample-to-sample correlation. These pauses dominate overall
experimental time and we have not attempted to optimize them as a parameter. Experiments were run for a range
of temperatures, annealing parameters, and lattice sizes. Estimates of dynamics, with the exception of Fig. 3d for
s ≤ 0.35, were drawn from 300 QEMC chains of 16 samples each, for each of two lattice embeddings. Equilibrium
estimates, and data for s ≤ 0.35 in Fig. 3d, were drawn from 60 chains of 128 samples; for equilibrium estimates we
discard the first half of the chain as burn-in.

a. Extracted QA timescales

Since measured QA timescales are often near the minimum experiment time of 1 µs, we must determine a reasonable
cutoff for measurements in which we have confidence. This goes hand in hand with our definition of convergence time.
We fit observations at longer timescales to a simple exponential process

m(t) = (m0 −mf )e−t/τ +mf (5)

where m0, mf , and τ are fitting parameters. The long-time limit mf is well defined as the equilibrium estimate of
〈m〉. Restricting our time to series data to longer timescales we capture predominantly a decay well approximated
by a single exponent decay and sampling noise, even if many different timescales are relevant on shorter timescales.
However, the exponent (τ) was found to be quite a high variance estimator. Therefore we define our convergence time
to be the time at which the fit function converges to within a cutoff value of its equilibrium value, which correlates
well with τ . The advantage of using a fit function relative to a non-parametric estimator for convergence to a cutoff
is again to reduce noise in the estimator, particularly for faster convergences.

The choice of this cutoff is motivated by the quality of data, as illustrated in Supplementary Fig. 6. The chosen
cutoff of 0.05 is significantly larger than variation of individual QA estimates of m(t). This means that any measured
QA convergence time of greater than 1 µs is supported by strong evidence. Reducing the cutoff could lead to the
inclusion of extracted cutoff times with weak supporting evidence.

b. Insensitivity to quench rate

In this work we have measured QA relaxation time using only the relaxation pause portion of the QEMC protocol
(Supplementary Fig. 7). To justify this approach, we provide evidence that relaxation outside the pause is negligible.
We do so by showing that QA relaxation is insensitive to changes in the quench rate.

Since we observe that QA convergence time varies exponentially in s over the observable range of roughly 0.36 ≤
s ≤ 0.40, we consider the following oversimplified but illustrative model of relaxation far from equilibrium. Let us
momentarily consider relaxation as an s-dependent task that is performed at a rate proportional to e−αs, for α chosen
such that the system relaxes twice as fast at s = 0.38 as at s = 0.39. Since the quench and reverse anneal portions
of the QEMC protocol have |ds/dt| = 1/(1 µs) in our experiments, and pause time tp ≥ 1 µs, the total change in m
during each of the reverse anneal and quench phases is less than 2% of the change in m during the pause.

This model is vastly oversimplified but roughly in line with our observations. To show experimentally that out-of-
pause relaxation is negligible in our experiments, we perform a spot-check at s = 0.38, T = 13.7 mK with pause time
tp = 1 µs. We use reverse anneal and quench rates of |ds/dt| = 1/(1 µs), 1/(2 µs), and 1/(4 µs) (Supplementary Fig. 7).
The consistency of order parameter convergence as a function of pause time indicates that out-of-pause relaxation is
negligible.

3. Measurement of QA parameters

The comparison of QA and PIMC relaxation requires detailed measurement of the QA processor parameters, and
mapping to the resulting parameters of the implemented TFIM. In particular, we require measurements of qubit body
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Supplementary FIG. 6. Resolvable and unresolvable convergence times. We consider any convergence times, given as
the time at which the exponential fit function is 0.05 away from its terminal value, to be resolved only if it is greater than
1 µs. This condition is only relevant for QA, since all PIMC times are resolvable. a, QA times are extracted from exponential
fits for a variety of annealing parameters s and temperatures T/J . Yellow and purple marks are from CCW and CW initial
conditions, respectively; black marks are the geometric mean of the two, which we use as a single representative timescale. We
discard any data for which either CCW or CW convergence time is less than 1 µs. b, Timescales are extracted from exponential
fits to data from CCW and CW initial conditions. In the middle panel, for each of CCW and CW only three data points are
significantly separated from the terminal value: 1× 1 µs, 1× 2 µs, and 2× 1 µs (1× 2 µs and 2× 1 µs match closely, indicating
that our measurement of relaxation time is accurate). These data are supported by the fact that convergence varies smoothly
as a function of temperature, but for higher temperatures even the first data point is indistinguishable from sampling error,
thus we cannot resolve a credible convergence timescale. c, Our extracted timescales, given by time to reach a cutoff of 0.05 in
the exponential fit, is motivated by assuring statistical significance of the fit itself for small QA times. Here we scatter PIMC
convergence times, extracted with the same methods, against lifetime τ of the exponential fit, showing strong agreement for
s = 0.38 over a variety of temperatures. All error bars are 95% confidence interval on the mean.

inductance Lq, capacitance Cq, critical current Ic, and the two terms in the quantum annealing Hamiltonian: qubit
tunneling energy Γq(s), and qubit coupling energy Jq(s), for the range of s we studied.
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Supplementary FIG. 7. Insensitivity to quench rate. To support the claim that relaxation during quench and reverse
anneal phases is insignificant, and therefore this time should be disregarded in analysis, we double and quadruple the amount
of time spent during these operations. A systematic trend of “faster” relaxation for longer quench time would suggest that
out-of-pause relaxation is significant; we observe no such effect. Data shown are for tp = 1 µs, s = 0.38, T = 13.7 mK as in Fig.
2. Time spent during each of the reverse anneal and quench phases is tq(1− s∗), in this case 0.62 µs, 1.24 µs, 2.48 µs. All error
bars are 95% confidence interval on the mean.

a. Qubit model parameters

We measure Lq and Ic by measuring qubit persistent current as a function of s in the the regime Γq � J and fit
to a classical model of the radio-frequency (rf) SQUID22. We measure Lq = 284 pH and Ic = 2.34 µA.

We then measure Γq(s) and device capacitance with qubit tunneling spectroscopy. For a given value of s, we perform
single qubit spectroscopy with a single attached probe qubit as described in Ref. 23. At this value of s, we sweep
the qubit through degeneracy and fit the energy eigenspectrum to a one-dimensional dispersion relation. This gives a
measurement of Γq(s) and qubit persistent current, Iqp(s). We perform these measurements on 500 qubits for a range
of s and fit the resulting data to a SQUID model to obtain a best fit capacitance of Cq = 113.7 fF. Supplementary
Fig. 9a shows these measurements along with the best fit to a SQUID model.

Finally, we calibrate Jq(s) by performing qubit tunneling spectroscopy on coupled two-qubit systems. When two
qubits are coupled with a term Jq(s)σ

z
1σ

z
2 , then E2(s) − E1(s) ≡ 2Jq(s) where E1(s) and E2(s) are the first and

second excited state eigenenergies of the two-qubit system, respectively, at s. Note that this holds for all values of
s, even when Γq ≈ Jq. To perform spectroscopy, we choose a value of s and attach a third probe qubit to one of
the two coupled qubits. We then measure the energy eigenspectrum of the system at degeneracy as described in
Ref. 24. We measure 32 two-qubit pairs at a range of s to estimate Jq(s) versus s. Supplementary Fig. 9b shows these
measurements. We also show the prediction for Jq(s) from the SQUID model. We emphasize that the dashed line in
Supplementary Fig. 9b is not a fit: we use the calibrated device parameters and obtain excellent agreement between
the two-qubit spectroscopy and the predictions from the SQUID model.

The square-octagonal lattice studied in this work contains sets of four qubits connected with Jij = −1.8. The
standard calibration we describe above is typically done with qubits coupled with Jij ≈ 1. Changing Jij on couplers
attached to a particular qubit causes an inductive loading shift which we compensate with an inductance tuner
attached to the qubit22. We identified a small but systematic offset in the inductance compensation when tuning
couplers to the strong ferromagnetic regime used in this study. We quantify this offset by repeating the calibration of
Lq as described above, but with a coupler attached to the qubit tuned to Jij = −1.8 rather than the typical Jij ≈ 1 we
use. For the embedding used in this study, we measure an average change in qubit inductance of ∼ 1%. Specifically,
the average qubit inductance increases by 2.9 ± 0.29 pH. Taking two standard deviations in this measurement gives
a 95% confidence interval on the qubit body inductance of Lq = 286.9± 0.58 pH; this uncertainty is a leading source
of error in the QA schedule.

b. Low Noise Processor

We recently modified our fabrication stack to produce D-Wave 2000Q processors that have significantly lower
flux noise. Supplementary Fig. 8 shows macroscopic resonant tunneling measurements on qubits from our standard
fabrication stack and our lower noise fabrication stack. The macroscopic resonant tunneling protocol is described in
detail here18. The broadening of the tunneling lineshape, W , is determined by the integrated flux noise experienced
by the qubit during the tunneling protocol. For devices manufactured in our standard fabrication stack, measure an
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Supplementary FIG. 8. Single qubit macroscopic resonant tunneling measurement results for a standard D-Wave 2000Q
processor (FAB1, labeled in red) compared to the low noise D-Wave 2000Q processor used in this study (FAB2, labeled in
green) for similar tunneling amplitudes (a) ∆/h = 6.5 to 7.0 MHz and (b) ∆/h = 1.5 to 1.6 MHz. Two lobes represent the two
possible initial states of the qubit (Γ0→1 and Γ1→0). Measurements are described in detail here18

integrated noise of W = 145 ± 2 µΦ0. For devices manufactured in our lower noise stack we measure an integrated
flux noise of W = 33± 0.6 µΦ0.

c. Qubit temperature

We measure effective qubit temperature using a single-qubit susceptibility measurement described in detail in the
Supplemental Material (p.8) of [25]. Equilibrium qubit population is measured for a range of biases to a qubit at
degeneracy; these populations are then fit as a function of bias to a hyperbolic tangent (tanh) curve corresponding
to a thermal distribution. From this fit we extract a qubit temperature. We measure the qubit temperature for all
qubits used in the study. The measured temperature systematically deviates from the nominal cryostat set point by
roughly one millikelvin. Supplementary Fig. 9c shows the relationship between nominal cryostat temperature and
measured qubit temperature. Per-qubit variation in effective temperature is approximately Gaussian with a standard
deviation of roughly 0.5 mK. Error in the mean qubit temperature of roughly 2% is estimated by taking the minimum
and maximum over four independent temperature measurements.

d. Background susceptibility and compensation

A leading systematic deviation between our flux qubits and ideal spin-1/2 Ising moments is background suscepti-
bility χ, through which qubits mediate a next-nearest-neighbor coupling. We estimate χ at a particular annealing
parameter s by measuring deviation from ideal in the phase diagram of two coupled qubits under independent fields
h1 and h2 (Supplementary Fig. 9d). As in previous experiments (see2 Methods), we compensate for this behavior
by tuning the programmed QA input couplings Jij such that upon application of background susceptibility, the ef-
fective Hamiltonian approximates the desired square-octagonal TFIM. More formally, we denote the application of
a background susceptibility χ to a classical Ising Hamiltonian H by fχ(H). Using an iterative method, we find a
Hamiltonian H(−χ) such that fχ(H(−χ)) ≈ H, as described in the Methods of previous work2. The relative tuning
between AFM couplers is up to 2%, and the relative tuning between FM couplers is up to 9%.

e. Effective spin-1/2 Hamiltonian

The QA processor approximately implements two-level spin-1/2 qubits in the TFIM using rf-SQUID flux qubits,
which have more than two energy levels. We have described measurement of the SQUID parameters. To determine
and validate an effective spin-1/2 Hamiltonian for the fully-frustrated square-octagonal lattice, we diagonalize the
SQUID Hamiltonian for a 12-qubit square-octagonal system (three chains) with periodic boundaries (Supplementary
Fig. 10a). This gadget is used because it captures the three-sublattice ordering of the square-octagonal lattice, and is
small enough to diagonalize easily. It also captures local signatures of entanglement in agreement with measurements
over a larger lattice (Sec. 8). Since background susceptibility is included in the SQUID model, we diagonalize H(−χ)
instead of H. We perform approximate diagonalization using six energy levels per SQUID and retain 16 energy
levels per four-SQUID chain. We find best-fit values of Γ(s) and J(s) so that the first eight eigengaps of the Ising
Hamiltonian approximately match the first eight eigengaps of the SQUID Hamiltonian (Supplementary Fig. 10b).
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Supplementary FIG. 9. Measurement of QA parameters. a, Measurements of Γ(s) versus MAFMI
2
p . The solid lines

show the best fit SQUID model. b, Measurements of Γ(s), MAFMI
2
p , and J(s) versus s. The solid and dashed lines show the

SQUID model. c, QA experiments are performed using nominal cryostat temperatures of between 12 mK and 24 mK. At each
nominal temperature, an effective qubit temperature is measured via qubit susceptibility measurements. Error bars indicate
uncertainty in mean qubit temperature, taken from the minimum and maximum of four independent measurements at each
nominal temperature. d, Background susceptibility χ is measured through the study of two-qubit phase diagrams. We use
linear regression values for compensation across experimental values of annealing parameter s.

The resulting parameters admit a mapping from the QA annealing parameter s to Ising parameters Γ(s) and J(s)
(Supplementary Fig. 10c) with strong agreement between the low-energy spacing of the TFIM spectrum and the
SQUID spectrum.

The main uncertainties in the QA schedule come from temperature T and qubit body inductance Lq. Supplementary
Fig. 10d shows the QA schedule for several temperatures in the (Γ/J, T/J) plane. The uncertainty in average qubit
temperature gives a vertical error bar (hidden by markers) and the uncertainty in average qubit body inductance
(±0.058 pH) gives a diagonal error bar corresponding approximately to an uncertainty in s of ±0.007.

4. Path-integral Monte Carlo methods

In this work we study several variants of path-integral Monte Carlo, a standard tool for estimating equilibrium
statistics of systems in the transverse field Ising model. To estimate statistics accurately PIMC acts in the limit of
continuous imaginary time (CT-PIMC), and we focus on this continuous-time form in the main body of the paper.
While general-purpose PIMC code typically updates one spin at a time, collective tunneling of four-qubit chains is
essential to the behavior of the square-octagonal lattice under study. It is therefore natural that PIMC simulation can
be accelerated by collectively updating four-qubit ferromagnetically-coupled chains. We do so using Swendsen-Wang
updates over four-qubit chains.

As with QA experiments, PIMC estimates are drawn from 600 independent repetitions for each parameter set. Raw
output is projected to the classical space by taking the top Trotter slice. We perform up to 222 PIMC4q sweeps to
estimate equilibrium properties and convergence.
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Supplementary FIG. 10. Effective transverse field Ising model in a network of SQUIDs. a, We study the spectrum
of a minimal representative system: a 12-qubit square-octagonal lattice with periodic boundary. The QA processor uses rf-
SQUID flux qubits to implement an effective transverse field Ising model. b, The lowest 9 energy levels of the SQUID spectrum
are shown (some are degenerate), along with the spectrum of an effective Ising model whose parameters Γ(s) and J(s) are
determined by fitting a weighted average of SQUID eigengaps. c, The parameters Γ(s) and J(s) provide the annealing schedule
of the effective Ising model as implemented in flux qubits. d, Extracted Ising schedule is shown in the (T/J,Γ/J) plane for a
range of operating temperatures. The two major uncertainties are in the average qubit body inductance and the average qubit
temperature, which respectively give diagonal and vertical error bars (vertical bars are hidden by the markers).

a. Discrete-time PIMC and Trotter error

The continuous-time PIMC approximation is based upon the Suzuki-Trotter transformation26

Z = Tr
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Where HP is in this paper a diagonal matrix, σx are Pauli operators, and M is the number of Trotter slices into
which the imaginary time dimension is discretized. We can associate the trace of the transformed quantity on the
right to a sum over classical states of dimension N × M (space by imaginary time), called world-lines. For the
TFIM there is no sign problem—i.e., the terms have positive weights—thereby allowing a Markov chain Monte Carlo
(MCMC) integration27–29. The MCMC updates can be interpreted as a non-physical dynamics that is nevertheless
known to capture correctly scaling in classical dynamics, and some special types of scaling in physical quantum
dynamics30. Specialized hardware based on room-temperature nanomagnetic p-bits has even been proposed as a
(manifestly classical) physical implementation of the discrete-time PIMC dynamics31.

The associated Trotter error of discrete-time PIMC (DT-PIMC) can be driven to zero by making MT/Γ much
larger than 1; in our CT-PIMC simulations we have taken M to be 216, large enough to reflect the infinite limit
over our parameter ranges. However, one can compromise between Trotter error and convenience of algorithmic
implementation; values of M = 32 or 64 are particularly convenient for bit-packing of the state into standard containers
for which fast machine instructions exist, and allow for implementations on bandwidth limited platforms like GPUs.
The methods we study all exploit the Swendsen-Wang algorithm over small qubit sets, though it is worth noting that
for very small MT/Γ other non-cluster methods may become feasible in principle. In Supplementary Fig. 11 we show
DT-PIMC estimates of 〈m〉 as a function of the number of Trotter slices M . Both convergence and equilibrium values
are affected by the choice of M for parameters within our experimental range.

b. PIMC timing

Supplementary Fig. 12 shows timings of several variants of PIMC on a single CPU thread. For each variant, sweep
time is dependent on T/J , Γ/J , and system size. Since time per MC sweep grows approximately linearly in the
number of spins, we report only times for the largest system (L = 15, 1440 spins). Time per sweep varies as a
function of T/J and Γ/J ; we show the warmest and coldest QA temperatures over a range of Γ/J corresponding
to annealing parameter s between 0.30 and 0.40. CT-PIMC and DT-PIMC code was run single-threaded on two
comparable CPUs: CT-PIMC on an Intel(R) Xeon(R) CPU E5-2690 v3 and DT-PIMC on an Intel(R) Xeon(R)
Platinum 8275CL, respectively.

We also measured timings for 32-slice, four-qubit-update DT-PIMC on an NVIDIA Tesla V100 GPU. For the 1440-
spin lattice, running a single experiment gives a per-sweep time of roughly 40 µs independent of T and Γ/J . The
experiment can be run on a GPU with a tradeoff between latency and throughput; optimizing for total throughput
increases latency to roughly 50 µs per sweep, but decreases the total time needed for a throughput orientated ex-
periment by a factor of roughly 120. A throughput orientated experiment may involve drawing many independent
samples, or studying many different parameterizations, as we do here. This means that for an appropriately struc-
tured experiment, the high-end GPU can provide results approximately 1000 times faster than a single CPU thread
for 32-slice DT-PIMC.

Supplementary Fig. 13 shows PIMC convergence time as a function of QA convergence time, as in Fig. 4, in units
of both PIMC sweeps and PIMC CPU time.

c. Wall-clock time and power usage

We have compared convergence timescales in QA and PIMC simulations with the aim of studying relaxation
dynamics. To take more practical benchmarking perspective, one can consider the total time taken to generate QA
output samples, which we have made little effort to optimize. The QEMC cycle is dominated by a 10 ms wait time
between consecutive samples; this parameter was chosen conservatively to allow settling of the system and to minimize
heating. A spot-check indicated that reducing this to 2 ms resulted in no statistically significant difference in behavior.
The next dominant factors are a programming time of 10 ms (amortized over the number of samples drawn) and a
per-sample readout time of 274 µs. As a result of the wait time, the wall-clock time of the QA processor is roughly
104 times longer than the relaxation time under study. Removing the wait time and drawing many samples per
programming leaves the QA duty cycle dominated by readout time, which in the case of tp = 4 µs renders the wall-
clock time roughly 102 times longer than the relaxation time. Since the focus of the study was relaxation dynamics
rather than optimization of wall-clock time, we have not probed the effect of further reducing the wait time.

One important consideration in the utility of quantum processors is energy consumption. The QPU apparatus
draws 25 KW, dominated by refrigeration. The 8176 and E5-2690 CPUs draw 6 W and 11 W per core respectively;

The i7-8650U CPU has a power specification (TDP) of 15 W; we can estimate the power-per-core (4 cores) as
3.75 W. The V100 GPU has a power specification of 300 W and, as mentioned above, can be up to 1000 times faster
than a CPU core for this particular application. Thus taking the maximum time-advantage of QA over a CPU thread
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Supplementary FIG. 11. Trotter error in discrete-time PIMC. a–f, convergence of 〈m〉 estimates, analogous to Fig. 2b, for
discrete-time PIMC with varying number of Trotter slices M , up to the continuous-time limit M = 216 (f). Model parameters
are Γ/J = 0.736 and T/J = 0.244, with L = 15 (1440 spins). Imaginary time discretization has a strong effect on CCW/CW
asymmetry in the lattice. g, varying M leads to varying estimates of order parameter 〈m〉 at equilibrium, for both raw and
quenched PIMC samples. Estimates are taken from 220 four-qubit update Monte Carlo sweeps; data points represent an average
of 600 replicas from each initial state; error bars are 95% confidence intervals from bootstrap.

and an entire V100 GPU as approximately 106 and 103 respectively, we see that the quantum processor—counting
only the relaxation pause time—can be over an order of magnitude more power-efficient than both CPU and GPU.
If we consider QA wall-clock time, as discussed above, we see no power advantage. However, we expect the scaling of
power requirements for near-term QA processors to show very flat scaling compared to computational power, since
the dominant power draw—from a pulse-tube dilution refrigerator—is fairly constant.
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5. Competing methods: alternatives to PIMC

There are several methods one might consider using to estimate equilibrium statistics of the system in question.
Here we lay out the case that PIMC is the most appropriate of these methods in this setting, justifying our focus on a
comparison between PIMC and QA. It should be noted that it is impossible to explore all possible heuristic dynamics,
and difficult to analyze results unrelated to physical dynamics or tailored with a-posteriori dynamical knowledge. The
method we have chosen in the main text (PIMC) has a tight connection to physical dynamics, covers qualitatively
a broad range of MCMC algorithms, and is considered standard in the field for reliable estimation of equilibrium
statistics of finite-temperature TFIMs of dimension greater than one.

The most straightforward way to compute thermal expectation values of system observables is to diagonalize the
Hamiltonian and compute a Boltzmann-weighted average over eigenstates. This is feasible for small systems, but
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or scaling, that would indicate a practical advantage to either cluster-SSE or SSE over PIMC. We anticipate a similar result
in the more complicated square-octagonal case, for which modifications of cluster-SSE are required. All error bars are 95%
confidence interval on the mean.

memory and time requirements scale exponentially. This makes the diagonalization approach infeasible around the
30-qubit scale for a laptop with only gigabytes of memory.

In some cases, especially one-dimensional chains, the size of the Hilbert space can be reduced, and a Lanczos
diagonalization can be performed on the remaining core of the problem—this approach is called density matrix renor-
malization group (DMRG)32. Although DMRG initially applied to systems in the ground state (i.e., zero temperature),
finite-temperature generalizations have been demonstrated33, but the approach exploits the one-dimensional structure.

Similarly, tensor network approaches are extremely effective for 1D or quasi-1D systems, but are challenging to
apply to the setting at hand. In fact, tensor networks have been applied to a geometrically-frustrated TFIM at finite
temperature17, by way of a quasi-1D transformation and application of an exponential tensor renormalization group
(XTRG)34. However, this application was only successful up to the 108-spin scale, making it uncompetitive with
PIMC in this context17.

Diffusion quantum Monte Carlo (DQMC)35 is a powerful method using Green’s function to solve the Schrödinger
equation, but only applies to the zero-temperature setting, not to the finite-temperature setting we explore in this
work. Likewise, neural networks have been used for learning a many-body ground-state wavefunction36, and although
this method has recently been extended to the 1000-qubit scale37, it has not been applied to statistical inference in
large finite-temperature frustrated systems.

In Section 5 a we consider two standard Quantum Monte Carlo methods that are principled alternatives to PIMC.
These methods are demonstrated not to accelerate equilibration compared to PIMC. The utility of these, and other,
QMC methods in establishing equilibrium statistics is determined by transition rates over the phase space, particularly
with respect to macroscopic dynamical barriers. It is non-trivial to design cluster algorithms to accelerate the most
constraining dynamical barriers. Since the two algorithms studied exploit both a different representation of the state
space, and in one case cluster moves tailored to fully frustrated lattices, they represent an interesting contrast to
mechanisms present in spatially local PIMC approaches. These are only two of the many possible quantum Monte
Carlo methods in existence; extensions to these QMC methods are possible through multi-canonical approaches
(parallel tempering, simulated annealing, population annealing), or Markov chain heuristics breaking detailed balance.

a. Alternative MCMC methods: Cluster algorithms and stochastic series expansion

Stochastic series expansion (SSE)29,38 is a Markov chain Monte Carlo framework distinct from PIMC. While PIMC
uses the Suzuki-Trotter decomposition combined with spatially local moves, SSE works with a Taylor expansion of
the Hamiltonian and spatially non-local cluster moves. SSE like PIMC has many successful applications, can have a
superior scaling (factor N) relative to PIMC for some dense models, and has the advantage of not requiring a numerical
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Supplementary TABLE I. i7 single core wall-clock time (seconds) for 215 sweeps from CW initial state, seconds

Lattice dimensions PIMC(C++) SSE(C++) SSE(MATLAB) cluster-SSE(MATLAB)
12× 9 1.2 21 7.0× 103 4.7× 103

24× 15 4.0 78 7.5× 104 5.4× 104

approximation to a continuous time limit. The cluster-SSE algorithm we compare against introduces a variation on
the SSE update suitable for AFM triangular lattices39. Since these algorithms are not spatially local, there is not
an expectation to match physical dynamics even in the classical limit. However, these are exemplars for MCMC
algorithms that achieve equilibrium whilst exploiting an algorithmic dynamics qualitatively distinct from spatially
local dynamics in PIMC. Examining two forms of the SSE algorithm is not a demonstration that all alternative QMC
algorithms will be slow, but shows that the slow equilibration of the order parameter is present under a variety of
QMC principles, and that for practical purposes (in this model) PIMC is fastest.

The triangular lattice, aside from difference in local pattern of correlations and symmetry breaking in winding
directions, has a qualitatively similar phase diagram and equilibration dynamics to the square octagonal lattice
we study (see Supplementary Fig. 3 and related discussion). Since there exists a cluster algorithm (cluster-SSE)
specifically tailored to the triangular lattice, it is interesting to compare against PIMC in the triangular space,
also allowing the simplification of single-qubit moves. We can work at qualitatively similar parameters to those
in our square-octagonal study near the paramagnetic-to-critical transition on cylindrical lattices. The comparison
demonstrates that even in this simplified model, cluster moves (perhaps surprisingly) do not accelerate equilibration—
at least, the slowest mode is qualitatively unchanged.

The state of the system in SSE is encoded in an operator sequence. We can define one sweep (iteration) of SSE,
or cluster-SSE, as an update of all operator positions. We can use CW and ordered initial conditions, as for the
PIMC case, and measure convergence time. As with the square-octagonal case these initial conditions trap dynamics
for some timescale; we note that on the triangular lattice the CCW and CW wound states are symmetric, so the
result for CCW is identical to CW and is not presented separately. Supplementary Fig. 14 shows the convergence
pattern of all algorithms at representative parameters for two different lattice sizes. Measured in sweeps, there is no
indication that SSE or cluster-SSE can accelerates convergence of the order parameter. For scaled fields βΓ and βJ
that are O(1) we anticipate the time per sweep in efficient implementations to scale as O(N) in SSE, cluster-SSE
and PIMC, with some small variation as a function of other parameters, initial conditions and run length. This
scaling of time per sweep can be inferred from the typical number of degrees of freedom operated over in one sweep
(number of interfaces manipulated in PIMC, or number of operators updated in SSE). In Supplementary Fig. 14, we
show sweeps to eliminate this known prefactor, in order to reveal any potential for scaling advantage and to remove
implementation detail dependence (per sweep), but wall-clock times are important in a practical implementation. We
measured wall-clock times for each algorithm on Intel i7 single core implementations; these values are shown in Table
I. Our SSE implementations are significantly slower than the PIMC implementation. The C++ code use efficient
implementations, but could be subject to further specialized optimizations that might close or expand the gap by a
small factor. Our MATLAB implementations are not very efficient, and scale as O(N2), thus the reported cluster-SSE
wall-clock time could be substantially reduced. However, by inspection of C++ versus MATLAB implementations
of SSE, we can anticipate that an optimized implementation of cluster-SSE would remain much slower than PIMC
per sweep, for this reason we have not made the effort to implement this algorithm since it is likely to be orders of
magnitude too slow at relevant parameterizations.

We have reported in this table a value for PIMC based on our fully featured and optimized code, by contrast the
open-source code is approximately 5 times slower (Section 10). Zealous optimization of the SSE C++ implementation
might make a comparable gain, but we do not expect that we can make SSE or cluster-SSE faster per sweep than our
PIMC implementations at these parameterizations.

The combination of weaker performance in time measured in sweeps, and in time per sweep operation, combines
to make SSE and cluster-SSE inferior choices for the study of equilibrium. However, the situation is more nuanced:
cluster-SSE is interesting in that it accelerates randomization of the phase θ of the order parameter ψ = m exp iθ, and
this is achieved in only a few sweeps. In other experimental regimes we might expect randomization of the phase to be
a slow process, in which case the cluster moves would be of greater utility, as concluded in the original paper39. Thus
the cluster algorithm has some utility, but does not appear to accelerate equilibration as measured by the slowest and
most interesting dynamical mode in our experiment.

The reason for failure of both SSE, cluster-SSE and any global cluster algorithm in the case of overcoming a
topological obstruction is rather intuitive, and is supported by our empirical studies of SSE: Locally a wound state
looks very much like an ordered state; the order parameter is approximately aligned up to a gradual phase rotation
around some periodic lattice direction. A cluster algorithm, which grows clusters based on local information, cannot
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effectively distinguish wound and unwound cases, and with high probability either selects a system spanning domain
or a local domain. The cluster rules employed in SSE, cluster-SSE and similar methods rotate (or reflect) the entire
pseudospin field uniformly. While this accelerates randomization of the phase, is does not contribute to unwinding.
We can anticipate the same qualitative behaviour in PIMC large scale cluster moves.

6. Competing methods: simulation via approximate models

Geometrically frustrated two-dimensional transverse field Ising models are known to exhibit a number of interest-
ing behaviors, not least the order-by-disorder phenomenon and competition between quantum and thermal fluctu-
ations3–5,11. Interesting scaling has been exhibited in finite-size simulations of the square-octagonal and triangular
lattices, attributed in part to a crossover with quantum critical phenomena2,5. A simple exact description of the
perturbative limit (small T and small Γ) for the square-octagonal lattices demonstrates the importance of four-qubit
GHZ states in the ground state2. In this paper we have examined the dynamics of unwinding; this is intuitively related
to critical behavior in the form of system-spanning vortices. We have demonstrated results that indicate dynamical
differentiation between dynamics of PIMC and physical QA dynamics. These various factors indicate the importance
of quantum phenomena in describing the equilibrium properties of the lattice in question.

PIMC is a standard tool for simulating equilibrium properties of a finite-temperature TFIM. However, we want to
confirm that we have compared QA against the best classical simulation in the specific setting of the square-octagonal
lattice. Thus we need to rule out alternative approaches that could potentially simulate the square-octagonal lattice
more efficiently than PIMC. The entanglement related to the GHZ states in the perturbative limit is localized. Near
this limit, properties of the phase diagram can be explained without long-range quantum correlations. Furthermore
the KT phase, being a finite-temperature critical phase, is known to have classical scaling: the scaling of extensive
properties in system size near the critical point is consistent with classical models at large scale40. Finally, the low
energy solution space seems to indicate the possibility for a reduction of the model from a square-octagonal to a
triangular description by mapping four-qubit chains onto logical qubits, or an even simpler phenomenological model
over plaquette pseudospins. Given these factors it is reasonable to ask if there are approximations to the square-
octagonal transverse field Ising model that would allow for equally good approximation at lower cost, or expose the
absence of quantum dynamics in accelerating unwinding.

Although it is impossible to disprove the existence of a superior simulation method for the lattice in question, in
this section we rule out several reasonable approaches: quasi-classical approximations consistent with the absence of
entanglement and quantum mechanisms, reductions of the square-octagonal model to a triangular lattice model, and
a phenomenologically matched XY model. We have already demonstrated evidence for entanglement at short range,
which places some restrictions on the quality of approximations achievable by quasi-classical approximations.

a. Six-state clock and other phenomenological approximations

One potential way to bypass long equilibration timescales in the lattice under study is to replace the TFIM with
a simpler classical model exhibiting the correct phases and symmetries. The most natural candidate is the plaquette
pseudospin, which accurately reflects the physics of the TFIM in the perturbative limit. A pseudospin describes the
state of a frustrated plaquette, and takes one of six values in any classical ground state θi ∈ {2πk/6 : k = 0, . . . , 5}.
These plaquette states are constrained through shared qubits; these constraints favor full or partial alignment of
neighboring pseudospins. This interaction can be qualitatively captured by pairwise ferromagnetic couplings between
six-state XY spins over a dual (honeycomb) lattice

H = −
∑
ij

cos(θi − θj),

where we can determine strength of coupling by the temperature T . The translation from the full model interaction to
this simpler pairwise one is nontrivial at the microscopic level, but T can be tuned to optimize the approximation. The
six-state clock model exhibits both a paramagnetic-to-critical transition and a low temperature crystalline state13,
and retains the symmetries of the square-octagonal model with respect to the classical ground states.

The TFIM phase diagram includes a quantum critical point at Γ = Γc; the clock model cannot reproduce the QPT
or the domed phase diagram of the TFIM2,5. Still, suppose we wish to use the six-state clock model to approximate
behavior in the vicinity of the paramagnetic-to-critical phase transition for some transverse field Γ with 0 < Γ < Γc.
The known critical scaling of both models dictates a divergence of the correlation length approaching the critical phase
as ξ ∝ exp(a/

√
T − Tc). To correctly model the susceptibility, order parameter, and other extensive quantities—in
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a scalable sense—it is necessary for this correlation length to be matched in both models. Knowing only the (non-
universal) parameters a and Tc for each model we can require that the unitless correlation lengths match up to a
prefactor. With this mapping between the model parameters in place, we can examine the approximation achieved
by each at a given correlation length. This amounts to a comparison of the collapse form.

The six-state clock model on the hexagonal lattice can be considered an approximation to both the triangular
antiferromagnet and the square-octagonal lattice. We first show deviations between the clock model and the triangular
AFM via finite size scaling collapse, then show deviations between the triangular AFM and the square-octagonal
model. To minimize finite size effects we work with periodic boundary conditions on L×L lattices. We fitted scaling
collapse parameters using a smoothness condition, fixing the parameter c to 7/4, reflecting the 2D XY universal
critical exponent of η = 1/4 (Ref. 5). Results are shown in Supplementary Fig. 15. The difference in forms is an
indication that approaching the phase transition at equivalent correlation length there are substantial differences in
susceptibility of the lattice, susceptibility growing more quickly in the TFIM and to a larger peak value at the phase
transition—this is beside the Γ-dependence of TFIM scaling, which the six-state clock model cannot capture. The
universal value leads to an excellent collapse of the 6-state clock model at these scales, but not so for our model due to
more interesting finite size effects and a previously noted crossover impact from quantum critical phenomena5. Thus
even after careful tuning of the parameters to match the growth of the correlation length, the predictive power of the
pseudospin model for the TFIM is poor.

b. Triangular lattice transverse field Ising model approximation

There is a simple local one-to-one mapping between the classical ground states of the square octagonal model
and those of the fully frustrated triangular model. The equivalence is realized in mapping the states of every four-
qubit ferromagnetically-coupled cluster in the square octagonal lattice to a single qubit in the triangular lattice. By
extension, the ground states in the presence of a perturbative transverse field are matched, where the single qubit
superposition (|↑〉 + |↓〉)/

√
2 is realized by a GHZ state over four qubits in the square octagonal case (|↑↑↑↑〉 +

|↓↓↓↓〉)/
√

2.
With this in mind one may expect that the triangular lattice can be used as a proxy for the square-octagonal

lattice; this would require a mapping of Γ/J and T/J in square-octagonal lattice to Γt/J and Tt/J the triangular
lattice such that the quantum critical points and finite-temperature phase transitions match. It would also require
that the support of the square-octagonal wavefunction be dominated by chain-intact states |↑↑↑↑〉, |↓↓↓↓〉, or their
superposition. However, even within the experimental parameters this is not the case, as evidenced by asymmetry
between CCW and CW winding around the cylinder. These directions are symmetric in the triangular lattice, but not
in the square-octagonal lattice; this subtlety is accurately simulated at equilibrium by QA, as shown in Supplementary
Fig. 22c. The asymmetry is also clearly visible in the world-line dynamics of PIMC, as seen in convergence from CCW
and CW initial conditions (Fig. 2b).

c. Spin vector model

The standard spin-vector rotor model associates angles θ ∈ [0, π]N to qubits on the lattice, and has Hamiltonian

H(θ) =
∑
ij

Jij cos(θi) cos(θj) +
∑
i

hi cos(θi)− Γ
∑
i

sin(θi),

derived by replacing σz and σx in the TFIM Hamiltonian with cos(θ) and sin(θ) respectively. A spin vector Monte
Carlo (SVMC, also SSSV after proponents41) was proposed as a semiclassical model that approximately reproduces
QA performance in certain situations. Entanglement in a QA processor was later demonstrated experimentally24

in agreement with the quantum adiabatic master equation and to the exclusion of SVMC42. While the spin-vector
ground state can be identified with the ground state of a quantum system that is separable at the level of qubits,
we have already demonstrated the presence of entanglement both within and between four-qubit chains. Since the
ground state of a ferromagnetic chain in the rotor model under a perturbative transverse field is not aligned with
the transverse field (this would be analogous to delocalized superposition of the chain), the rotor model cannot
reproduce the low-temperature physics of the square-octagonal lattice. Furthermore the square-octagonal lattice has
no quantum phase transition in the spin vector model, so any mapping between SVMC and PIMC in this setting
will be approximate at best. As shown in Supplementary Fig. 18c–d, SVMC deviates significantly from both QA and
PIMC in the range of parameters studied.
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Supplementary FIG. 15. Finite size scaling collapse of TFIM and pseudospin models. We compare collapses of
the triangular AFM TFIM at several values of Γ/J with the six-state clock model derived from the plaquette pseudospin.
Scaling parameter c is clamped to the value 7/4 derived from 2D XY universality. Marker opacity indicates system size from
L = 9 to L = 36. Differing scaling forms indicate that behavior of the fully-frustrated TFIM cannot be derived merely from
critical temperature Tc, and that the classical six-state clock model fails to predict properties of the quantum system when
reparameterized to match correlation length.

7. Effect of quench and disorder

Two important differences between the QA processor and an ideal system are effects of the readout quench, and
analog misspecification in the Hamiltonian, e.g., device inhomogeneity. To understand the effect of this misspecification
on statistical estimates, we run PIMC with static (quenched) disorder in the Hamiltonian. We perturb the classical
Ising Hamiltonian by adding i.i.d. Gaussian terms with standard deviation σ = 0.02 to each linear term hi and to
each nonzero coupling term Jij . We instantiate these errors independently for each sample, giving 600 instantiations
of error for each initial condition. Results are shown in Supplementary Fig. 16. The perturbations in the Hamiltonian
have no significant effect at high temperatures, but suppress 〈m〉 slightly at low temperatures; this is consistent with
Fig. 2c, where we see QA estimates deviating slightly below quenched PIMC estimates at low temperatures. The
analog error does not change convergence timescales significantly.

Supplementary Fig. 7 demonstrates that changing the length of the quench has little systematic impact on relaxation
timescales. That is, although the total length of the quench and reverse anneal are similar to the pause time tp,
dynamics appear to be frozen almost immediately. However, this does not rule out the possibility that the act of
repeatedly quenching and reverse annealing in QA distorts the measured timescales. Supplementary Fig. 17 shows
QA data for several slow-converging models at tp ∈ {1 µs, 2 µs, 4 µs}. We see no evidence of systematic distortion of
the data arising from the quench protocol.

We now consider effects of the readout quench on estimated equilibrium statistics. In this experiment the QA
readout quench has been used as an approximation to projective readout. However, the system shows evidence of
local relaxation during this quench; we estimate that the timescale of relevant dynamics is on the order of tens of
nanoseconds. To address this issue, we take two approaches.

The first approach is to quench PIMC output, which we do by taking a PIMC spin state, projected to the σz basis,
and applying a greedy descent in the classical potential: first we repair frustrated four-qubit chains by majority vote,
breaking ties randomly. Next we greedily flip chains while doing so lowers the classical energy. This allows us to
compare quenched PIMC output with quenched QA output; this is the approach we take in the main body of this
work.

The second approach is to “unquench” QA output by applying a small number (10) of PIMC postprocessing sweeps.
After this postprocessing we project the PIMC state to the σz basis as with our PIMC experiments; this allows us to
compare unquenched QA output with projected PIMC output.

In Supplementary Fig. 18 we show the effect of this unquenching on the average order parameter and residual energy.
While the order parameter is relatively robust to the process due to being somewhat topologically protected, the PIMC
postprocessing sweeps dramatically increase the residual classical energy, which is dominated by local excitations (i.e.,
bound vortex-antivortex pairs). We see that raw QA output has systematically higher residual energy than quenched
PIMC output; this is because excitations arising from frustrated ferromagnetic bonds are completely removed by the
PIMC classical quench. We confirm in Supplementary Fig. 18e–h that our conclusions about advantage of QA over
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Supplementary FIG. 16. Effect of disorder in the Ising Hamiltonian. We show projected PIMC measurements as they
converge in the original Hamiltonian (a–c) and with static disorder added to the Hamiltonians (independent Gaussian errors on
the terms with σ = 0.02) added to the Ising Hamiltonian (d–f). Symbols are average measurements and lines are exponential
fits. Equilibrium estimates of 〈m〉 (g) show that disorder suppresses 〈m〉, with a temperature-dependent effect that is largest at
low temperatures. This is consistent with QA data and demonstrates a disordering effect that does not accelerate convergence.
All error bars are 95% confidence interval on the mean.
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Supplementary FIG. 17. QA convergence for varying parameters and pause times. We show QA measurements as in
Fig. 2b with different values of pause time tp separated. Each row is a different value of (Γ/J, T/J). For each row, the same
exponential fit is shown. All error bars are 95% confidence interval on the mean.

PIMC does not depend on the quench.
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Supplementary FIG. 18. Quenching and unquenching samples. a–b, To mimic a reversal of the QA readout quench, we
apply a small number of PIMC postprocessing sweeps to QA output samples. a, The effect on 〈m〉 is modest, and similar in
magnitude to the effect of a classical quench on PIMC output samples. b, The effect on classical residual energy is significant
and is mostly complete after 10 sweeps. c–d, Quenching PIMC output and unquenching QA output (with 10 sweeps) allows us
to compare quenched and unquenched statistics for a range of temperatures with Γ/J = 0.736. We compare QA results to both
PIMC and SVMC (a semiclassical rotor model). c, In both QA and PIMC, quenched estimates of 〈m〉 are roughly 0.02 higher
than unquenched estimates. QA and PIMC agree across the range of parameters; SVMC deviates significantly. d, Residual
classical energy differs dramatically between quenched and unquenched samples in all models, indicating its sensitivity to local
processes and therefore the short timescale of the physical QA quench. e–h, We use quenched and raw PIMC samples to
reproduce Fig. 4c (e–f) and Fig. 4d (g–h); our main conclusions regarding QA and PIMC relaxation rates are not affected by
whether or not we quench PIMC samples. All error bars are 95% confidence interval on the mean.
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Supplementary FIG. 19. Modeling QA quench in PIMC. We assign tq to be 1000 PIMC sweeps, estimating an equivalent
rate from QA data. We then vary tp in PIMC sweeps (see Supplementary Fig. 7). Different markers indicate different pause
lengths tp; we perform eight steps of each length.

a. Effect of quench on relaxation timescales

The PIMC quench we have used up to this point is a simple one-way postprocessing that does not influence the
dynamics of PIMC itself. Figs. 7 and 17 show that QA convergence timescales are not strongly affected by the QA
quench protocol, so it is appropriate to compare QA dynamics against the dynamics of fixed-Hamiltonian PIMC,
only using the quench to roughly quantify the effect of local relaxation. However, the effect of quenching in PIMC is
still interesting. To investigate another model of PIMC quench that can potentially affect dynamics, we assume an
equivalent PIMC-to-QA rate of 1000 sweeps per QA microsecond. This is a reasonable approximate value (Fig. 4c),
and allows us to model the full QA protocol of reverse annealing and quenching. Results are shown in Supplementary
Fig. 19. Adopting this more complex PIMC quench does not provide a speedup; the difference in convergence time
between T/J = 0.24 and T/J = 0.33 remains just under an order of magnitude (cf. Fig. 4a). In addition, 〈m〉 is
overestimated far more at T/J = 0.44 than in QA.

We also explore an alternative PIMC quench method that differs from the QA protocol. Instead of quenching both
thermal and quantum fluctuations as in QA (and Supplementary Fig. 19), we quench only Γ, linearly over a few
PIMC sweeps. We perform this quench with free parameters tp and tq rather than with parameters motivated by
the QA protocol. Supplementary Fig. 20 shows data in which each sample is derived from the previous by Γ-only
reverse anneal and quench of duration tq = 10 sweeps, with a pause of tp ∈ {10, 100, 1000} sweeps. Note that this
is more frequent than QA quench in our experiments. The data shows that fast quenches in PIMC can lead to a
highly non-equilibrium dynamics and can provide speedup. Data is qualitatively similar for tq = 0 sweeps, where
PIMC is periodically projected to the classical space. Pause length tp provides a tradeoff between escape dynamics
and simulation accuracy; for tp = 100 the effect on escape dynamics is large compared to the effect on 〈m〉. We
hypothesize that the dynamical effect is related to the fact that when Γ = 0 and T > 0, the effective Hamiltonian
for four-qubit PIMC updates is a classical triangular Ising antiferromagnet, which has no order-by-disorder effect
compelling neighboring pseudospins to align exactly.

8. Local signatures of entanglement

Entanglement is a property restricted to quantum systems, and has been demonstrated in a quantum annealing
processor similar to the one used in this study24. At finite temperatures the equilibrium distribution of a quantum
system is described by a mixed state, and this makes unambiguous establishment of entanglement difficult. Here we
examine two entanglement witnesses: bipartite concurrence43 and the Peres-Horodecki criterion44,45 (positive partial
transpose), both of which demonstrate interesting forms of entanglement that place limitations on the ability of quasi-
classical models to simulate the system. Significant entanglement is present at the temperature and transverse field
ranges examined; these simple measures indicate increased entanglement with decreasing temperature over the ex-
perimental range. This provides a plausible explanation—increasing entanglement—for the increasing computational
advantage seen in the quantum hardware as temperature decreases.

Certain forms of bipartite entanglement can also be measured in large systems by a quantum Monte Carlo method.
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Supplementary FIG. 20. Effect of alternative quench methods in PIMC. Supplementary Fig. 19 modeled QA quench
in PIMC using approximately corresponding, physically motivated parameters. Here we explore an alternative approach,
quenching only Γ/J instead of both T/J and Γ/J , and we do so more frequently and quickly than corresponding QA parameters.
At Γ = 0 and T > 0 the system, like the triangular Ising antiferromagnet, has no long range order. Consequently at low
temperatures there is a temperature-dependent effect on order (left) and acceleration of escape (right). Quench frequency
provides a tradeoff between speed of escape and simulation accuracy. Error bars are from exponential fitting.
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Supplementary FIG. 21. Entanglement witnesses. a, We consider bipartite concurrence as a witness of entanglement between
two central spins in a four-qubit chain. Lines indicate exact diagonalization results on the 12-qubit gadget (Supplementary
Fig. 10a), and marks indicate estimates from quantum Monte Carlo on central chains in a cylindrical lattice with L = 6.
Concurrence increases with 1/T and with Γ in the experimental parameter range. b, By considering the smallest eigenvalue
(most negative) associated to the 12-qubit gadget instance under partial transpose of one 4-qubit block, we can establish a
witness for entanglement between chains. The absolute value of the negative eigenvalue is plotted; as expected it decreases
with increasing temperature, and peaks at intermediate transverse field, indicating the failure of factorized approximations
(mapping four-qubit chains to logical spins) throughout the experimental range. This measure is limited to the 12-qubit gadget
due to the computational complexity of the witness on larger systems. All error bars are 95% confidence interval on the mean.

Many terms in the density matrix can be estimated using standard PIMC; measurement of certain off-diagonal terms—
as a ratio of partition functions—requires modification of the imaginary time boundary conditions. By doing so we can
measure traced density matrices in large systems and establish bipartite concurrence in our larger lattices. Bipartite
entanglement results for neighboring central spins on four-qubit chains are shown in Supplementary Fig. 21a. We find
strong concurrence at the level of pairs across the experimental parameter range. We show this both in the 12 qubit
gadget system, and in the L = 6 lattice under investigation. This result contrasts with the perturbative argument for
the nature of entanglement, which is based only on the presence of GHZ states. The presence of entanglement between
two qubits in a chain, after tracing out the other two, indicates rich quantum correlations beyond the perturbative
argument. Thus we establish not only concurrence, but that its form is notably distinct from that predicted in the
perturbative regime across the parameters studied.

We also applied this entanglement measure to qubits beyond chains at various distances, but did not find an
unambiguous signal for quantum correlations. Tracing out of variables is necessary for a practical method at scale
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based on this entanglement witness, but in the process evidence of entanglement can be destroyed. However, we can
use alternative witnesses over small systems. The absence of entanglement allows for factorization of the distribution
with respect to chains. To test this we can use the Peres-Horodecki criterion at the level of a chain; a partial transpose
with respect to the chain will yield no negative eigenvalues if there exists a separable (quasi-classical) approximation.
As shown in Supplementary Fig. 21b, this criterion indicates the presence of entanglement beyond the chain level
throughout the experimental range, with the evidence becoming weaker at larger temperature and smaller Γ as
expected.

It should be noted that the bipartite concurrence and Peres-Horodecki witnesses chosen to demonstrate entangle-
ment here are sufficient, but not necessary, for the demonstration of entanglement and we have not been able to link
them to a specific accelerating dynamical mechanism. Developing and applying witnesses better tailored to the lattice
structure and phases, and exploiting only QA-accessible information, is future work.

9. Additional observables

Here we provide data on additional observables. Supplementary Fig. 22 shows convergence and equilibrium values
of winding number. Both PIMC and QA exhibit asymmetry between counterclockwise and clockwise winding that
varies as a function of T/J and Γ/J . This asymmetry is a subtle detail of equilibrium statistics in the square-octagonal
lattice that is absent in the related triangular antiferromagnet, where there exists an additional flip symmetry of the
cylinder. It is important for two reasons. First, it indicates that the quantum simulation is accurate enough to exhibit
highly nontrivial physics, thereby demonstrating the utility of quantum simulation. Second, it immediately rules out
several simplified models of the lattice such as the triangular AFM, six-state clock model, and any other model from
which this asymmetry is absent.

Supplementary Fig. 23 shows two-point pseudospin correlations along the periodic axis of the cylinder, taken far
from the open boundaries as in previous work2. The decay form of these correlations are important witnesses of
critical phenomena2,5.

Supplementary Fig. 24 reproduces the data in Fig. 3b–c for smaller instances, showing accuracy in estimating 〈m〉
for every system size studied, usually to within 0.01 of converged PIMC estimates.

10. Source code

Source code is available for reproduction of our work under an Apache license. This takes the form of a C++ class.
The latest version of the source code is available at https://github.com/dwavesystems/dwave-pimc. The code is
written for generic sparse transverse field Ising models with fixed transverse field

Ĥ =
∑
i,j

Ji,jσ
z
i σ

z
j +

∑
i

[hiσ
z
i − Γσxi ] . (7)

Code generates projected samples at any temperature. The number of slices is set to 216 as a numerically convenient
approximation to infinity appropriate for practical parameterizations.

A single qubit method is provided for generic models. For models where blocks of size X form ferromagnetic
chains with uniform coupling, as in the square-octagonal case (X = 4), a chain update is also provided. The
chain update significantly accelerates equilibration for this model, as discussed in the paper. Square-octagonal and
triangular lattices—along with their CW/CCW and ordered initial conditions—can be prepared, and the three-
sublattice partitioning of variables required for inference of the order parameter m is provided.

Results as measured in sweeps can be reproduced by this code, Figs. 11(f) and 14 for example. For simplicity we
have provided a reduced-feature code, with certain optimizations removed. These have a small impact on performance;
the wall-clock times that define Figs. 2 and 11(f) remain reasonably well approximated. The timescales assocated to
PIMC applied to the triangular lattice in Section 5 a, were slower by a factor of approximately 5.
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Supplementary FIG. 22. Convergence of winding number in QA and PIMC. Analogous to the data presented in Fig. 2b,
we can observe convergence of winding number f(w) from various initial conditions, in QA and PIMC (quenched). Data shown

is for f(0), f(1), and f(−1), normalized by their sum to give f̂(w) = f(w)/(f(0) + f(1) + f(−1)). a, Area plots of the three

normalized winding numbers f̂(w) shows convergence to a stable distribution for each simulation regardless of initial condition.

b, Normalized winding numbers f̂(w) are plotted separately, along with exponential fit functions. The sum of these fits’
deviations from their equilibrium values gives a measure of error on the distribution, which converges to zero. As in Fig. 2b,
data shown correspond to Γ/J = 0.736, T/J = 0.244. c, Equilibrium estimates of non-normalized winding numbers f(w) for
QA (markers) and PIMC (lines) are shown at two values of Γ/J corresponding to s = 0.36 and s = 0.38. Beyond the broad
quantitative agreement, QA accurately captures subtle equilibrium properties of the square-octagonal lattice, in particular the
asymmetry between negative and positive winding and its dependence on Γ and T . Error bars are 95% bootstrap confidence
intervals.
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Supplementary FIG. 24. QA and PIMC equilibrium estimates of order parameter. Analogous to Fig. 3b and c, we
show data for all system sizes studied for the four coldest temperatures and slowest-converging annealing parameters studied.
These estimates are derived from an average of ordered and random initial conditions.
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